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Automatic classification --  non-linear function
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✤ Many fields require the use of algorithms to classify large datasets 
Examples: medicine, fundamental research (physics, chemistry, biology, humanities, etc.), big-data company, etc.

✤ Simple cases: classification can be performed by a simple cutoff with respect to a linear function

Linear classification

x

y

✤ Current problems: - the categories studied are defined by a large number of variables
- the quality of the data is not sufficient to associate an unambiguous category (contamination)

- the function for optimal data classification is highly non-linear

1D non-linear classification

x

y

nD non-linear classification

✤ Visual inspection relies on knowledge of a large number of properties (noise + signal) 
Disadvantages: often involves a single person (errors / biases) + cannot be considered for large data sets
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Training a classifier  --  supervised or not
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Supervised approach: 

✤ Use of a training sample in which each data vector has a known class label

Objective: We want to find the optimal function for separating our data into categories (called class labels)

✤ Decision tree: we define a set of variables on which to apply successive cuts in order to achieve a minimum contamination 
rate for each class label

✤ Neural network: we define an architecture of interconnected neurons (automata with a transfer function) and exploit the 
potential complexity of the corresponding function (synaptic plasticity) to optimize our classification.

Unsupervised approach: 

✤ The class labels of the training sample are not defined. The neural network groups together data with similar features

Decision tree Associated cuts Neural network
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Neural network architecture -- multilayer perceptron
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Input

Hidden 
layer

Output

w11

w12

w
13

x1

xi

xN

y1

y2

Black and white 
image (53 x 80 x 1) Associated vector (4240 values between 0 and 1)

✤ Three types of layer: one input, one or more hidden layers, one output

✤ Input: the matrix corresponding to a data sample is unfolded as a vector (each neuron contains a value)

✤ Hidden layer: each neuron receives a linear combination of the outputs of all the neurons in the previous layer

Each pixel in the image is multiplied by a weight and summed to the other products

✤ Each hidden layer neuron applies a non-linear function to the linear input combination

✤ Output: each neuron in the output layer contains the probability of belonging to a category
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Forward propagation --  notations

10

✤ We call  the weight associated with the link between neuron  of layer  and neuron  of layer wL
mn m L − 1 n L

✤ The activation function is called  and the result of this function returned by neuron  of layer  is called h n L aL
n

✤ The bias associated with neuron  of layer  is called n L bL
n

✤
We thus have: aL

n = h (∑
i

wL
in aL−1

i + bL
n )

✤
We call  the linear combination at the input of neuron  of layer . 

Thus, its output is simply given by 

zL
n = ∑

i

wL
in aL−1

i + bL
n n L

aL
n = h(zL

n )

Matrix notation to generalize the above equations to all neurons in the same layer:

✤ We call  the matrix of weights from layer  to layer . It is therefore an  matrix where  and  are 
the number of neurons in layers  and . Thus, 

WL L − 1 L M × N M N
L − 1 L wL

mn = WL[m, n]

Notations per neural network element:

✤ We call  the bias vector of layer . Thus, bL L bL
n = bL[n]

✤ We call  the activation vector of layer . Thus, aL L aL
n = aL[n]

✤ We call  the vector of arguments of the activation function of layer . Thus, zL L zL
n = zL[n]

aL
n = h (zL

n )

aL−1
1

aL−1
i

aL−1
m

w L1n

wL
in

w
L

mn

Neuron  
layer 

n
L



Forward propagation  --  activation functions
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✤ With these notations we can generalize the definition of  for each neuron of layer : 
  and thus, 

zL
n L

zL = (WL)TaL−1 + bL aL = h(zL)

Note: We don't assign  to the input layer because then we'd have a weight matrix  and a bias vector  that aren't defined for the input 
layer, which has no prior weights or bias per neuron. The layer  is therefore the first hidden layer and we have to replace  by , the data 
vector, in the previous equation.

L = 0 W0 b0

L = 0 aL−1 x

✤ We call  the output layer ( ). The layer  is therefore the last hidden layer and we thus have  hidden layers.H L = H L = H − 1 H

Activation functions:

✤ The activation function most commonly used in deep neural networks is ReLU (rectified linear unit) defined by: 
f(x) = max(0, x)

ReLU(x)

x

Intrinsically non-linear, obvious derivative, sparse activation

✤ The activation function of the output layer is often the softmax function defined by: 

   for σ( ⃗z)j =
ezj

∑N
i=1 ezi

j ∈ [1, . . . , N]

Discrete probability law on  different resultsN



Forward propagation  --  principle
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✤ We therefore obtain a result in the neurons of the output layer that can be compared with the actual class label of the input data

aL
n = h (∑

i

wL
in aL−1

i + bL
n )

aL−1
1

aL−1
i

aL−1
m

w L1n

wL
in

w
L

mn

Neuron  
layer 

n
L

x1

xi

xN

Dog

Not Dog

0.94

0.06

Input
Expected output

1

0

✤ For each pair , the network is run from left to right by performing the following operations(Inputi, Expected outputi)i∈[1, ..., D]

✤ Multiply input values by weights, sum results, add biases, apply activation function, pass to next neurons

✤ This propagation results in values between 0 and 1 inside the output neurons (if the softmax function is used as output)
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Backpropagation --  principle
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✤ We want to find the best weights and biases to maximize the classification success rate on the training sample

✤ In most cases, the number of free parameters of the problem is             classical methods are not adapted≫ 104

✤ Initial state: weights and biases are randomly drawn           output neurons have equivalent values 
Classification success rate is low (random drawing of a class label)

x1

xN

xi−1

xi

xi+1

W0 W1 W2
W3

b0 b1 b2

b3

0.36

0.31

0.33

✤ Backpropagation: algorithm for updating the values of the weights and biases, taking into account the values obtained in the 
neurons of the output layer in the forward propagation step. The aim is to vary the weights and biases in the right direction to 
increase the success rate by successive iterations on the training sample.



Backpropagation  --  loss function
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✤ A function called the loss function is used to quantify the difference observed between the output of the neural network and the 
class label associated with the data under consideration

✤ The training database is a set of input-output pairs  where each  and  is a realisation of the random variables  and (xi, yi)1≤i≤D xi yi X Y

✤ The aim of supervised learning is to define a nonlinear function  that minimizes the deviation between the random variables 
 and . To define this deviation, we introduce a loss function  that quantifies the distance between a model prediction  

and an expected output 

f
f(X) Y J f(xi)

yi

✤ To obtain the best function generalizing our data, we will minimize the empirical risk: 

 

           The mean of the deviations between network prediction and expected output is minimized for  training pairs

RD( f ) =
1
D

D

∑
i=1

J(yi, f(xi))

D



Backpropagation  --  representative data sample
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Lapuschkin, S., Wäldchen, S., Binder, A. et al., Nat Commun 10, 1096 (2019)

Classified as a horse!

✤ The set of input-output pairs  must cover the whole distribution of the random variables  and (xi, yi)1≤i≤D X Y



Backpropagation  --  proof
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✤ The free parameters of  are the weights  and biases  for each layer . We will therefore vary  and  to minimise . 
As the function  is not analytic (because  is not), we perform a numerical minimization via the iterative procedure: 
 

 

 

 
where the initial values of the  matrices and  vectors are randomly drawn and then updated at each training iteration (called 
epoch) to minimize . The parameter  is called the learning rate. It is set by the user at the start of training phase.

f WL bL L WL bL RD( f )
RD( f ) f

WL = WL − λ
∂RD( f )

∂WL
= WL −

λ
D

D

∑
i=1

∂J(yi, aHi)
∂WL

bL = bL − λ
∂RD( f )

∂bL
= bL −

λ
D

D

∑
i=1

∂J(yi, aHi)
∂bL

WL bL

RD( f ) λ

Gradient descent!

✤
We therefore need to know the expressions of  and  to train the neural network

∂J
∂wL

mn

∂J
∂bL

n

J J

W, b W, b

Small λ Large λ
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General case -- independent of the expression of :J

✤
 

 

where we define  because it is the only element that depends on the expression of the loss function 

∂J
∂wL

mn
=

∂J
∂zL

n

∂zL
n

∂wL
mn

=
∂J
∂zL

n

∂ [∑i wL
inaL−1

i + bL
n ]

∂wL
mn

=
∂J
∂zL

n

∂ [∑i wL
inaL−1

i ]
∂wL

mn
=

∂J
∂zL

n

∂ [wL
mnaL−1

m ]
∂wL

mn
=

∂J
∂zL

n
aL−1

m = δL
n aL−1

m

δL
n =

∂J
∂zL

n
J

✤ In matrix form we have: 
∂J

∂WL
= aL−1(δL)T

✤
            In vector form: 

∂J
∂bL

n
=

∂J
∂zL

n

∂zL
n

∂bL
n

= δL
n

∂bL
n

∂bL
n

= δL
n

∂J
∂bL

= δL

✤ We now need to determine  for a given loss functionδL
n

Backpropagation  --  proof
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Loss function : cross-entropyJ

✤ Consider the cross-entropy function which, for two discrete probability distributions  and , is given by: p q
J(p, q) = − ∑

x

p(x)ln[q(x)]

Link to maximum likelihood estimator:

✤ Classification problems: we wish to estimate the probability  that the random variable  has the value  for a set of parameters  
knowing the empirical probability  given by the frequency of occurrence of  in our training sample

qθ(X = i) X i θ
p(X = i) i

✤ If we have  independent pairs in our training sample then the likelihood of the parameters  in this data set is: D θ
ℒ(θ) = ∏

i∈X
(estimated probability of i)(number of instances of i) = ∏

i

qθ(X = i)D p(X=i)

✤
Thus, the logarithm of this likelihood function is: 

1
D

ln [ℒ(θ)] =
1
D

ln [∏
i

qθ(X = i)D p(X=i)]
= ∑ p(X = i) ln [qθ(X = i)]
= − J(p, q)

Maximizing the likelihood of finding  and  is equivalent to minimizing the cross-entropy WL bL J

Backpropagation  --  proof
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✤ We wish to estimate the distance between the output of the neurons of the last layer  and the expected value  

We will therefore minimize    where 

aH
n yn

1
D

D

∑
i=1

J(yi, aHi) J(yi, aHi) = − ∑
n

yi
n ln [aHi

n ]
✤ In a classification problem, each neuron in the output layer corresponds to a class label. It must therefore contain the probability 

that the input data belongs to a given class label. To achieve this, we use the softmax function as the activation function for each 
output neuron: 

aH
n = hH(zH

n ) =
ezH

n

∑i ezH
i

✤
Thus,  

 

With  

 

And 

δH
n =

∂J
∂zH

n
= ∑

i

∂J
∂aH

i

∂aH
i

∂zH
n

= ∑
i≠n ( ∂J

∂aH
i

∂aH
i

∂zH
n ) +

∂J
∂aH

n

∂aH
n

∂zH
n

∂J
∂aH

n
=

∂ [−∑m ym ln(aH
m )]

∂aH
n

= −
∂ [yn ln(aH

n )]
∂aH

n
= −

yn

aH
n

∂aH
n

∂zH
n

=
∂ [ezH

n /(∑i ezH
i )]

∂zH
n

=
ezH

n (∑i ezH
i ) − ezH

n ezH
n

(∑i ezH
i )

2 =
ezH

n

∑i ezH
i (1 −

ezH
n

∑i ezH
i ) = aH

n (1 − aH
n )

∂J
∂aH

n

∂aH
n

∂zH
n

= − yn(1 − aH
n )

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

}

Backpropagation  --  proof
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✤
Therefore, δH

n = ∑
i≠n ( ∂J

∂aH
i

∂aH
i

∂zH
n ) − yn(1 − aH

n )

✤

Furthermore,      and      
∂J

∂aH
i

=
∂ [−∑m ym ln(aH

m )]
∂aH

i
= −

yi

aH
i

∂aH
i

∂zH
n

=
∂ [ezH

i /(∑m ezH
m)]

∂zH
n

=
−ezH

i ezH
n

(∑i ezH
i )

2 = − aH
i aH

n

✤
Then for , i ≠ n

∂J
∂aH

i

∂aH
i

∂zH
n

= −
yi

aH
i

(−aH
i aH

n ) = yi aH
n

because  so  i ≠ n
∂ezH

i

∂zH
n

= 0

✤
And finally,  

Now each  entry is associated with a single class label, so  is a vector containing only 0s except for one value, which is 1 
           

δH
n = ∑

i≠n

yi aH
n − yn(1 − aH

n ) = ∑
i≠n

yi aH
n + ynaH

n − yn = aH
n ∑

i

yi − yn

x y

∑
i

yi = 1

✤ Therefore  which is written in vector form: δH
n = aH

n − yn δH = aH − y

✤ We now know the expression of  for the last layer. All that remains is to calculate a relationship between  and  to 
link this layer to the previous layers of the network (backpropagation)

δ δL δL+1

Backpropagation  --  proof
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✤
In the general case, we have δL

n =
∂J
∂zL

n
= ∑

m

∂J
∂zL+1

m

∂zL+1
m

∂zL
n

= ∑
m

δL+1
m

∂zL+1
m

∂zL
n

We have to sum because every  in the  layer is a function of . 
The result  goes into every neuron in the  layer.

zm L + 1 zn
h(zn) L + 1

✤
In addition, 

∂zL+1
m

∂zL
n

=
∂ [∑i wL+1

im aL
i + bL+1

m ]
∂zL

n
=

∂ [wL+1
nm aL

n ]
∂zL

n
Because the only  that depends on  is aL

i zL
n aL

n = h(zL
n )

✤
Then, 

∂zL+1
m

∂zL
n

= wL+1
nm

∂aL
n

∂zL
n

= wL+1
nm h′￼(zL

n )

✤
Finally, δL

n = ∑
m

δL+1
m wL+1

nm h′￼(zL
n ) = h′￼(zL

n )∑
m

δL+1
m wL+1

nm

✤ We introduce the symbol  to represent element-by-element multiplication between two vectors. 
For example: 

⊙
(a1, a2, . . . an) ⊙ (b1, b2, . . . bn) = (a1b1, a2b2, . . . anbn)

In vector form we have δL = h′￼(zL) ⊙ WL+1δL+1

Backpropagation  --  proof



Backpropagation  --  overview of the training algorithm
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Summary:

1.     unless  then 

2.

3.    unless  then 

4.    unless  then           (We replace  by )

5.

zL = (WL)TaL−1 + bL L = 0 zL = (WL)T x + bL

aL = h(zL)

δL = h′￼(zL) ⊙ WL+1δL+1 L = H δH = aH − y

∂J
∂WL

= aL−1(δL)T L = 0
∂J

∂WL
= x (δL)T aL−1 x

∂J
∂bL

= δL

Algorithm : ✤ Initialize the  and  with random values and calculate all  and  with (1) and (2)         forward propagationWL bL zL aL

✤ Compute the  from layer  to  using (3)δL H 0

✤ Simultaneously compute the  and  from layer  to  using (4) and (5)
∂J

∂WL

∂J
∂bL

H 0

✤ Update the  and  using the gradient descent methodWL bL

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

} backpropagation



Backpropagation  --  particular case: single hidden layer
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✤ Elements considered: inputs  , matrices  and , vectors  and , and outputs xi W0 W1 b0 b1 yi

✤ Backpropagation: δ1
i = a1

i − yi

Study of a classifier with 10 output categories, a single hidden layer and D training pairs :(xi, yi)

δ0
i = h′￼(z0

i ) ⊙ W1δ1
i

∂Ji

∂W1
= a0

i (δ1
i )T

∂Ji

∂W0
= xi (δ0

i )T

∂Ji

∂b1
= δ1

i

∂Ji

∂b0
= δ0

i

✤
Weight update: W1 = W1 −

λ
D

D

∑
i=1

∂Ji

∂W1

W0 = W0 −
λ
D

D

∑
i=1

∂Ji

∂W0

b1 = b1 −
λ
D

D

∑
i=1

∂Ji

∂b1

b0 = b0 −
λ
D

D

∑
i=1

∂Ji

∂b0

<latexit sha1_base64="5a3jtcUqnyUp6j2FJhbbgZl2/AM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6F6jXA=</latexit>

}

✤ Forward propagation:    and   z0
i = (W0)T xi + b0 a0

i = ReLU(z0
i )

   and   z1
i = (W1)Ta0

i + b1 a1
i = softmax(z1

i )



Backpropagation  --  accuracy and overfitting 
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Two samples: training + test
Under-training OverfittingOptimal training

J J J

iterations iterations iterations

✤ The accuracy of the neural network's predictions increases with each iteration by construction (decrease in the loss function)

✤ If too many iterations are performed to increase accuracy, the neural network will learn the particularities of the training sample 
            less generalizable

✤ We separate the available data into a training sample and a test sample

✤ At each iteration, the training sample is used to update the weight values, 
and the test sample is used to calculate the accuracy

✤ The accuracy calculated on the training sample is necessarily greater because 
the weights are optimized to maximize it

✤ If the accuracy calculated on the test sample starts to fall, the network is 
suffering from overfitting
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Hands-on session --  introduction / goals
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✤ Comparison of the tools developed during the session: - results
- calculation time (time library)
- CO2 emissions (CodeCarbon library)

✤ Implementation of a neural network for image classification:

- Single hidden layer neural network: digit recognition

- Impact of network architecture on accuracy

✤ Use of a dedicated neural network library

- Analysis of overtraining



Hands-on session  --  python tools

28

✤ All projects are based on the Python 3.9 language

✤ Projects involve libraries that are increasingly dedicated to the methods being studied

Special case of the neural network project:

✤ Single hidden layer neural network (architecture + training) only using NumPy

General information:

✤ Using TensorFlow: comparison and generalization to multiple hidden layers

✤ Analysis of the impact of architecture and learning rate on accuracy

Don't hesitate to have a look at the documentation of these libraries before the session!


