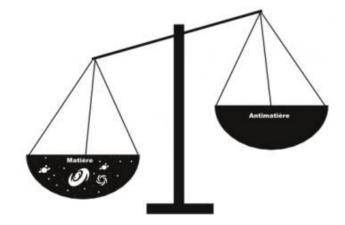


Neutrino Tagging (NuTAG)

An new approach to accelerator based neutrino experiments

Mathieu Perrin-Terrin

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France.

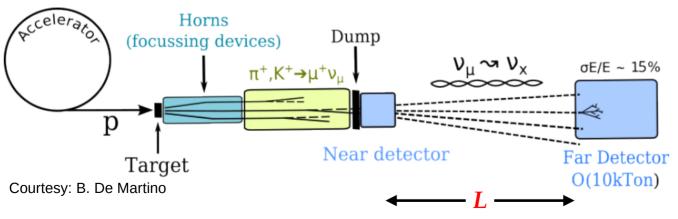

Outline

- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

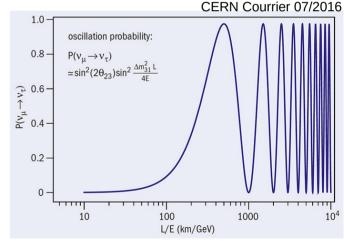
Scientific Landscape

- Neutrino physics:
 - one of the least explored fields in particle physics
 - many open questions (neutrino mass ordering*, PMNS unitarity, CP violation)
 - a portal to dark matter
- The challenge for the next decade: the leptonic CP violation
 - fundamental to understand the origin of matter (on of the Sakharov conditions)
 - the main purpose of the next Long Baseline neutrinos experiments (DUNE and T2HK)

$$\begin{array}{c} m_{\nu_1} < m_{\nu_2} < m_{\nu_3} \\ \text{or} \\ m_{\nu_3} < m_{\nu_1} < m_{\nu_2} \end{array}$$

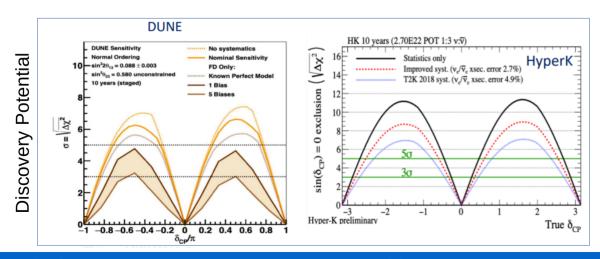


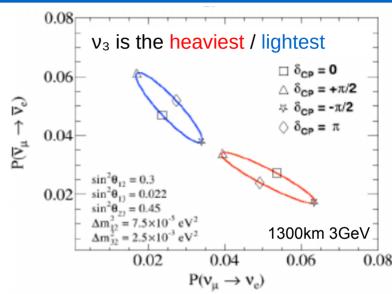

Neutrino Experiments @ Accelerators

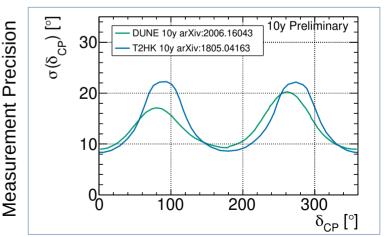

- Neutrinos produced with proton drivers
 - protons sent on **target** to produce π^+ that decay as $\pi^+ \rightarrow \mu^+ \nu_\mu$
 - ν beam caracterised by a near detector
 - ν beam sent, through Earth crust, to far detector
 - oscillations: ν change flavour when propagating

$$P(\nu_{\alpha} \to \nu_{\beta}) \propto \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$
 with $\Delta m^2 = m_i^2 - m_j^2$

 Oscillation parameters obtained by comparing the neutrino rate before and after propagation

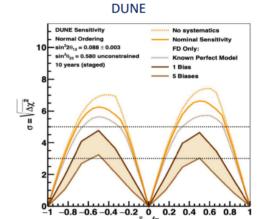


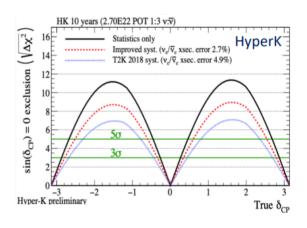




CP violation experimental studies

- v and anti-v can oscillate differently because of a parameter called: leptonic CP violating phase δ_{CP}
 - Ranges for 0 to 360°
 - CP conserved if $\delta_{CP} = 0^{\circ}$ or 180°
 - CP maximally violated at 90° and 270°
- Measurement principle: compare P(v₁→v_e) and P(anti-v₁→anti-v_e)
- Expected status at the end of DUNE & T2HK

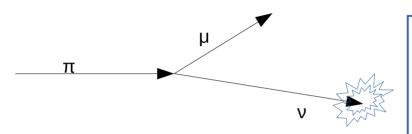



DUNE and T2HK limitations

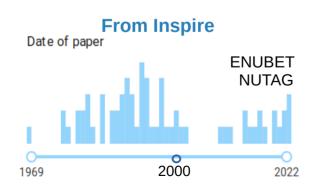
- Strong impact of the systematic uncertainties on
 - neutrino cross section
 - neutrino flux
 - detector response (e.g. energy scale)
- Statistics is also limited: $\sim 250 \text{ v}_e/\text{year}$ and 150 anti- v_e/year
- Two recommendations from European Strategy for Particle Physics:

To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied. Other important complementary experiments are in preparation The design studies for next-generation long-baseline neutrino facilities should continue.

DELIBERATION DOCUMENT
ON THE 2020 UPDATE OF THE EUROPEAN STRATEGY
FOR PARTICLE PHYSICS



Outline


- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

Neutrino Tagging

- Concept introduced in the 70-80's
- Associate individually each neutrino interaction with its production mechanism

 Many variations of this idea were discussed in the 80-90's

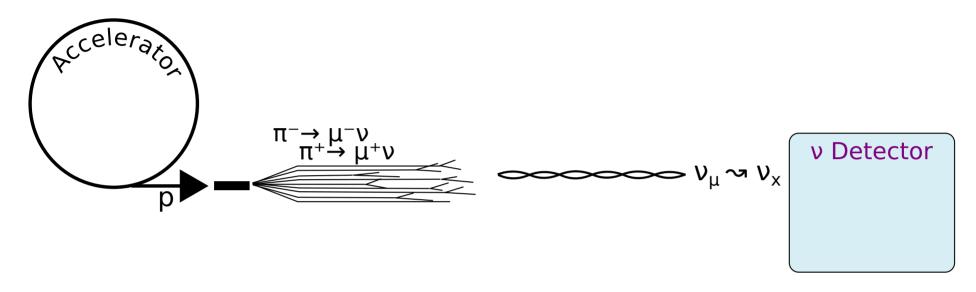
LETTERE AL NUOVO CIMENTO

VOL. 25, N. 9

30 Giugno 1979

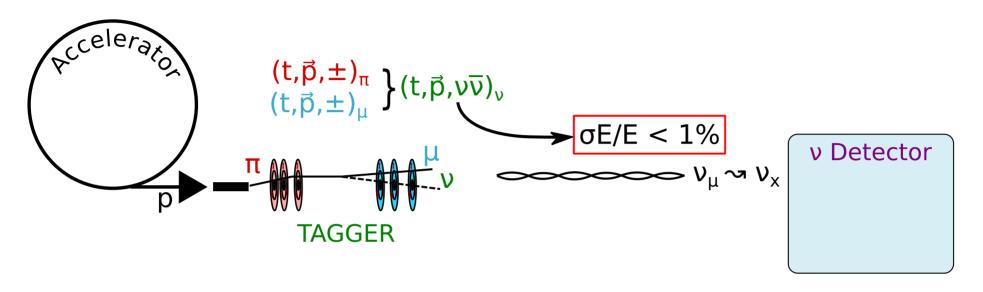
Tagging Direct Neutrinos. A First Step to Neutrino Tagging.

B. Pontecorvo

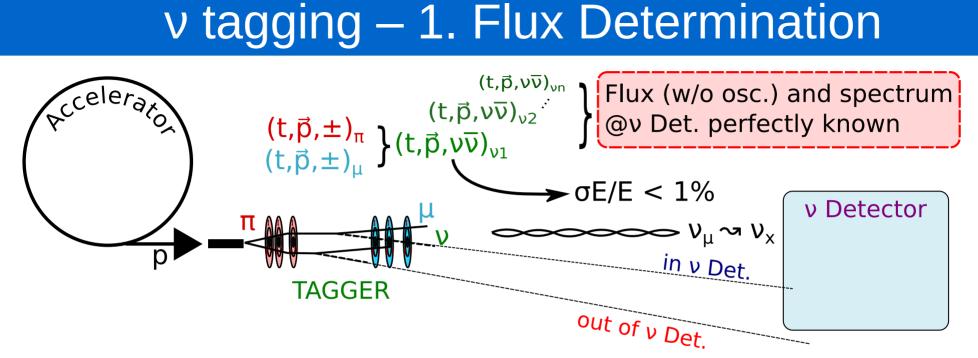

Laboratory of Nuclear Problems, Joint Institute for Nuclear Research - Dubna, USSR

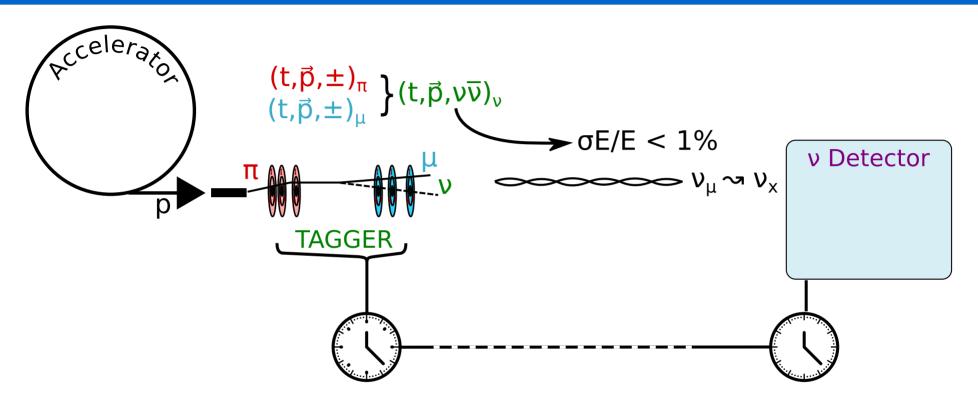
(ricevuto l'1 Giugno 1979)

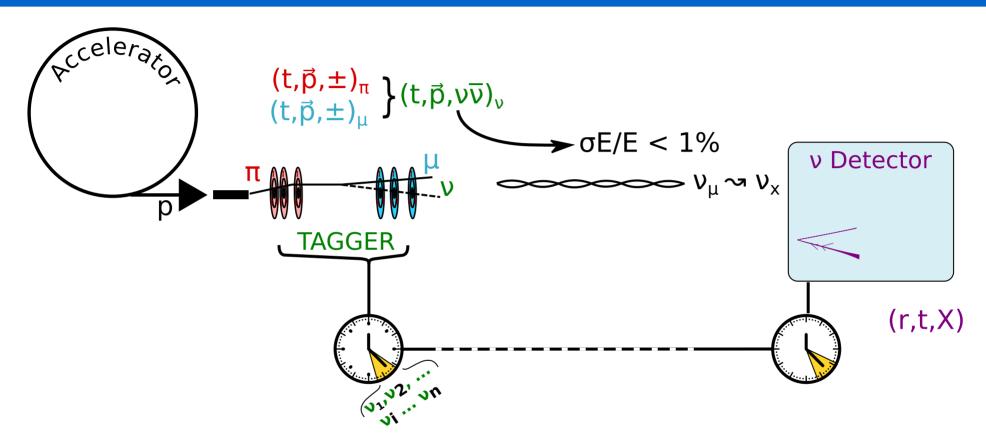
As it is well known, high-energy neutrino investigations are performed by using neutrino beams from π and K decays ($\pi \to \mu\nu$, K $\to \mu\nu$), that is by letting the pions and the kaons decay over a large distance (the so-called decay length).


The possibility of using tagged-neutrino beams in high-energy experiments must have occurred to many people. In tagged-neutrino experiments it should be required that the observed event due to the interaction of the neutrino in the neutrino detector would properly coincide in time with the act of neutrino creation $(\pi \to \mu\nu, K \to \mu\nu, K \to e\nu\pi, ...)$. Of course, in tagged-neutrino experiments the properties of neutrino beams (type, direction and energy) will be much better known than in the experiments performed so far. The main difficulty in designing such a facility is that the effective

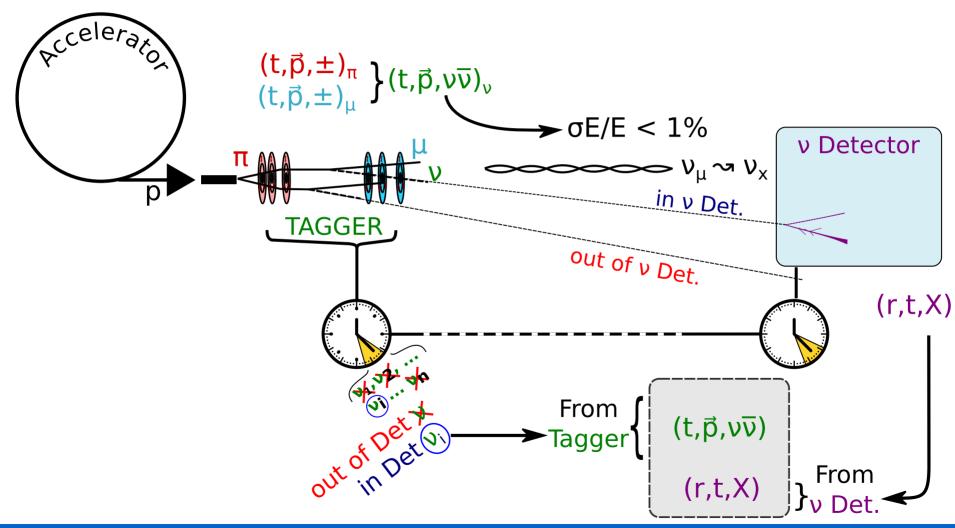
Neutrino Tagging

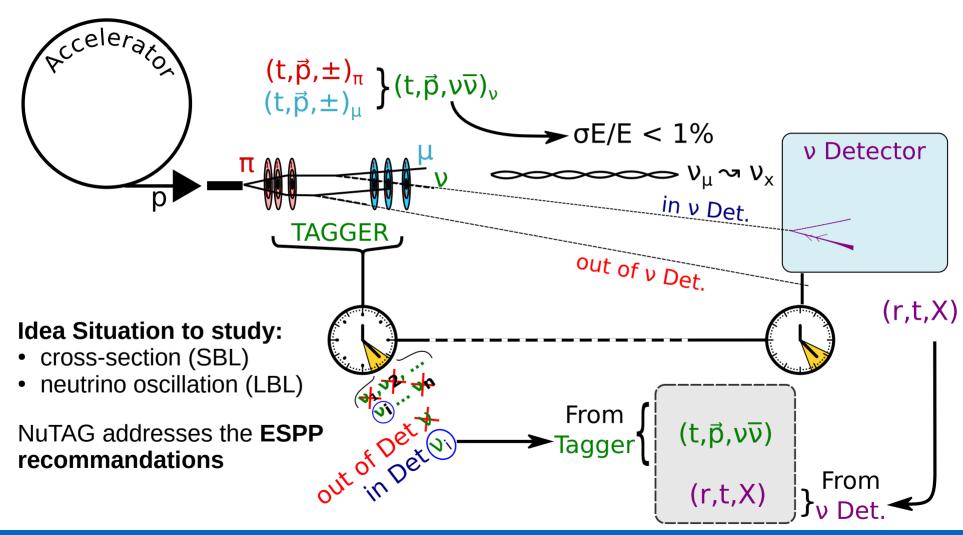

05/02/2024


v tagging – Beam Instrumentation


• Each neutrino is fully & precisely characterised from its decay partners (π,μ)

ν tagging – 1. Flux Determination




05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar 12 / 44

05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar 13 / 44

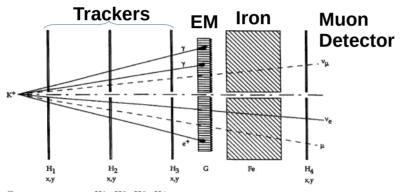
05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar 14 / 44

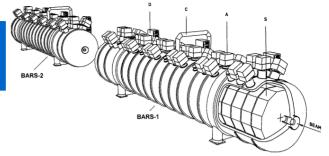
Outline

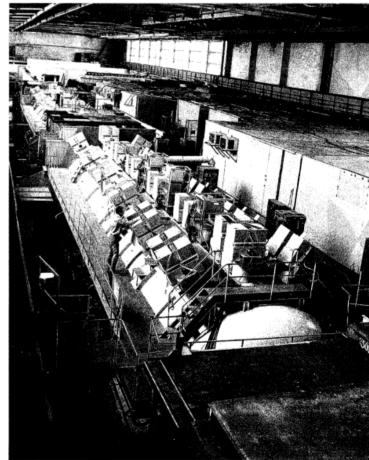
- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

Experimental Demonstration

- Implementation attempted at Protvino with Tagged Neutrino Facility (TNF) using the BARS
- Stopped in the 90's





Рис. 2. Станция мечения. Н1, Н2, Н3, Н4 — двухкоординатные сцинтилляционные годоскопы (x, y); G — электромагнитный калориметр ГЕПАРД; Fe — 3-метровый железный поглотитель адронов. http://web.ihep.su/library/pubs/prep1997/ps/97-32.pdf


RUN 6860 Spill 102 Event 1844

"The dotted line shows the v_e trajectory calculated for a K $\mu\nu$ decay detected in the tagging station."

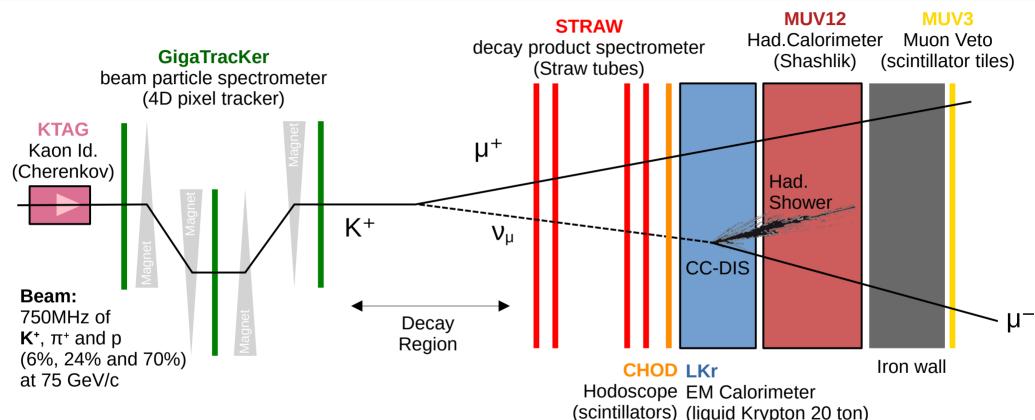
Fig. 4. 0°-projection of the neutral current tagged v_{μ} interaction in the BARS. The dotted line shows the v_{μ} trajectory calculated for a $K_{\mu 2}$ -decay detected in the tagging station. https://doi.org/10.1016/S0168-9002(98)00837-7

Proof of Principle with NA62

• Fixed target Kaon experiment at CERN/SPS (2015 →2025)

• Goal: branching ratio of the rare $K^+ \rightarrow \pi^+ \nu \nu$: $(8.4 \pm 1.0) \cdot 10^{-11}$ in $SM^{0.05}$

- ~10¹² K decays per year, **mostly** K⁺ $\rightarrow \mu^+\nu$.
- All instrumentation to detect the K⁺, the μ⁺ and the neutrino!


V spectrum (p_K=75GeV/c)
Signal MC
NA62 preliminary

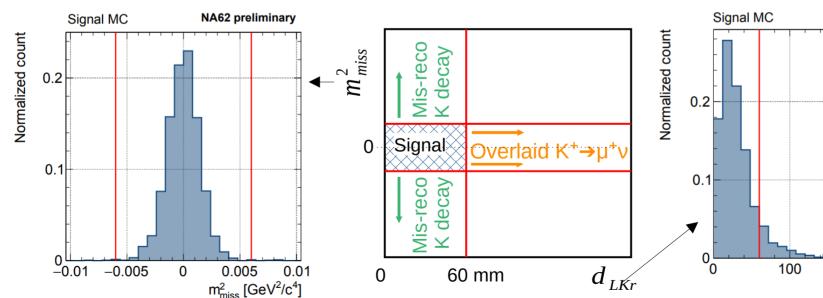
0.15
0.05
0.05
E_{v true} [GeV]

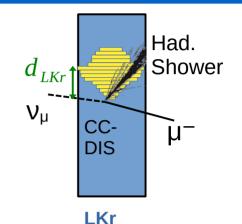
@SPS at CERN

05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar 18 / 44

Simplified Experimental Setup for v Tagging

Trigger Strategy:


- One charged particle in CHOD
- Energy deposit in LKr
- Two charged particles in opposite quadrant of MUV3


Data Analysis Strategy

- Data Sample: 5.1012 effective K+ decay collected in 2022
- Blind Analysis, with a signal region defined as

$$|m_{miss}^2| = |(p_K - p_\pi)^2| < 0.6 \,\text{GeV}^2/c^4$$
 $|d_{LKr}| < 60 \,\text{mm}$

- Two background sources
 - Overlaid $K^+ \rightarrow \mu^+ \nu$: $K^+ \rightarrow \mu^+ \nu$ with extra activity in LKr
 - Mis-reconstrcted K decay

NA62 preliminary

200

300

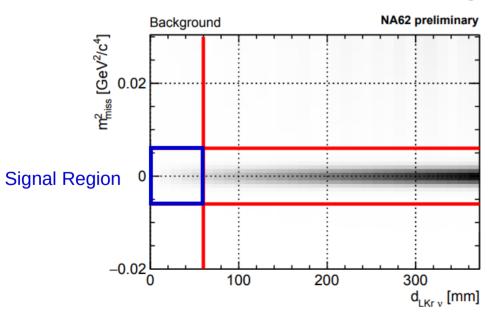
 d_{LKrv} [mm]

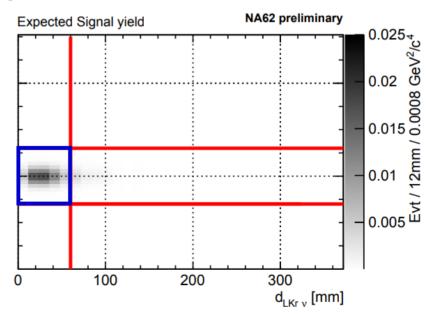
Signal and Background Expectations

 Background extrapolated from signal side-bands with a relaxed selection

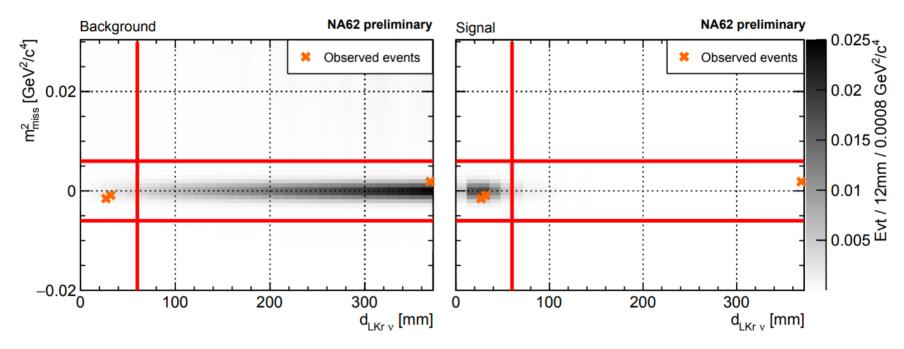
$$N_{\text{mis-reco-K}}^{\text{exp}} = \mathbf{0.0014} \pm 0.0007_{\text{stat}} \pm 0.0002_{\text{syst}}$$

 $N_{\text{overlaid-K}\mu2}^{\text{exp}} = \mathbf{0.04} \pm 0.02_{\text{stat}} \pm 0.01_{\text{syst}}$

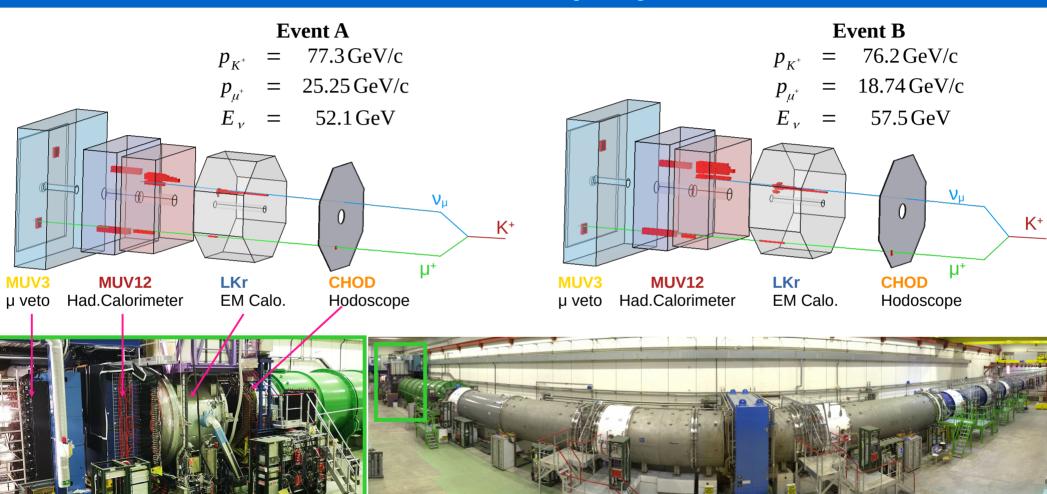

• **Signal** expect yield (normalized to $K^+ \rightarrow \mu^+ \nu$)


$$(1.49 \pm 0.2_{\text{syst.}}) \cdot 10^{11} \qquad (6.0 \pm 0.1_{\text{syst.}}) \cdot 10^{-11}$$

$$N_{\text{sig}}^{\text{exp}} = N_{\text{K}\mu 2} \cdot \frac{\epsilon_{\text{sig}}}{\epsilon_{\text{K}\mu 2}} \cdot P_{\text{int,LKr}}$$


$$= 0.228 \pm 0.014_{\text{stat}} \pm 0.011_{\text{syst.}}$$

Sig / Bkg =
$$5.5$$


Signal Region Content

- Two events observed in signal region:
 the first two tagged neutrino candidates!
- First background event far from the signal region

Nb. Obs. Evt.	Probability when expecting 0.27	
0	76%	
1	20%	
2	2.7%	

Event Displays

Outline

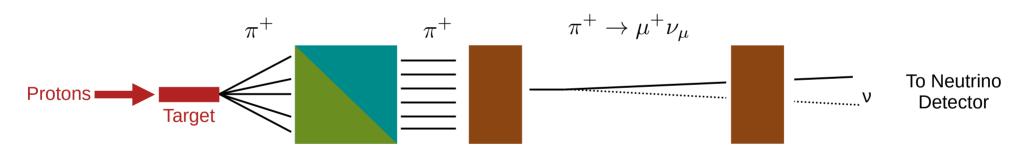
- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
 - Beam particle rate
 - Beam line
 - Tracking technology
- Physics Case of Short and Long Base Line Tagged Neutrino Experiments

Towards full scale v-tagged experiments

- The main challenge is the high particle rate in the neutrino beam line (>10¹⁸part/s)
- Rate is limited by trackers irradiation and occupancy

	Available	Max. Radiation	Max. Flux
NA62-GTK	since 2015	$10^{14} n_{eq}/cm^2$	2 MHz/mm²
HL-LHC	before 2028	10 ¹⁶⁻¹⁷ n _{eq} /cm²	10-100 MHz/mm ²

Sets the specifications for the beam line

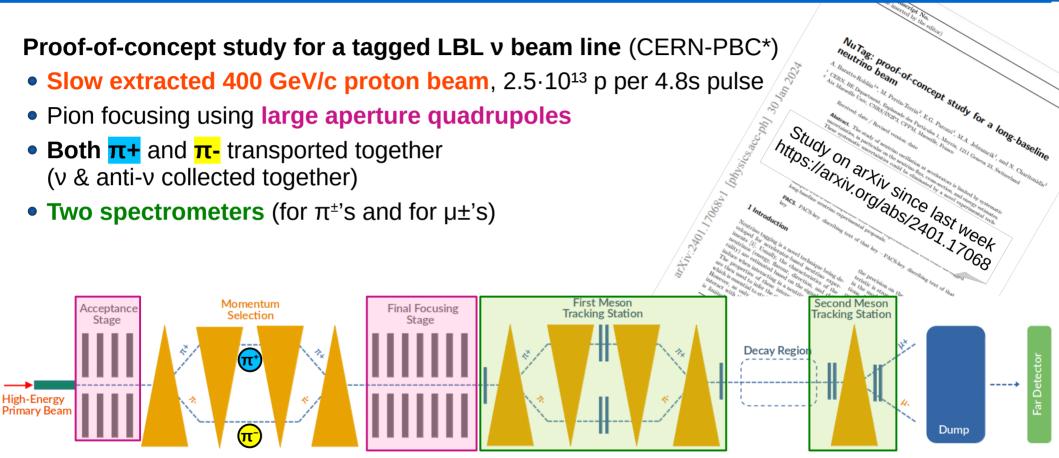


arXiv:1904.12837

- Handles to limit particle flux:
 - spread particles in time: use slow extraction (few sec) instead of fast extraction (μs)
 - spread particles in space: use large beam transverse size
 - select only relevant π momentum range

Tagged beam line conceptual design

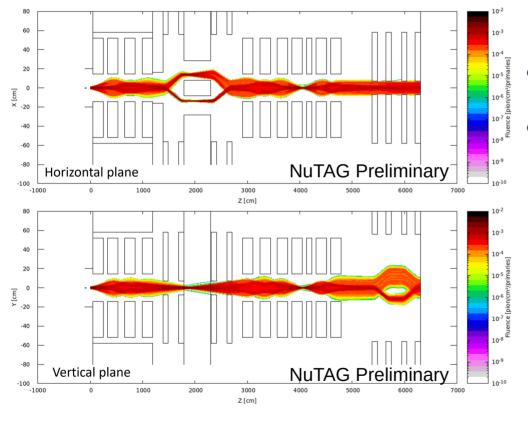
- Slow extraction (few sec.)
- Beam cleaning (to reduce π rate) + Static Pion Focusing Devices (see next)
- Beam size around 0.1 m²
- Spectrometers (one for the pion, one for the muon)



10¹² part/s over 0.1m²
Maximum flux for

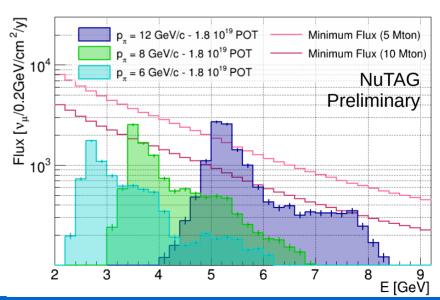
10y operation
with HI -I HC trackers

Beam Line for a Long Baseline Setup



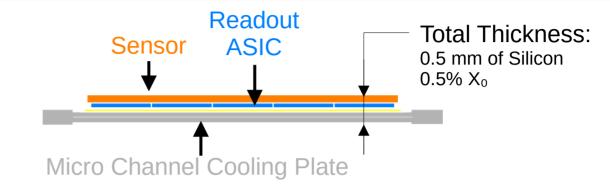
*A. Baratto-Roldan, E. Parozzi, M. Jebramcik, N. Charitonidis

Beam Line for a Long Baseline Setup



• Beam line modeled up to π spectrometer with FLUKA

- Performance of an LBL exp. using this tagged beam line derived assuming:
 - 1.8·10¹⁹ proton on target per year (<<100kW beam)
 - detector effective mass of 5 or 10 Mton
- Flux sufficient to collect ν_e samples size comparable
 to DUNE/HK but with lower systematics (tagging)
- Room for improvement, beam particle flux at tagger is ~15 MHz/mm² << 100MHz/mm²



Pixel Detector Technology for NuTag

Beam tracker composed of

- sensor (time reso, radiation)
- ASIC (time reso, hit rate, radiation)
- high cooling power (>1.5W/cm²)

with the lowest material budget

NA62-GTK: planar n-in-p sensor (200µm) readout with TDCPix ASIC (130nm CMOS)

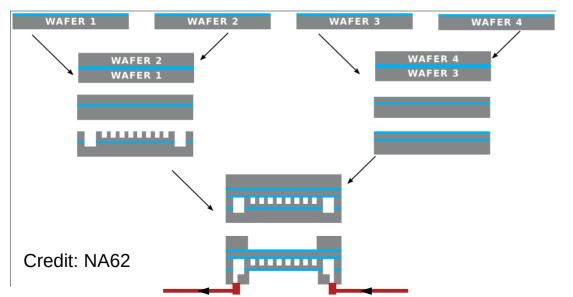
► 130 ps per hit ► 2 MHz/mm² ► $4.5 \cdot 10^{14} \, n_{eq}/cm^2$ ► $0.5\% X_{0}$

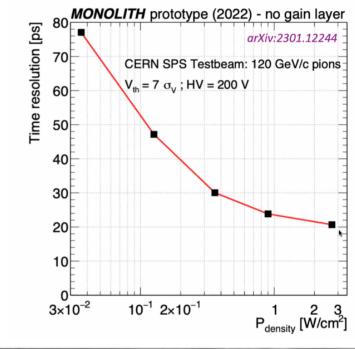
TimeSpot/IGNITE developments suitable for NuTAG

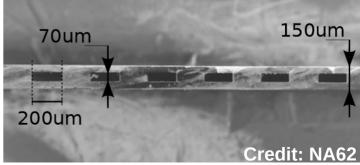
- 3D trench sensors:
 - ▶ 10ps hit time resolution after
 - ► large irradiation: >10¹6 neg/cm²
- Readout ASIC is being developed using 28nm CMOS

120 100 $\sigma_{\rm eff} = 10.3 \pm 0.5 \, \rm ps$ 8.46 8.48 8.5 8.52 8.54 8.56 8.58 8.6 Borgato et al. Frontiers in Physics

A. Lampis et al 2023 JINST 18 C01051

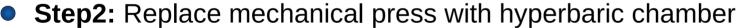

158.2 / 199


 3.711 ± 0.058


 1.35 ± 0.14

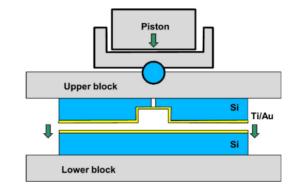
The importance of cooling

- The performance of the cooling system sets the power of the ASIC and so its time resolution
- Micro-channel cooling is highly performant: thermal FOM of ~3°/(W/cm²) vs 20°/(W/cm²) for ITK
- Technology was pionneered by NA62 and LHCb: major difficulty to produce the devices (wafer bonding and capillary/plate connection)



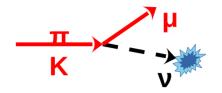
The importance of cooling

R&T in CPPM to develop a new fabrication process (see J. Cogan's talk at Prospective CPPM, 13/03/2023)


- Step1: Investigate new bonding technique
 - → Gold thermocompression:
 - wide spread technology
 - working for Si/Si → Micromachines 2023, 14(7), 1297
 - working for Si/Metalic Alloy (i.e. connectors)

- → larger devices can be bonded
- → bonding can be done in batch
- → devices planarity requirement are lower

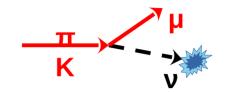
Technique is Patented


Outline

- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case for Tagged Neutrino Experiments
 - Short Baseline Experiments
 - Long Baseline Experiments

Physics @ Tagged Short Baseline Experiments

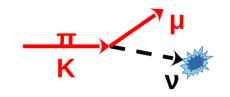
Ideal setup to study interaction models


• ν energy measured independently of interaction

Physics @ Tagged Short Baseline Experiments

Ideal setup to study interaction models

ν energy measured independently of interaction


ν_μ cross-section and differential cross-section

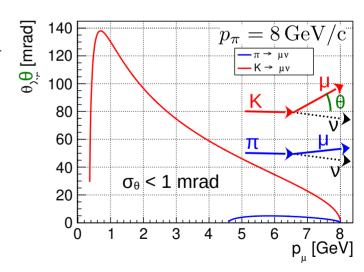
- v_{μ} flux from $\pi, K \rightarrow \mu \nu$ precisely determined by the tagger
- v_{μ} energy measured evt-by-evt at <1% precision

Physics @ Tagged Short Baseline Experiments

Ideal setup to study interaction models

ν energy measured independently of interaction

ν_μ cross-section and differential cross-section


- v_{μ} flux from $\pi, K \rightarrow \mu \nu$ precisely determined by the tagger
- v_{μ} energy measured evt-by-evt at <1% precision

v_e cross-section

- $K \rightarrow \mu\nu$ and $\pi \rightarrow \mu\nu$ can be identified by **kinematics**
- ν_e flux determined from K→μν rate corrected for branching ratios and acceptances :

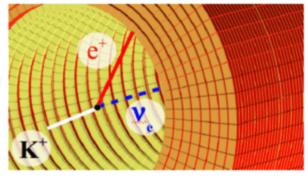
$$N(\nu_e) = N(K^+ \to \pi^0 e^+ \nu_e) = N(K^+ \to \mu^+ \nu_\mu) \cdot \frac{\mathcal{B}(K^+ \to \pi^0 e^+ \nu_e)}{\mathcal{B}(K^+ \to \mu^+ \nu_\mu)}$$

• ν_e cross section precision limited by **statistics** and by the uncertainties on $B(K^+ \rightarrow \pi^0 e^+ \nu_e)$: 0.8%

Project for a Short Baseline at CERN

Study started within *CERN Physics Beyond Collider* for a **SBL using proto-DUNE** and **implementing the NuTag and ENUBET techniques** to measure v cross-sections

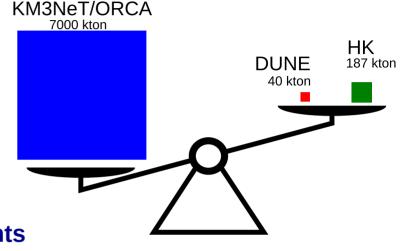
ENUBET collaboration



- **ENUBET Method** rate of e+gives rate of ν_e as $N(\nu_e) = N(K^+ \to \pi^0 e^+ \nu_e)$ e+can be detected outside the beamline (3-body decay)
- Method is **different and complementary to the NuTag one** (prev. slide)
- **Timeline:** proposal ~2026 for implementation after 2029
- Design started from ENUBET beam line a-priori compatible with NuTag (static focusing, π rate)

Lenght: 40m, Radius: 1m

F. Terranova, CERN Seminar


Dumps

Outline

- Scientific Landscape
- The concept of Neutrino Tagging
- Experimental Demonstration of the Neutrino Tagging
- Towards a Full Scale Tagged Neutrino Experiment
- Physics Case for Tagged Neutrino Experiments
 - Short Baseline Experiments
 - Long Baseline Experiments

$\overline{\text{NuTag for } \delta_{CP}}$ Precison Measurement

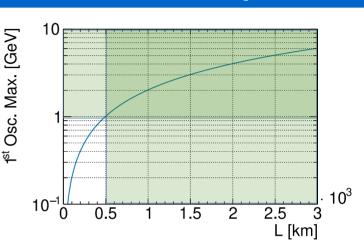
- Future measurements require high statistics and low systematics
- Very challenging for conventional LBLNE:
 - higher power beams
 - larger underground high granularity far detectors
 - more precise near detector + dedicated experiments

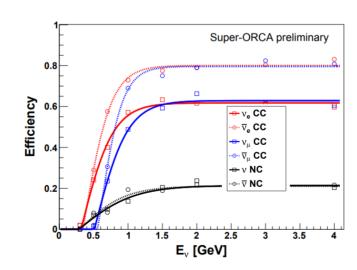
Alternative:

- « low » power tagged-beams + huge (>Mton) natural water Cerenkov detectors
 - natural water detectors size has virtually no limits
 - detectors poor granularity (more than) compensated by tagging, ($\delta E/E<1\%$)
 - reduced systematical uncertainties thanks to the tagging

Natural Water Cerenkov detection [KM3Net]

- A versatile water Cerenkov detection technology:
 - the multi-PMT DOM
 - the deployment tool (LOM)
- DOM and line spacing determines the energy threshold of the detector





KM3NeT/ORCA for a Long Baseline Exp.

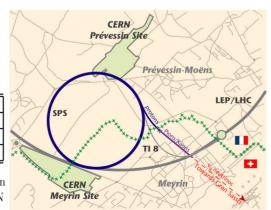
 ORCA main purpose is the Neutrino Mass Ordering for which an energy threshold <5 GeV is needed

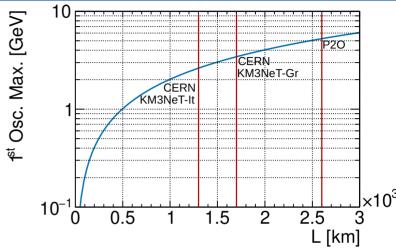
Configuration ten times more dense (superORCA) were simulated and allow to have a threshold ~1GeV

1

Possible Long Baseline Exp. in Europe

- From U70-Protvino (Russia) to KM3NeT-ORCA
 - P2O, letter of Interest published in 2019
- From CERN to Greek or Italian site of KM3NeT
 - Idea already explored in the past
 - CERN, Gran-Sasso and Greek site aligned
 - GNGS transfer line could be re-used (?)
 - Italian sea infrastructure could be re-used (?)

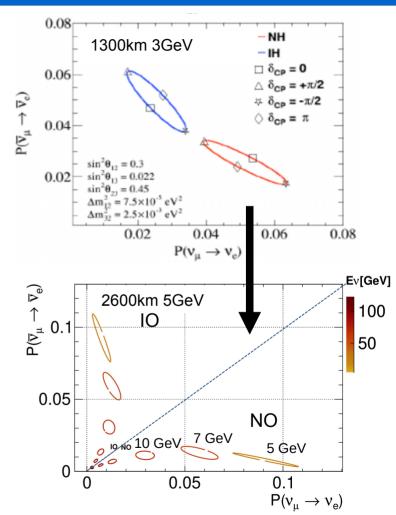

Nuclear Instruments and Methods in Physics Research A 383 (1996) 277-290


Design studies for a long base-line neutrino beam

A.E. Ball^{a,*}, S. Katsanevas^b, N. Vassilopoulos^{b,1}

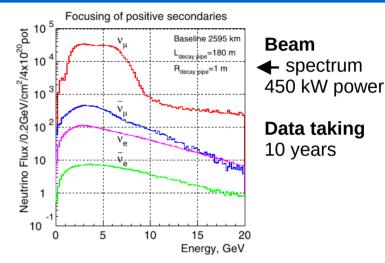
Place	λ	ϕ	A_z	α	Distance
CERN	6.0732	46.2442	-	-	-
Gran Sasso	13.5744	42.4525	122.502	3.283	731 km
Nestor	21.3500	36.3500	124.1775	8.526	$1676~\mathrm{km}$

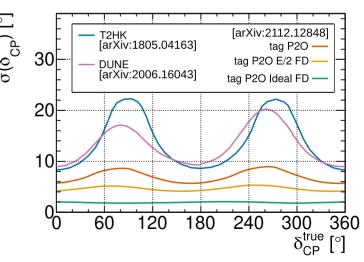
Table 1: Absolute coordinates (λ, ϕ) and azimuth and declination angles (A_z, α) in degrees, of Gran Sasso and Nestor w.r.t CERN



δ_{CP} measurements with a tag-Long Basline Exp.

- TagP2O used as case study
- Multiple ellipses can be accessed:
 - some are more circular
 - apsides not always reached at 90 or 270°

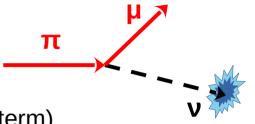



05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar 42 / 44

δCP measurements with a tag-LBL

- TagP2O used as case study
- Multiple ellipses can be accessed:
 - some are more circular
 - apsides not always reached at 90 or 270°
- Better and more stable resolution
 - With ORCA:6-8° precision in 10 years
 - With a detector twice as dense
 4-5° in 10 years
 - 2° if e/μ identification is perfect (10 years)

A possible path to continue studying v oscillation after DUNE/HK (w/o multi MW beam, w/o excavation)



05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar 43 / 44

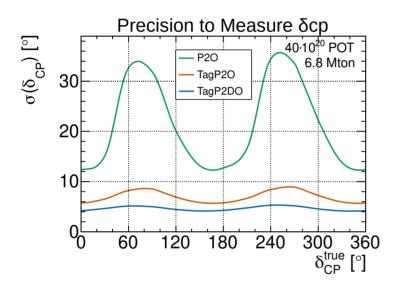
Summary and Conclusions

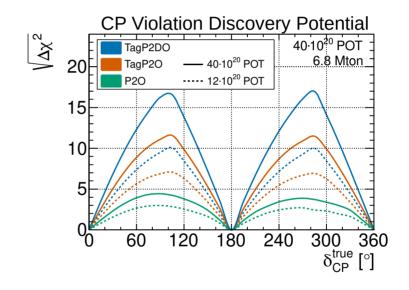
Neutrino tagging (NuTag) technique:

- 1. measure the ν properties from the prod. mechanism $(\pi \rightarrow \mu \nu)$
- 2. associate each ν interacting in the ν -detector with a tag- ν Ideal setup to study ν interaction (short term), ν oscillations (longer term)

- The first two fully tagged neutrino candidates detected at NA62
 - A crucial step to demonstrate that neutrino tagging is feasible
 - Results to be confirmed with more data

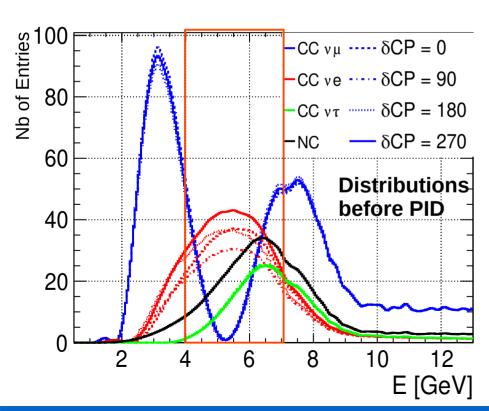
- should run in the coming decade
- strong synergy ENUBET/NuTag
- new collaborators are welcomed

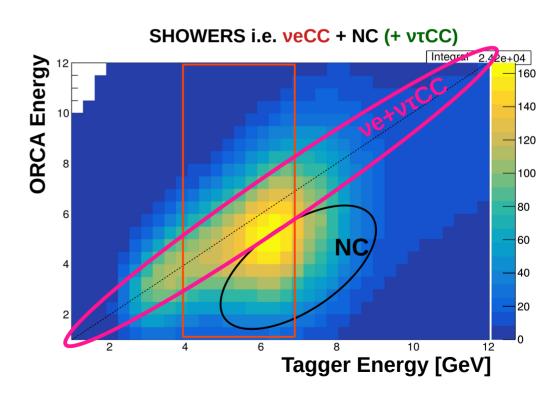

A possible path to continue exploring neutrino physics after DUNE/HK


Case Study TagP2O

- Letter of interest Eur. Phys. J. C (2019) 79:758
- U70 beam power assumed to be upgraded from ~90kW to 450 kW, in the context of the OMEGA projet
- Event rates and δ_{CP} sensitivity without tagging

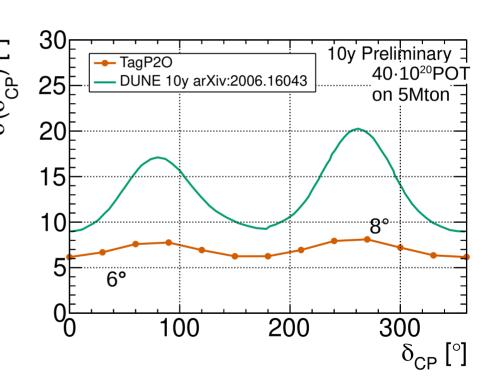
Experiment	T2HK	DUNE	P2O	
1-st max $\nu_{\mu} \rightarrow \nu_{e}$	0.6 GeV	2.4 GeV	5 GeV	
Detector	HyperK	DUNE	ORCA	Super-ORCA
Fiducial mass	186 kt	40 kt	8000 kt	4000 kt
Beam power	1300 kW	1070 kW	450 kW	450 kW
v_e events per year (NO)	230	250	3500	3400
$\bar{\nu}_e$ events per year (IO)	165	110	1200	1100
CPV sensitivity ($\delta_{CP} = \pi/2$)	8σ	7σ	2σ	6σ
1σ error on δ_{CP} ($\delta_{CP} = \pi/2$)	22°	16°	53°	16°
1σ error on δ_{CP} ($\delta_{CP} = 0$)	7°	8°	32°	10°


δCP measurements with a tag-LBL



How to measure δ_{CP} with P2O

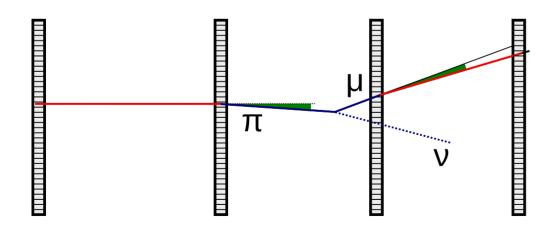
- δ_{CP} measured using ve-CC energy distribution around 5GeV (1rst osc max)
 - ORCA threshold ~3.5GeV
 - NC pollution in ve-CC reduced comparing visible energy vs tag-energy

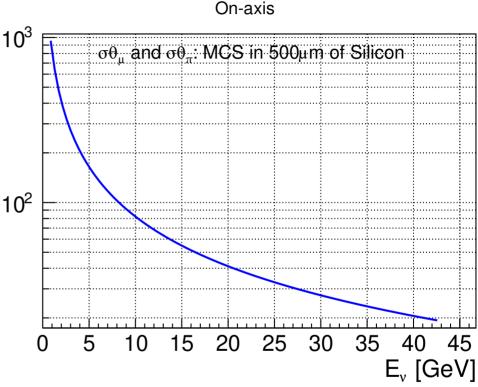


Precision to δ_{CP} at P2O

Systematics on oscillation parameters, cross section & normalisation (free)

θ 13 ± 0.15°	ντ ± 10 %
θ23 ± 2°	NC ± 5%
$\Delta m^2 31 \pm 5e - 3eV^2$	νe=νμ ± 5%


- $\sigma(\delta_{\sf CP})$
- **Conservative** estimates: no PID improvement with respect to atmospheric v was considered
- δ_{CP} precision **stable** over all values
- <8° precision can be achieved!



Is 1mard v ang. resolution achievable? YES

• When $\theta v \pi \rightarrow 0$ (i.e **on axis**): $\theta v \pi \rightarrow 1.3 \cdot \theta \mu \pi$

Assume that **multiple coulomb** scattering (in 0.5% X_0 like at NA62) dominates the resolutions on $\theta\mu\pi$ & $\theta\pi$

• Sub-mrad prec. on θ_{ν} can be achieved

05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar 50 / 44

v_e energy control: Kaon to ve association

- Assumptions on the beam content, based on ENUBET
 - Getting 9×10¹⁹ POT in 2.5 years needs 5×10¹³ protons per pulse
 - The neutrino detector (protoDUNE e.g.) has time resolution 1ns

- For any interaction in protoDUNE the nb of in time π 's and K's in the beam are
 - 200 π 's: $5e13 \times 4.13e-3 \times 1e-9$ π 's can be identified & vetoed based on TOF+kinematics

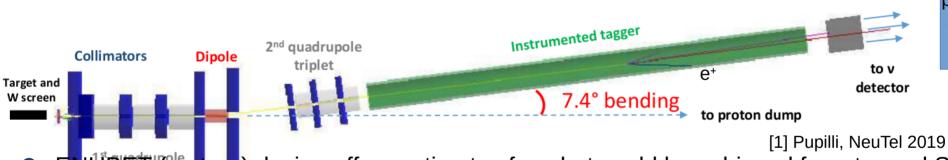
 200 π 's

 17 K's : $5e13 \times 0.34e-3 \times 1e-9$ Undecayed K (- 50%) can be vetoed
 Kµ2 and K2 π can be reconstructed and vetoed

 8 decayed

 9 un-decayed

 1 Ke3

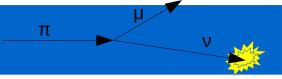

 5 Kµ2

 1-2 K2 π 0-1 other
 - The association is possible for 90% of the cases

^a 5e13 ppp and 3000 p per day 30 days a month 8 months per year over 2.5 year gives 9×10¹⁹ POT

ENUBET

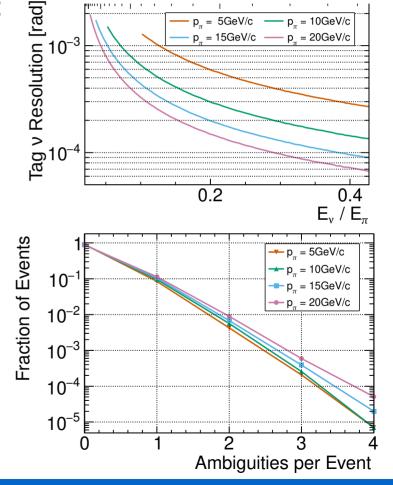
- ENUBET: monitored beam to measure ν x-section at energies of few GeV
 - $N(e^+) = N(K^+ \rightarrow \pi^0 e^+ \nu_e) = N(\nu_e)$, so by counting the e^+ 's, one counts the ν_e 's
 - Narrow band beam (NBB) (10% at 8.5GeV) allows to limit the Ev spread to 20%
- NuTAG & ENUBET beam lines designed with the same technology (quadrupoles)


protoDUNE 500 tonne @ 50m

- ENUBET (mature) design offers estimates for what could be achieved for a tagged SBL
 - Nb assumes: 5×10¹³ ppp, 10²⁰ POT*, with protoDUNE as detector
 - Beam particle rate is ~MHz/mm² at pipe end (<<10-100MHz/mm²)

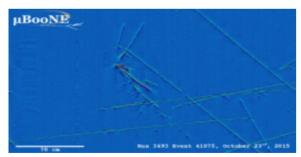
$N(v_e)$	10 ⁴ / 10 ²⁰ POT
$N(\nu_{\mu})$	10 ⁶ / 10 ²⁰ POT

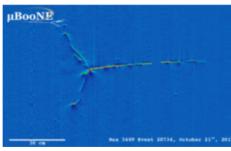
* this is similar to CNGS intensity

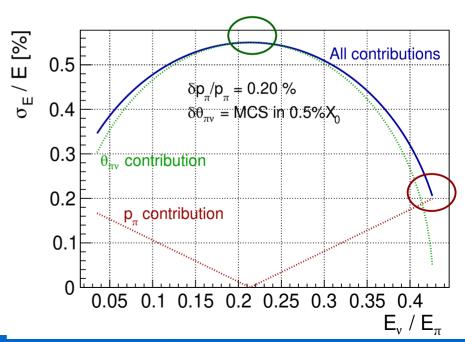

Matching with tag-v

At 10¹¹ v/s, is the association tag-v/interacting-v working?

Association based on time and angular coincidence:


- Time coincidence: t_{ν-tag} t_{ν-int}
 - Silicon Trackers will enable <10ps reso on tag-v
 - Typical v detector resolution is 10ns
 - → About 1'000 tag-v are in-time with any interacting-
- Angular Coincidence: $\theta_{v-tag} \theta_{v-int}$
 - Dominant contribution is tag-v resolution
 - Resolution is <1 mrad (assuming a tracking plane thickness of 0.5% X₀)
- → 90% of the evt can be tagged w/o ambiguity
 Remaining 10% have > 1 tag-v matched



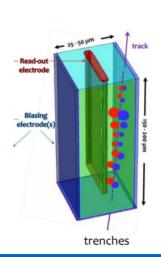

05/02/2024

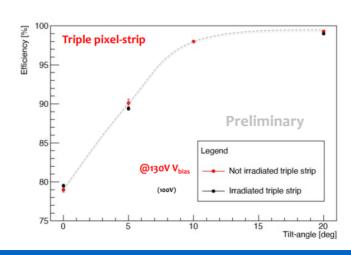
What about Energy Resolution?

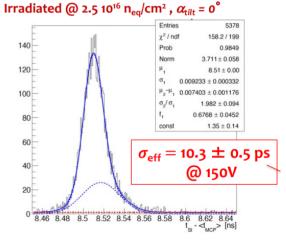
- Reconstructing a $\pi \rightarrow \mu\nu$ decay is much simpler and cleaner than a ν interaction
- ν energy obtained from p_{π} and θ_{ν} as $E_{\nu} = \frac{(1 m_{\mu}^2 / m_{\pi}^2) p_{\pi}}{1 + \gamma^2 \theta_{\nu}^2}$
- Energy reso ranges between 0.2% (on axis) and 0.6 % (independent of p_{π})!
- To be compared with 10-20% for the methods based on the neutrino interactions

Tracker: Pixel Technology

- Very ambitious specs, similar to the ones for HL-LHC experiments & HIKE
- TimeSpot (A. Lai, INFN Cagliari)
 - Trench 3D sensors

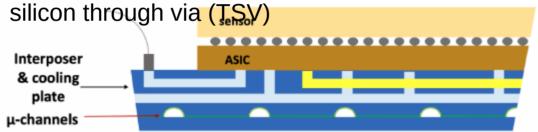

Specification	Neutrino Tagging	NA62 (in operation)	HIKE	HL-LHC (R&D)
Flux (MHz/mm ²)	O(10-100)	2	8	O(10-100)
Fluence (n_{eq}/cm^2)	10^{16-17}	$2 \cdot 10^{14}/y$	$8 \cdot 10^{14}/y$	10^{16-17}
Hit Time Reso. (ps)	< 20	200	< 50	< 50
Det. Efficiency (%)	> 99	> 99	> 99	> 99
Thickness ($\%$ of X_0)	< 0.5	< 0.5	< 0.5	< 0.9
	arYiv:	arYiv:	arYiv.	CERNII HCC-

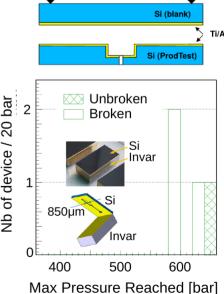

2112.12848 1904.12837 2211.16586 2021-012


- Excellent time and radiation resistance (being test at 10¹⁷ n_{eq}/cm²!)
- ASIC development started (28ns)

https://indico.cern.ch/event/1127562/contributions/4904519/

https://arxiv.org/abs/1703.08501



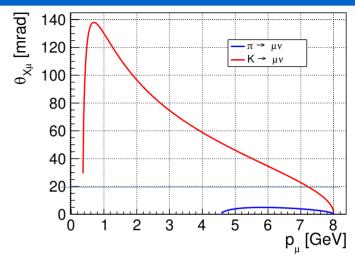

To be compared with 11 ps @ 100 V of the not-irradiated case

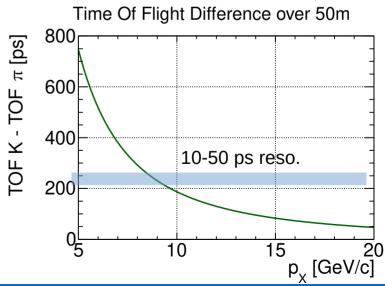
Tracker: Cooling Plates

- Micro-channel cooling (thin + high cooling power)
- Technology pioneered by NA62 (liquid) and LHCb (bi-pha
- For NuTAG, a step further in integration is needed to cover large (0.1m²)
 areas
 - cooling plate serves as electronic interface connected to ASIC with

- R&D on-going in Marseille using Au thermo-compression
 - Gold layer can be patterned to serve electrical function
 - Process compatible with Si/Si, Si/Metal (connectors) and with el
- Timescale
 - Prototype made of 3 planes of about 10x10cm² by 2028
 - Could be re-used at NA62

320°C - 40 T


150um


70um

200um

ν_μ cross section and interaction models

- NuTAG will reconstruct all $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ and $K^+ \rightarrow \mu^+ \nu_{\mu}$ with a <0.6% reso. on the ν_{μ} energy
- Decay kinematics offers a very good control of the background
- K^+ 's and π^+ 's can clearly be separated using
 - Time-of-Flight (pixels have 10-50ps reso.)
 - Kinematics (θ_{xu} vs p_u where X is π or K)
- Excellent sample (> $10^6 \text{ v}\mu$) to
 - measure cross section and <u>differential cross</u> <u>section</u> (wrt energy)
 - improve interaction model, as ν energy is known independently of the interaction

KM3NeT/ORCA

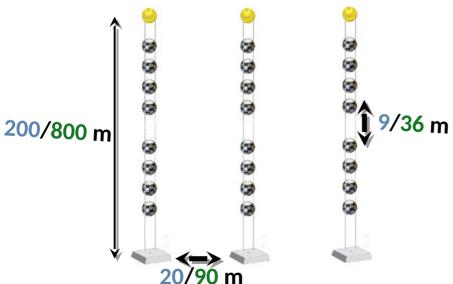
- Three sites explored in France, Italy and Greece
- Two detectors under construction until ~2026:

ORCA:

Depth: -2500m (France),

Energy thres. 3 GeV

Eff. Mass: 7 Mton

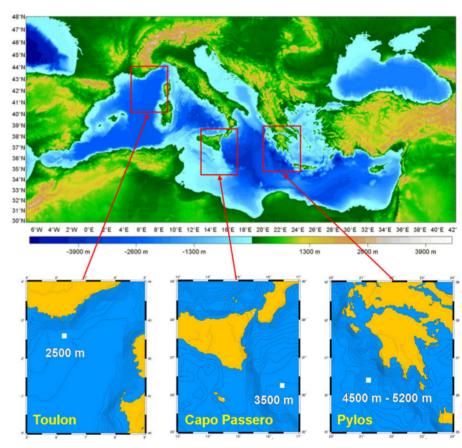

Neutrino oscillation

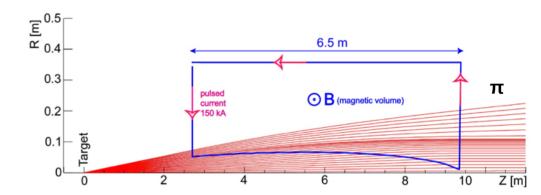
ARCA:

Depth: -3500m (Sicily) Energy thres.: 100 GeV

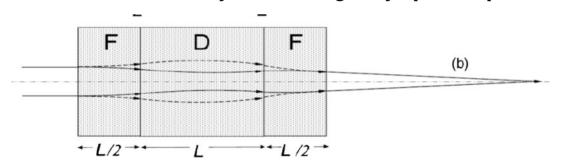
Eff. Mass: Gton

Neutrino astronomy




Figure 1-6: Locations of the sites of the three Mediterranean neutrino telescope projects.

58


05/02/2024 Mathieu PERRIN-TERRIN | CPPM Seminar

Beam line: π collimation in slow extraction

- π collimation is mandatory to achieve high neutrino yields
- Beam lines normally use magnetic horns
 - horns operate in pulsed (μs) mode
 - heating induced by the large current prevents the use in continuous mode

 CERN-PBC started to develop, for ENUBET & NUTAG, a static π collimation system using only quadrupoles

 Advanced static solutions (magnetic spokes, solenoid lens, cryogenic horns) were designed but never implemented

