DESI first year cosmological results

Corentin Ravoux - Researcher at LPCA on behalf of the DESI collaboration

24 Mai 2024 - LPCA Seminar

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science 1

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 participating institutions

Cosmological context
 The Dark Energy Spectroscopic Instrument
 The Lyman-α forest
 DESI first year BAO cosmological results
 Other Lyman-α forest studies

Cosmological context The Dark Energy Spectroscopic Instrumen The Lyman-α forest DESI first year BAO cosmological results Other Lyman-α forest studies

Cosmological context

How did the Universe evolve to its current state? What are the fundamental constituents of our Universe? How is matter distributed in the Universe?

Global content of our Universe

- Evolution of the Universe described by the ΛCDM model
- Composition today:
 - Only 5 % of its content is known
 - Properties of components constrained by observations

What is the nature of dark energy and dark matter?

Large scale structures

- Initial density perturbations in the primordial Universe.
- Perturbations grows to form the cosmic web: halos, filaments, walls and voids
- Large-scale distribution of matter characterized by the linear power spectrum

How can we probe the cosmic web? What can we learn from it?

Baryon acoustic oscillations

Sound wave created by an overdensity of baryons and dark matter in the primordial plasma

Baryon Acoustic Oscillations (BAO):

• Sound waves in the primordial Universe ...

Baryon acoustic oscillations

- At recombination (z~1100)
 - Baryon/photon decouples
 - Sound waves froze at sound horizon scale:

 $r_{
m d}\simeq 150{
m Mpc}$

- Effect of all overdensities in the primordial plasma:
 - Statistical BAO signal in the matter distribution

Baryon Acoustic Oscillations (BAO):

- Sound waves in the primordial Universe ...
- ... imprint a characteristic scale in the density distribution

Baryon acoustic oscillations

- BAO = Standard ruler
 - Measurement of distance at a given redshift
 - Expansion history from different redshift measurements (encoded in D_M(z) and H(z))

Cosmological context The Dark Energy Spectroscopic Instrument The Lyman-α forest DESI first year BAO cosmological results Other Lyman-α forest studies

DESI instrument

• 4 m telescope at Kitt Peak Observatory

DESI focal plane

5 µm positioning in few sec. for 5000 targets
All fibers connected to the spectrographs

Corentin Ravoux

DESI spectrographs

 10 Spectrograph modules containing 3 CCD each

4000

Targets of the cosmological survey

- **BGS**: Bright Galaxy Survey
- LRG: Luminous Red Galaxy
- **ELG**: Emission Line Galaxy
- **QSO**: Quasar
 - z > 2.1: with a Lyman-α forest
 - z < 2.1: as tracers

3 million QSOs

Lyman-alpha z>2.1 Tracers 1.0<z<2.1

16 million ELGs 0.6<z<1.6

8 million LRGs 0.4<z<1.0

14 million BGSs

0.0<z<0.4

40 million redshifts in 5 years

DESI in a nutshell

Survey progress

Y1 completion

- Full coverage:
 14,000 deg²
- Y1 data set used in the results presented here

Survey progress

Y3 completion

- Full coverage:
 14,000 deg²
- Y1 data set used in the results presented here
- Y3 data set secured

DESI collaboration 2024

DESI science goals:

- Galaxy and quasar clustering
- Lyman-α forest
- Clusters and cross-correlations
- Galaxy and quasar physics
- Milky way Survey
- Transients and low-z

Cosmological context
 The Dark Energy Spectroscopic Instrumer
 The Lyman-α forest
 DESI first year BAO cosmological results
 Other Lyman-α forest studies

The Lyman-α forest

• Lines in quasar spectra at $\lambda_{
m obs} = (1 + z_{
m abs}) \, \lambda_{
m Lylpha}$ caused by absorbers in the intergalactic medium (IGM) at $z_{
m abs}$

DESI first year results - LPCA Seminar 22

Lyman-α physics

• Optical depth (degree of transparency of the medium):

$$au_lpha(r) = \int n_{
m HI}(r) \sigma_lpha(r) dr$$

Density of neutral

hydrogen

• Fraction of transmitted flux:

$$\mathrm{F}(\mathrm{r}) = \exp\left(- au_lpha(r)
ight)$$

Lyman-α forest = non-linear tracer of neutral hydrogen in the intergalactic medium

Contaminants

- Near the quasar:
 - Intrinsic continuum
 - Broad absorption line quasars (BAL)
- Along the line-of-sight:
 - Metal absorptions (C, Si, O, N...)
 - Damped Lyman-α systems (DLA)

- Near the telescope:
 - Atmospheric absorption and emission
 - Instrument noise
 - Spectrograph resolution

Corentin Ravoux

Lyman-α BAO Y1

Measurement of the BAO scale with the Y1 data of DESI

Cosmological context The Dark Energy Spectroscopic Instrumer The Lyman-α forest DESI first year BAO cosmological results Other Lyman-α forest studies

BAO Y1 signal on galaxies

- 3D auto-correlation of galaxies for BGS, LRG, ELG and QSO as tracers
- BAO scale measured over different redshifts

Corentin Ravoux

All BAO signals from DESI Y1

Corentin Ravoux

DESI first year results - LPCA Seminar 31

Cosmological constraints

- Overall BAO scale:
 - $rac{D_{
 m V}(z)}{r_{
 m d}} = rac{1}{r_{
 m d}} \left(rac{z D_{
 m M}^2(z) c}{H(z)}
 ight)^{1/3}$
 - BAO anisotropy:

С

 $\overline{D}_{
m M}(z)H(z)$

A word on blinding

- Blinded analysis to avoid confirmation bias:
 - For galaxies: shift of all redshifts based on a random ACDM model
 - For Lyman-α forest: unknown shift of the BAO peak
- Unblinding after passing an extending list of tests

Example for Lyman-α forest:

Hubble constant

ACDM model with baryon information from BBN

In tension with late time measurements (Supernovae)

ΛCDM model with free spatial curvature (K)

$$\Omega_{\rm K}=0.0024\pm0.0016$$

DESI + CMB

In favor of a flat Universe

Dark energy

 Dark Energy equation of state (-1 for ΛCDM):

$$w=P/
ho$$

• *w*CDM model:

$$w = -0.99^{+0.15}_{-0.13}$$
 DESI $w = -0.997 \pm 0.025$ DESI + CMB + SN

Dark energy

• Varying equation of state (CPL):

$$w(a) = w_0 + (1-a)w_a$$

- Can mimic wide range of viable cosmological models (phase transition, scalar field, modified gravity)
- ACDM:

$$w_0=-1$$
 $w_a=0$

Dark energy

Corentin Ravoux

Neutrino mass

- Neutrino mass impacts cosmology
- CMB degeneracies broken by BAO, through Hubble constant measurement

$$\sum m_
u < 0.072 {
m eV}$$
 DESI + CMB $\sum m_
u < 0.195 {
m eV}$ DESI + CMB with (w_0, w_a)

Strong constraint on neutrino mass

Cosmological context
 The Dark Energy Spectroscopic Instrumer
 The Lyman-α forest
 DESI first year BAO cosmological results
 Other Lyman-α forest studies

One dimensional power spectrum

- Correlations along individual lines-of-sight in Fourier Space
- Sensitive to small-scale matter clustering and IGM thermal state
- Unique probe to constrain neutrino masses and dark matter properties (WDM, FDM...)

DESI EDR FFT measurement

Lyman-α absorption

Corentin Ravoux

Tomographic map

• Gives a 3D map tracing matter at redshift z > 2

• Applications:

- Identification of protocluster candidates
- Cross-correlations with cosmic voids, tracer of velocity flows in the cosmic web

Conclusion

- Hint of varying dark energy from DESI Y1 BAO data
- Strong constraints on ΛCDM and neutrino mass
- Lyman-α forest yields a lot of applications

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science 46

BAO for different species

Interplay between different species in the primordial plasma and after recombination

Cosmological probes: RSD

- Redshifts precisely measured by spectroscopic surveys:
 - Universe expansion + peculiar velocity
 - Position shifted by the line-of-sight peculiar velocity

 Redshift Space Distortions (RSD): Distortion of cosmological observable due to peculiar velocities

$$(1+z_{
m obs})=(1+z_{
m cosmo})(1+z_{
m peculiar})$$

Neutrinos in cosmology

- Matter power spectrum impacted by:
 - Sum of neutrino masses $\sum m_{\nu}$
 - Dark matter model (e.g. warm dark matter)

Unique probe to constrain neutrino masses and dark matter properties

Latest constraints with eBOSS

at 95% C.L.

- Neutrino mass (P1D +CMB): $m_
 u < 0.11~{
 m eV}$
- Warm dark matter model:

 $m_{
m X} > 5.3~{
m keV}$ at 95% C I

• Other constraints: Fuzzy dark matter, sterile neutrinos, running of the primordial power spectrum

Forecasts for DESI

- Constraints on WDM improved by a factor 1.6 *Valluri et al. 2022*
- IGM thermal parameters by a factor 2.
- Neutrino mass, in association with BAO and CMB:

$$\sigma\left(\sum m_{
u}
ight)=0.03~{
m eV}$$

Wiener filter map on eBOSS data

- Identification of proto-cluster candidates:
 - Densest regions of the map with density threshold
 - Criteria on the number of crossed lines-of-sight
- High redshift cosmic voids:
 - 3D spherical void finder
 - Void can be used to probe the dynamic of the cosmic web

Ravoux et al. 2020

Lyman-α / Void cross correlation

 Distance between void centers and Lyman-α flux contrast:

eBOSS measurement

Multipole expansion

- Use of a spherical decomposition to measure deformation of voids
- Effect of velocities seen in eBOSS data

$$eta=rac{b_\eta f}{b}=0.52\pm0.05$$

View of velocity flow around voids at z > 2

Growth rate forecasts

- **RSD** very effective for high-z
- **Peculiar velocities** for low-z

 Constraint improvement with combination of methods

Methods

• Growth rate measurement methods with peculiar velocities:

Covariance matrice computed from theory and coordinates