
May 16, 2024

Introduction to deep learning
Florian Ruppin -- florian.ruppin@univ-lyon1.fr

Université Claude Bernard Lyon 1, Institut de Physique des 2 Infinis de Lyon

2

Classification -- neural networks

Different approches : supervised / unsupervised

Python tools used for the hands-on session

I.

II.

VI.

Context: object classification, non-linear estimation

Neural network architecture: image classificationIII.

Forward propagation: a non-linear function

Backpropagation: obtaining the right weights -- proof

IV.

V.

3

Classification -- neural networks

Different approches : supervised / unsupervised

Python tools used for the hands-on session

I.

II.

VI.

Context: object classification, non-linear estimation

Neural network architecture: image classifiIII.

Forward propagation: a non-linear function

Backpropagation: obtaining the right weights -- proof

IV.

V.

Automatic classification -- non-linear function

4

✤ Many fields require the use of algorithms to classify large datasets 
Examples: medicine, fundamental research (physics, chemistry, biology, humanities, etc.), big-data company, etc.

✤ Simple cases: classification can be performed by a simple cutoff with respect to a linear function

Linear classification

x

y

✤ Current problems: - the categories studied are defined by a large number of variables
- the quality of the data is not sufficient to associate an unambiguous category (contamination)

- the function for optimal data classification is highly non-linear

1D non-linear classification

x

y

nD non-linear classification

✤ Visual inspection relies on knowledge of a large number of properties (noise + signal) 
Disadvantages: often involves a single person (errors / biases) + cannot be considered for large data sets

5

Classification -- neural networks

Different approches : supervised / unsupervised

Python tools used for the hands-on session

I.

II.

VI.

Context: object classifi

Neural network architecture: image classifiIII.

Forward propagation: a non-linear function

Backpropagation: obtaining the right weights -- proof

IV.

V.

Training a classifier -- supervised or not

6

Supervised approach:

✤ Use of a training sample in which each data vector has a known class label

Objective: We want to find the optimal function for separating our data into categories (called class labels)

✤ Decision tree: we define a set of variables on which to apply successive cuts in order to achieve a minimum contamination
rate for each class label

✤ Neural network: we define an architecture of interconnected neurons (automata with a transfer function) and exploit the
potential complexity of the corresponding function (synaptic plasticity) to optimize our classification.

Unsupervised approach:

✤ The class labels of the training sample are not defined. The neural network groups together data with similar features

Decision tree Associated cuts Neural network

7

Classification -- neural networks

Different approches : supervised / unsupervised

Python tools used for the hands-on session

I.

II.

VI.

Context: object classifi

Neural network architecture: image classificationIII.

Forward propagation: a non-linear function

Backpropagation: obtaining the right weights -- proof

IV.

V.

Neural network architecture -- multilayer perceptron

8

Input

Hidden
layer

Output

w11

w12

w
13

x1

xi

xN

y1

y2

Black and white
image (53 x 80 x 1) Associated vector (4240 values between 0 and 1)

✤ Three types of layer: one input, one or more hidden layers, one output

✤ Input: the matrix corresponding to a data sample is unfolded as a vector (each neuron contains a value)

✤ Hidden layer: each neuron receives a linear combination of the outputs of all the neurons in the previous layer

Each pixel in the image is multiplied by a weight and summed to the other products

✤ Each hidden layer neuron applies a non-linear function to the linear input combination

✤ Output: each neuron in the output layer contains the probability of belonging to a category

9

Classification -- neural networks

Different approches : supervised / unsupervised

Python tools used for the hands-on session

I.

II.

VI.

Context: object classifi

Neural network architecture: image classifiIII.

Forward propagation: a non-linear function

Backpropagation: obtaining the right weights -- proof

IV.

V.

Forward propagation -- notations

10

✤ We call the weight associated with the link between neuron of layer and neuron of layer wL
mn m L − 1 n L

✤ The activation function is called and the result of this function returned by neuron of layer is called h n L aL
n

✤ The bias associated with neuron of layer is called n L bL
n

✤
We thus have: aL

n = h (∑
i

wL
in aL−1

i + bL
n)

✤
We call the linear combination at the input of neuron of layer . 

Thus, its output is simply given by

zL
n = ∑

i

wL
in aL−1

i + bL
n n L

aL
n = h(zL

n)

Matrix notation to generalize the above equations to all neurons in the same layer:

✤ We call the matrix of weights from layer to layer . It is therefore an matrix where and are
the number of neurons in layers and . Thus,

WL L − 1 L M × N M N
L − 1 L wL

mn = WL[m, n]

Notations per neural network element:

✤ We call the bias vector of layer . Thus, bL L bL
n = bL[n]

✤ We call the activation vector of layer . Thus, aL L aL
n = aL[n]

✤ We call the vector of arguments of the activation function of layer . Thus, zL L zL
n = zL[n]

aL
n = h (zL

n)

aL−1
1

aL−1
i

aL−1
m

w L1n

wL
in

w
L

mn

Neuron
layer

n
L

Forward propagation -- activation functions

11

✤ With these notations we can generalize the definition of for each neuron of layer : 
 and thus,

zL
n L

zL = (WL)TaL−1 + bL aL = h(zL)

Note: We don't assign to the input layer because then we'd have a weight matrix and a bias vector that aren't defined for the input
layer, which has no prior weights or bias per neuron. The layer is therefore the first hidden layer and we have to replace by , the data
vector, in the previous equation.

L = 0 W0 b0

L = 0 aL−1 x

✤ We call the output layer (). The layer is therefore the last hidden layer and we thus have hidden layers.H L = H L = H − 1 H

Activation functions:

✤ The activation function most commonly used in deep neural networks is ReLU (rectified linear unit) defined by: 
f(x) = max(0, x)

ReLU(x)

x

Intrinsically non-linear, obvious derivative, sparse activation

✤ The activation function of the output layer is often the softmax function defined by: 

 for σ(⃗z)j =
ezj

∑N
i=1 ezi

j ∈ [1, . . . , N]

Discrete probability law on different resultsN

Forward propagation -- principle

12

✤ We therefore obtain a result in the neurons of the output layer that can be compared with the actual class label of the input data

aL
n = h (∑

i

wL
in aL−1

i + bL
n)

aL−1
1

aL−1
i

aL−1
m

w L1n

wL
in

w
L

mn

Neuron
layer

n
L

x1

xi

xN

Dog

Not Dog

0.94

0.06

Input
Expected output

1

0

✤ For each pair , the network is run from left to right by performing the following operations(Inputi, Expected outputi)i∈[1, ..., D]

✤ Multiply input values by weights, sum results, add biases, apply activation function, pass to next neurons

✤ This propagation results in values between 0 and 1 inside the output neurons (if the softmax function is used as output)

13

Classification -- neural networks

Different approches : supervised / unsupervised

Python tools used for the hands-on session

I.

II.

VI.

Context: object classifi

Neural network architecture: image classifiIII.

Forward propagation: a non-linear function

Backpropagation: obtaining the right weights -- proof

IV.

V.

Backpropagation -- principle

14

✤ We want to find the best weights and biases to maximize the classification success rate on the training sample

✤ In most cases, the number of free parameters of the problem is classical methods are not adapted≫ 104

✤ Initial state: weights and biases are randomly drawn output neurons have equivalent values 
Classification success rate is low (random drawing of a class label)

x1

xN

xi−1

xi

xi+1

W0 W1 W2
W3

b0 b1 b2

b3

0.36

0.31

0.33

✤ Backpropagation: algorithm for updating the values of the weights and biases, taking into account the values obtained in the
neurons of the output layer in the forward propagation step. The aim is to vary the weights and biases in the right direction to
increase the success rate by successive iterations on the training sample.

Backpropagation -- loss function

15

✤ A function called the loss function is used to quantify the difference observed between the output of the neural network and the
class label associated with the data under consideration

✤ The training database is a set of input-output pairs where each and is a realisation of the random variables and (xi, yi)1≤i≤D xi yi X Y

✤ The aim of supervised learning is to define a nonlinear function that minimizes the deviation between the random variables
 and . To define this deviation, we introduce a loss function that quantifies the distance between a model prediction

and an expected output

f
f(X) Y J f(xi)

yi

✤ To obtain the best function generalizing our data, we will minimize the empirical risk: 

 

 The mean of the deviations between network prediction and expected output is minimized for training pairs

RD(f) =
1
D

D

∑
i=1

J(yi, f(xi))

D

Backpropagation -- representative data sample

16

Lapuschkin, S., Wäldchen, S., Binder, A. et al., Nat Commun 10, 1096 (2019)

Classified as a horse!

✤ The set of input-output pairs must cover the whole distribution of the random variables and (xi, yi)1≤i≤D X Y

Backpropagation -- proof

17

✤ The free parameters of are the weights and biases for each layer . We will therefore vary and to minimise .
As the function is not analytic (because is not), we perform a numerical minimization via the iterative procedure: 
 

 

 

 
where the initial values of the matrices and vectors are randomly drawn and then updated at each training iteration (called
epoch) to minimize . The parameter is called the learning rate. It is set by the user at the start of training phase.

f WL bL L WL bL RD(f)
RD(f) f

WL = WL − λ
∂RD(f)

∂WL
= WL −

λ
D

D

∑
i=1

∂J(yi, aHi)
∂WL

bL = bL − λ
∂RD(f)

∂bL
= bL −

λ
D

D

∑
i=1

∂J(yi, aHi)
∂bL

WL bL

RD(f) λ

Gradient descent!

✤
We therefore need to know the expressions of and to train the neural network

∂J
∂wL

mn

∂J
∂bL

n

J J

W, b W, b

Small λ Large λ

18

General case -- independent of the expression of :J

✤
 

 

where we define because it is the only element that depends on the expression of the loss function

∂J
∂wL

mn
=

∂J
∂zL

n

∂zL
n

∂wL
mn

=
∂J
∂zL

n

∂ [∑i wL
inaL−1

i + bL
n]

∂wL
mn

=
∂J
∂zL

n

∂ [∑i wL
inaL−1

i]
∂wL

mn
=

∂J
∂zL

n

∂ [wL
mnaL−1

m]
∂wL

mn
=

∂J
∂zL

n
aL−1

m = δL
n aL−1

m

δL
n =

∂J
∂zL

n
J

✤ In matrix form we have:
∂J

∂WL
= aL−1(δL)T

✤
 In vector form:

∂J
∂bL

n
=

∂J
∂zL

n

∂zL
n

∂bL
n

= δL
n

∂bL
n

∂bL
n

= δL
n

∂J
∂bL

= δL

✤ We now need to determine for a given loss functionδL
n

Backpropagation -- proof

19

Loss function : cross-entropyJ

✤ Consider the cross-entropy function which, for two discrete probability distributions and , is given by: p q
J(p, q) = − ∑

x

p(x)ln[q(x)]

Link to maximum likelihood estimator:

✤ Classification problems: we wish to estimate the probability that the random variable has the value for a set of parameters
knowing the empirical probability given by the frequency of occurrence of in our training sample

qθ(X = i) X i θ
p(X = i) i

✤ If we have independent pairs in our training sample then the likelihood of the parameters in this data set is: D θ
ℒ(θ) = ∏

i∈X
(estimated probability of i)(number of instances of i) = ∏

i

qθ(X = i)D p(X=i)

✤
Thus, the logarithm of this likelihood function is:

1
D

ln [ℒ(θ)] =
1
D

ln [∏
i

qθ(X = i)D p(X=i)]
= ∑ p(X = i) ln [qθ(X = i)]
= − J(p, q)

Maximizing the likelihood of finding and is equivalent to minimizing the cross-entropy WL bL J

Backpropagation -- proof

20

✤ We wish to estimate the distance between the output of the neurons of the last layer and the expected value  

We will therefore minimize where

aH
n yn

1
D

D

∑
i=1

J(yi, aHi) J(yi, aHi) = − ∑
n

yi
n ln [aHi

n]
✤ In a classification problem, each neuron in the output layer corresponds to a class label. It must therefore contain the probability

that the input data belongs to a given class label. To achieve this, we use the softmax function as the activation function for each
output neuron: 

aH
n = hH(zH

n) =
ezH

n

∑i ezH
i

✤
Thus,  

 

With  

 

And

δH
n =

∂J
∂zH

n
= ∑

i

∂J
∂aH

i

∂aH
i

∂zH
n

= ∑
i≠n (∂J

∂aH
i

∂aH
i

∂zH
n) +

∂J
∂aH

n

∂aH
n

∂zH
n

∂J
∂aH

n
=

∂ [−∑m ym ln(aH
m)]

∂aH
n

= −
∂ [yn ln(aH

n)]
∂aH

n
= −

yn

aH
n

∂aH
n

∂zH
n

=
∂ [ezH

n /(∑i ezH
i)]

∂zH
n

=
ezH

n (∑i ezH
i) − ezH

n ezH
n

(∑i ezH
i)

2 =
ezH

n

∑i ezH
i (1 −

ezH
n

∑i ezH
i) = aH

n (1 − aH
n)

∂J
∂aH

n

∂aH
n

∂zH
n

= − yn(1 − aH
n)

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

}

Backpropagation -- proof

21

✤
Therefore, δH

n = ∑
i≠n (∂J

∂aH
i

∂aH
i

∂zH
n) − yn(1 − aH

n)

✤

Furthermore, and
∂J

∂aH
i

=
∂ [−∑m ym ln(aH

m)]
∂aH

i
= −

yi

aH
i

∂aH
i

∂zH
n

=
∂ [ezH

i /(∑m ezH
m)]

∂zH
n

=
−ezH

i ezH
n

(∑i ezH
i)

2 = − aH
i aH

n

✤
Then for , i ≠ n

∂J
∂aH

i

∂aH
i

∂zH
n

= −
yi

aH
i

(−aH
i aH

n) = yi aH
n

because so i ≠ n
∂ezH

i

∂zH
n

= 0

✤
And finally,  

Now each entry is associated with a single class label, so is a vector containing only 0s except for one value, which is 1 

δH
n = ∑

i≠n

yi aH
n − yn(1 − aH

n) = ∑
i≠n

yi aH
n + ynaH

n − yn = aH
n ∑

i

yi − yn

x y

∑
i

yi = 1

✤ Therefore which is written in vector form: δH
n = aH

n − yn δH = aH − y

✤ We now know the expression of for the last layer. All that remains is to calculate a relationship between and to
link this layer to the previous layers of the network (backpropagation)

δ δL δL+1

Backpropagation -- proof

22

✤
In the general case, we have δL

n =
∂J
∂zL

n
= ∑

m

∂J
∂zL+1

m

∂zL+1
m

∂zL
n

= ∑
m

δL+1
m

∂zL+1
m

∂zL
n

We have to sum because every in the layer is a function of .
The result goes into every neuron in the layer.

zm L + 1 zn
h(zn) L + 1

✤
In addition,

∂zL+1
m

∂zL
n

=
∂ [∑i wL+1

im aL
i + bL+1

m]
∂zL

n
=

∂ [wL+1
nm aL

n]
∂zL

n
Because the only that depends on is aL

i zL
n aL

n = h(zL
n)

✤
Then,

∂zL+1
m

∂zL
n

= wL+1
nm

∂aL
n

∂zL
n

= wL+1
nm h′￼(zL

n)

✤
Finally, δL

n = ∑
m

δL+1
m wL+1

nm h′￼(zL
n) = h′￼(zL

n)∑
m

δL+1
m wL+1

nm

✤ We introduce the symbol to represent element-by-element multiplication between two vectors. 
For example:

⊙
(a1, a2, . . . an) ⊙ (b1, b2, . . . bn) = (a1b1, a2b2, . . . anbn)

In vector form we have δL = h′￼(zL) ⊙ WL+1δL+1

Backpropagation -- proof

Backpropagation -- overview of the training algorithm

23

Summary:

1. unless then

2.

3. unless then

4. unless then (We replace by)

5.

zL = (WL)TaL−1 + bL L = 0 zL = (WL)T x + bL

aL = h(zL)

δL = h′￼(zL) ⊙ WL+1δL+1 L = H δH = aH − y

∂J
∂WL

= aL−1(δL)T L = 0
∂J

∂WL
= x (δL)T aL−1 x

∂J
∂bL

= δL

Algorithm : ✤ Initialize the and with random values and calculate all and with (1) and (2) forward propagationWL bL zL aL

✤ Compute the from layer to using (3)δL H 0

✤ Simultaneously compute the and from layer to using (4) and (5)
∂J

∂WL

∂J
∂bL

H 0

✤ Update the and using the gradient descent methodWL bL

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

} backpropagation

Backpropagation -- particular case: single hidden layer

24

✤ Elements considered: inputs , matrices and , vectors and , and outputs xi W0 W1 b0 b1 yi

✤ Backpropagation: δ1
i = a1

i − yi

Study of a classifier with 10 output categories, a single hidden layer and D training pairs :(xi, yi)

δ0
i = h′￼(z0

i) ⊙ W1δ1
i

∂Ji

∂W1
= a0

i (δ1
i)T

∂Ji

∂W0
= xi (δ0

i)T

∂Ji

∂b1
= δ1

i

∂Ji

∂b0
= δ0

i

✤
Weight update: W1 = W1 −

λ
D

D

∑
i=1

∂Ji

∂W1

W0 = W0 −
λ
D

D

∑
i=1

∂Ji

∂W0

b1 = b1 −
λ
D

D

∑
i=1

∂Ji

∂b1

b0 = b0 −
λ
D

D

∑
i=1

∂Ji

∂b0

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

}

✤ Forward propagation: and z0
i = (W0)T xi + b0 a0

i = ReLU(z0
i)

 and z1
i = (W1)Ta0

i + b1 a1
i = softmax(z1

i)

Backpropagation -- accuracy and overfitting

25

Two samples: training + test
Under-training OverfittingOptimal training

J J J

iterations iterations iterations

✤ The accuracy of the neural network's predictions increases with each iteration by construction (decrease in the loss function)

✤ If too many iterations are performed to increase accuracy, the neural network will learn the particularities of the training sample 
 less generalizable

✤ We separate the available data into a training sample and a test sample

✤ At each iteration, the training sample is used to update the weight values,
and the test sample is used to calculate the accuracy

✤ The accuracy calculated on the training sample is necessarily greater because
the weights are optimized to maximize it

✤ If the accuracy calculated on the test sample starts to fall, the network is
suffering from overfitting

26

Classification -- neural networks

Different approches : supervised / unsupervised

Python tools used for the hands-on session

I.

II.

VI.

Context: object classifi

Neural network architecture: image classifiIII.

Forward propagation: a non-linear function

Backpropagation: obtaining the right weights -- proof

IV.

V.

Hands-on session -- introduction / goals

27

✤ Comparison of the tools developed during the session: - results
- calculation time (time library)
- CO2 emissions (CodeCarbon library)

✤ Implementation of a neural network for image classification:

- Single hidden layer neural network: digit recognition

- Impact of network architecture on accuracy

✤ Use of a dedicated neural network library

- Analysis of overtraining

Hands-on session -- python tools

28

✤ All projects are based on the Python 3.9 language

✤ Projects involve libraries that are increasingly dedicated to the methods being studied

Special case of the neural network project:

✤ Single hidden layer neural network (architecture + training) only using NumPy

General information:

✤ Using TensorFlow: comparison and generalization to multiple hidden layers

✤ Analysis of the impact of architecture and learning rate on accuracy

Don't hesitate to have a look at the documentation of these libraries before the session!

