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Outline and disclaimers

In these slides | will summarize what has happened, is happening and will happen in
CMS on the heterogenous side, focussing on how we tackled some challenges.

Disclaimer: | tried to give a general picture, some technical details may be missing.
Materials readapted from many sources.



Why



Accelerator and detectors upgrade: many
channels, high granularity.

More data: double Run1,2,3 integrated
luminosity in one year.

Mirror data (x10 statistic wrt today) with
(many) simulated events.

From ~50 to 140/200 parasitic collisions per
bunch crossing.

4/5x event sizes (stress on
network+storage+tape infrastructure).

Proton physics + Heavy lons.

Peak luminosity [1 034cm'23’1]

An interlude, towards HL LHC (in a nutshell)
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An interlude, towards HL LHC: CPU

needs

o Budget vs needs for ATLAS and CMS.
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o On the bright side: things are improving (trends have headed down). But still.



Heterogeneous Architectures

CHF / HS06

-
o
L

Hardware cost dominated by market trends, which (our) science cannot influence (anymore).

Necessity to diversify (micro)architectures (for many years to be essentially focusing on a single
one). CPU (x86_64, Power, ARM, RISC) and accelerators (eg. GPUs, departing from single vendor leadership).

Heterogeneity is hitting the mass market.
Power consumption becoming more important than ever (accelerators help).

Price / performance evolution of installed CPU servers (CERN) v8 Jan 2021
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High Performance Computing

o HPCs more ond more visible in the scientific computing =
infrastructure (massive investments from financing agencies). Yy
EC) P o
o Several Exascale machines will be available during the next \(\ )I PROJECT
decades. =
o HPCs used by all LHC experiments to some extent. [ ]
i Al Bt
o HPCs for High Throughput Computing come at a price, e.g.: —F, **jj - EuroHPC
+ Data access (access, bandwidth, caches ... T % x I
+  Environment less open than Grid one (OS, access policies,  — * 4 *x

)

« Top performance comes with exotic architectures
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An interlude, towards HL-LHC

o Butwhere will we spend our HS06 in 20307

CMS~rublic _ ATLAS Preliminary
Tc;%zazlztégtl’}ml;ltlé;LHC (2031/No R&D Improvements) fractions 2020 Computing Model -CPU: 2030: Baseline
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o Most of them go in event reconstruction.
o And most of it for simulations: ~no access to data (HPC friendly).
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CMS Trigger(s) in a nutshell

« Collisions in the LHC happen at 40MHz, impossible to save all events

« Level1trigger: first filtering based on FPGAs and custom electonics reduces the rate to 100 kHz

« High Level Trigger (HLT): streamlined version of reconstruction software reduces the rate to about
1kHz for O(1GB/s) data readout
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CMS HLT Trigger towards Phase?2

( CMS )

¢ 40 MHz readout

FPGAs and Custom Electronics

¢ 100 kHz

( event readout ) DAQ

L]

( event building )

HLT
event filtering
[ CMSSW: x86 CPU J

¢ O(kHz)
( Tier-0 j

L1 Trigger ]

Since Run-3 (2022+), CMS operates an heterogeneous HLT farm:

e CMS software, running on 200 nodes:
o ~26k CPU cores AMD Milan 7763
o 400 NVIDIA T4 GPUs

e FEventsize ~-MB
CMS Phase-2 upgrade:

e LI1T100kHz -> 750kHz (7.5x)
e Pile-up 60 -> 200 (~3x)
e More complex detectors

Almost an order of magnitude higher performance required: CPU
evolution is not able to cope with the increasing demand of
performance.
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Where it started.. ..

While looking for opportunities for GPU offloading:

e No single hotspot

e Many instances of the same algorithm with
different configurations (regional, global)

e Chains of algorithms containing enough
parallelism

e Eorlyinthe reconstruction, no dependencies
and then move downstream

e Enough expertise in the particular
reconstruction algorithm and parallelism

451.0 ms

Identified three targets:

e Global pixel reconstruction chain, from RAW
data down to pixel-only tracks and vertices

e ECAL local reconstruction

e HCAL local reconstruction

Online reconstruction timing measured on pileup 50 events from Run2018D
on a full Run-2 HLT node (2x Intel Skylake Gold 6130) with HT enabled,
running 16 jobs in parallel, with 4 threads each.

Make CPU and GPU codes to run together efficiently
in the CMSSW fraomework

12



. with a bunch of questions

How do | make the code run faster?

Should | change the data structures and memory management?

What if the algorithm is not exposing enough parallelism?

What if there is no single algorithm or detector that is a hotspot taking most of
the reconstruction time?

How do | integrate the code into the framework?

How do | make the code portable?

How do | make sure that the CPU threads are not idle waiting for the GPU?

How do | balance the number and type of GPUs with the fraction of GPU code in
the software?

How do | match the GPU requirements of the job with the machines available on
the grid?

How do | engage the community to develop heterogeneous code?

13



Heterogenous Architecture

Interconnect

CPU | GPU

« Avg bandwidth between CPU and High bandwidth between GPU

host memory cores and GPU memory
« Low core count/Powerful ALU High core count

«  Complex control unit No complex control unit
« Large caches +  Small caches

Latency Throughput 14



GPU Programming Model

GPU code is executed by many “threads” in parallel

« Parallel functions, oka “kernels” spawn threads organized in a “grid" of
blocks

Threads in the same block can: S

« Communicate via fast on-chip shared memory

« Synchronize

~
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Threads in the same block work in steplock in groups (oka warps) of 16, 32, 64 R —
threads depending on the GPU brand.
« Preferred access to main device memory is coalesced One of the 132 Streaming
+ Lose an order of magnitude in performance if cached access pattern used Multiorocessors — of @
on GPU NVIDIA H100
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Where we are now (at HLT)

Fully integrated in the CMSSW
fraomework

® can bereused in the offline reconstruction
* voalidated offline on GPU-equipped nodes on CMS Tier-1
® and Tier-2s commissioned and optimised over last year

®* Jdeployed in production since the beginning of LHC Run-3

® Dbetter physics pefromances

With the deployment of a GPU-equipped HLT farm:

« 70% better event processing throughput
« 50% better performance per kW
« 20% better performance per initial cost

Work isongoing to rewrite more:

+ particle flow clustering
+ seeding of the electron reconstruction
« full primary vertex reconstruction

and more, targeting also the Phase-2 reconstruction

average reconstruction time per event

800

700 ms

600 ms

500 ms

400 ms

300 ms

200 ms

100 ms

0ms

ms CMS Preliminary 13.6 TeV
690 msfev -40% time / event
v
384 ms/ev
CPU-only with GPUs
2x AMD EPYC
7763

2x NVIDIA T4

ECAL
M HCAL
Pixel track and vertex
m Full track and vertex
™ Particle Flow
E/Gamma
W Jets/MET
W Taus
® Muons
other
M non-event processing
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Faster == Better CMS,

14 TeV
T

e Usage of a more accurate R X e
reconstruction ¢ e
o eQ.migration to singleiteration tracking ST A e Tacng
e Reduction of intermediate filters el
o eg.removal of b-tagging based on calo jets
e Newtiming consuming modules
o eg.dedicated tracking for LLP, ParticleNet, 3 2 1 o0 1 2 3
soft electron reco ~ SmulatedTrack
e Improve scouting in quality and rate: 50T ane
o muons, photons, electrons, PF jet/MET, tracks é o3 HL;RunzTrac-kfne E
PF candidate for offline studies (eg. boosted obj.) o> ey " E
o special version of Particle Flow based on D 0p (emeciem E
pixel-track-based to minimize the impact on "2 E
CPU 0L, :
rate up to 30 kHz (ie. 30% of L1 ratel) 0-‘? =_—=g=_ *
o Necessory step for Phase-2 HLT (PU 200) ooF I
50 o ‘1(‘)0 260 ‘ ‘ 5(‘)0l ‘ ‘1‘600

Jetp_ (GeV) 17
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How



Steps to run

« The HLT menu has total of ~4400 modules G

« GPU Offloaded parts

— Pixel detector reconstruction: from RAW data
unpacking up to tracks and vertices (11
modules)

— ECAL local reconstruction (4 modules)
— HCAL local reconstruction (3 modules)

« 57 unique kernels, ranging from 2 uysto 7 ms
in these events

o,
)
Circles

« Memory pool to amortize cost of raw memory
allocations and provide asynchronous allocation interface in CUDA stream order

« All offloaded modules have CPU versions that are used for reference measurement ”



Let's Start Simple

Each CUDA-using module
launches their CUDA work by
directly interacting with the CUDA

API

All these modules launch their

work into the same CUDA stream

— Mimics the behavior of the
default CUDA stream

Every CUDA-using module does
a blocking synchronization

— cudaStreamSynchronize()

15-45 % improvement compared
to CPU-only

Throughput relative to CPU-only menu
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o

—e— 1 stream, synchronous

16

32

64 128
Number of CPU threads / process
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Add CUDA Streams

« Each non-branching chain of
modules within an event uses a
separate CUDA stream.

« Eoch concurrent event has its
own chains.

—

« Every CUDA-using module still does a
blocking synchronization

— Tested cudaDeviceSchedule{Auto,
Spin, Yield, BlockingSync}, all gave
practically the same performance

« Reporting cudaDeviceScheduleAuto

O<—O<—OJ

i

.

CMS,

ﬂ
!

| u e
N
O O]

O

_

)

J

\_

i

Example module chains where
3 CUDA streams are used.
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Add Multiple CUDA Stream

« Each non-branching chain of
modules within an event uses
a separate CUDA stream

— Each concurrent event has its
own chains

« Every CUDA-using module still
does a blocking synchronization
— Tested cudaDeviceSchedule{Auto,
Spin, Yield, BlockingSync}, all gave
practically the same performance
« Reporting
cudaDeviceScheduleAuto

Throughput relative to CPU-only menu
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+20%
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External Worker Mechanism

Replace blocking waits with a callback-style solution
Traditionally the algorithms have one function called by the framework,

produce|)

That function is split into two stages

— acquire(): Called first, launches the asynchronous work

— produce(): Called after the asynchronous work has finished

acquire()is given a reference-
counted smart pointer to the
task that calls produce()

— Decrease reference count
when asynchronous work has
finished

— Capable of delivering exceptions

Accelerator GPU, FPGA, O
V etc \‘9/6
X8 )
$ %
7 X
CPU </ N
acquire() other work produce()

24



External Worker Mechanism

« Use of CUDA streams stays the same

« Every CUDA module does a
non-blocking synchronization

— It follows that the modules depending on the
data of the CUDA-using module are

scheduled to be run only after the
GPU work has finished

— We use cudaStreamAddCallback() to
queue a host-side callback function
that notifies the CMSSW framework of
the completion of the GPU work

« cudaStreamAddCallback() is
deprecated,
cudalLaunchHostFunc() gave
same performance

Throughput relative to CPU-only menu
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17 —®— Many streams, synchronous

—%¥— Many streams, all modules ExternalWork
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Number of CPU threads / process
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Minimize the external worker use

Kernels

« Use of CUDA streams stays the 4/‘\.
same

copy
« Modules that produce only ™| to host
“‘device-side" information do not

really need synchronization with host

— Instead we make the consuming
module to call

cudaStreamWaitEvent() in case
it would use a different stream

— Now framework can schedule = s | SOPY
. . to host
the consuming modules without
waiting their GPU work to finish

« This is the setup used in CMSSW

26



Minimize the external worker use

1.7
=} 0
+ Use of CUDA streams stays the 5 161 11%
some >
« Modules that produce only 3
“device-side" information do not 914
really need synchronization §
— Instead we make the consuming £ d
module to call é 129 _e— 1 stream synchronous
cudaStreaomWaitEvent() in case 5 PR A — TN
it would use a different stream _g 1.1 1 —=— Many streams, all modules ExternalWork
_ NOW fromework can schedule = —IA— Many streams, minimal ExternalWork

=
o

the consuming modules without 16 32 _— fc63u P 128
oy e . . umper o reaqs rocess
waiting their GPU work to finish P

« This is the setup used in CMSSW

Further improvements with our own pool of threads waiting on
cudaEventSynchronize(): ~2 % better on top of cudaStreamAddCallback().
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Where



Perfromance Portability

« New code written using the native CUDA API, targetting NVIDIA GPUs
+ But most offline sites (CERN, WLCG) do not use GPUs...

+ Two «by-hand» approaches: maintainance issues! oW

« common kernels, different wrappers;
+ ad hoc compatibility layer, with a lot of #ifdefs

code duplication!

+ two implementations: legacy (CPU-only) and parallel (GPU-only)
» duplication of development, maintenance and validation efforts

and how do we run here?

» Adoption of GPUs from other vendors in HPCs is increasing
« LUMI-G, in Finland, and Frontier, at Oak Ridge, use AMD MI250X
GPUs
« Aurora, at Argonne National Laboratory, will use Intel Xe GPUs

« Can we target different CPUs and GPUs with a single code base ? Yes. No
free lunch.




A vast zoology

OpenMIP
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HO\J SI‘ANDARDS PROUFBRATE
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Performance Portability: Solutions

o Performance portability layers: aim to provide performance portability across accelerators’ hro"ugh
the abstraction of the underlying levels of parallelism. Rapidly changing ~0O(months) portability
solutions. Software

CUDA | Kokkos | SYCL HIP | OpenMP | alpaka | std::par

NVIDIA i (G
) UL :"’"’ hipce LLVM, Cray
hat GPU compute-cpp GCC, XL
g | Awp pensycL oo 40w
% GPU intel/livm P b
[ oneAPI CHIP-SPV: Intel OneAPI o
o Intel GPU el et e W prototype  oneapi::dpl
oneAPI . nve++
I x86 CPU intel/livm ‘”;H”:.‘CP U Livm, cee,
I computecpp tname Gee, XL
1 prototype
via Xilinx compilers  protytype via
1 FPGA Runtime (OpenArec, Intel, SYCL
v

o HEP-CCE cross-experiment initiative has
g
7
. After a thorough investigation
Done and discussion Alpaka
compiler bugs . N.B.: this is not cast in stone.
CMS is still  continuously
exploring the rapidly changing
~O(years) portability solution

F loSim landscape.
astCaloS Done Done . With a portable SoA model (see

later).
31
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almaka

alfaka.is a header-only C++17 abstraction library for heterogeneous software development

it aims to provide performance portability

across accelerators through the abstraction of (_cida )
the underlying levels of parallelism (_Bock )
mayexpose the underlying details when necessary
(almost) native performance on different hardware
supports all platforms of interest to CMS
x86, ARM and Power CPUs

with serial and parallel execution

NVIDIA and AMD GPUs
with CUDA and ROCm backends
support for Intel GPUs and FPGAs is under developoment, based on SYCL and oneAPI

it isproduction-ready today!

open source project, easy to contribute to: https://github.com/alpaka-
aroup/alpaka/



https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/

Performances in alfaka

evaluated on Run-3 algorithms within the
Patatrack pixel-only standalone reconstruction

good performance on current hardware

running on an AMD EPYC “Milan® 7763 CPU
(64 cores / 128 threads SMT)

running on an NVIDIA Tesla T4 GPU

header-only library, easy to integrate in the CMS
framework

support multithreading in the host application
support multiple targets in asingle build

- GPUsfrom different vendors and different generations

- CPUs with different execution modes, eg parallel execution
using TBB

low-level approach, very close to CUDA
easy to port code from CUDA, and to teach to students

throughput

throughput

1800 ev/s

1600 ev/s

1400 ev/s

1200 ev/s

1000 ev/s

800 ev/s

600 ev/s

400 ev/s

200 ev/s

Oevis

1400 ev/s

1200 ev/s

1000 ev/s

800 ev/s

600 ev/s

400 ev/s

200 evis

Oev/s

Patatrack Preliminary

13 TeVv

AMD EPYC Milan 7763 CPU
64 cores/ 128 threads

- -M--serial, without SMT
(1 thread per core)
—&— serial, with SMT
(2 threads per core)

- -V~ -alpaka --serial, without SMT
(1 thread per core)
——alpaka --serial, with SMT
(2 threads per core)

é 1‘6 2‘4 32
CPU cores
Patatrack Preliminary

40 48 56 64 72

13 TeV

NVIDIA Tesla T4

—#-native CUDA

——alpaka --cuda

o GPU 4 8 12 1

CPU cores

20

24 28 32
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https://github.com/cms-patatrack/pixeltrack-standalone/

CMS contributions in al,‘saka

fruitful collaboration with the Alpaka
development team

improve efficiency for CMSworkflows
contribute support for new features and
architectures students’ projects!

more flexible support for CUDA and HIP
support for CUDA and HIP APIsin the host
compiler support for CUDA and HIP targets

in a single build
asynchronous memory allocations, on

throughput

backends that support them
cudaMallocAsync/ cudaFreeAsync|)

Patatrack Preliminary 13 TeV
1400 evis . CUDA 211.2,ROCm 254, CPUs
caching allocators give +25% throughput _
1200 evis | - caching of GPU resources

streams and events

A
1000 ev/s |

800 ev/s 4 native CUDA

device and host memory buffers

contributeto the SYCL implementation

—e—alpaka —cuda
(caching allocator)

ssa160.d ul

600 ev/s 4

async memory allocations

—A—alpaka —cuda

o0 e give o oo deviee memen) support for USM memory model in
evs +270%t hroughput (ir?itial implementation) oneAP|

more efficient atomic operations

44—
200 ev/s y

Oevis

NVIDIA Tesla T4 GPU
4 8 12 16 20 24 28 B

CPU cores ' syntax bug fixes, improvements to the
tests, etc 34

improved memory buffer and kernel
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Structures of Arrays

SoA use widespread in CMSSW with many ad-hoc implementations.

A Generic SoA [1] has been developed to automate definition and implementation of
runtime sized SoAs:

* Layout divides a buffer into runtime sized columns
* View is the interface to the data. Lightweight, this is the structure passed to kernels

o Just pointers to columns, size
* Buffers host memory, pinned host memory or device memory, allocated from the

fromework (CUDA or Alpaka)

PortableCollection wraps the Layout and View
* Manages the buffer allocation
* Provides an interface for memory transfers
* Manages serialization to ROOT files

36


https://developer.nvidia.com/cuda-toolkit
https://github.com/alpaka-group/alpaka

Buffers, Layouts and Views

Buffer with SoA Layout

X pad
y pad
z pad
id pad
r pad
m ca\. | PAD
s [pad
X (“‘3“'\*“) pad

Layout helper function computes necessary buffer
size from the number of elements

Layout computes column  oddresses at
construction time

Add padding at end of columns for cache line
alignment

Also computes auxiliary strides and sizes for Eigen
and serialization

Cache line size configurable at compile time

SoA View
X @— X
y @
Z & y
ide—. 12
r e— T™id
me— Tr pad
m st.rlde =
size
(O

[ et

. Minimal memory footprint to minimize kernel launch parameters

size: one pointer per column; size (number of elements), stride size
for Eigen elements.

- View is the data access interface
. Const variant of the class
. Constructor variant taking per-column bare pointers

- Map existing structure to View interface
. Used during porting to SoA

. Layout classes provide automatically corresponding trivial

View 37



Structure definition:

C++ statically typed: code generation before compile time with macros
Based on Boost: : PP

namespace portabletest {

}

// the typedef is nmeeded because commas confuse macros
using Matrix = Eigen::Matrix<double, 3, 6>;

// SoA layout with z, y, 2z, 2d, m fields
GENERATE_SOA_LAYOUT (TestSoALayout,
// columns: one wvalue per element
SOA_COLUMN (double, x),
SOA_COLUMN (double, y),
SOA_COLUMN (double, z),
SOA_COLUMN (int32_t, id),
// scalars: one value for the whole structure
SOA_SCALAR (double, 1),
// Eigen columns
SOA_EIGEN_COLUMN (Matrix, m))
using TestSoA = TestSoALayout <>;
// mamespace portabletest

38




Portable collections

PortableCollection wraps the Layout and View:

using TestDeviceCollection = cms::cuda::PortableDeviceCollection<portabletest
TestDeviceCollection deviceProduct(size_, ctx.stream()};

testAlgoKernel (deviceProduct.view(), deviceProduct->metadata().size());
cudatest:: TestHostCollection hostProduct{size_, ctx.stream()};

cms::cuda::copyAsync (hostProduct.buffer(), deviceProduct.const_buffer (),
deviceProduct.bufferSize(), ctx.stream());

* Available for Alpaoka and CUDA.
* Manages the buffer allocation.
* Host and Device side.

* Provides an interface for memory transfers.
* Manages serialization to ROOT files.

:: TestSoA>;
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Validation



caveat emptor

parallel algorithms have some additional problems with respect to serial ones

» more complicated to design and implement efficiently

eg. divergences in the parallel execution may lead to suboptimal performance

» undefined order of execution may produce results that are not
fully reproducible

eg.in combinatorial algorithms and reductions

41




Intrinsic differences: an example

« Tracks sharing one or more hits are considered ambiguous: only one
is good while the others are fake.

« The GPU tasks work in parallel. The tasks are completed in a random order.
The resolution is order dependent and therefore the result is not deterministic.

Assuming we have 3 candidate tracks

with quality g(c)>q(b)>q(a).

We can have different results depending on
the order:

1) bvsc—-bremoved.
Both a and c survive (no shared hits)

Only c survives.

2) avs b - aremoved;then cvsb —» bremoved.
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Heterogenous DQM

DQM online is a system that allows
to monitor the CMS sub-detector in
Raw nearly real-time during data taking

e Data processed by DAQ and HLT

(DQM streams)
o Delivered on our PS machines

MC samples
Data samples

RelVal
(~T1)

Validation

° Data processing by a suite of
CMSSW application (clients)

§ § § : o  On-the-fly reconstruction from raw

2 2 § data.
RelVal |5 = Online Offine  Offline o  Production of plots of physics
DQM GUI E? DQM GUI W observables sensitive to detector
2 functioning and operations

N\
- N | uploaded in the DQM Online GUI.
% @ = m— m e Plots are inspected by with

Validators Online shifters [ P.uFusuG. Certification Experts
(DPGPOGPAG)  (DPG) (DPG) (DPG-POG) the support of the

o Issues spotted are reported to

VAL Online Run . Offline Run!g Offline Run| subsystem experts and SL

DB Registry ~{ Registry | Registry ’

d product: d product: .
Valid;;epd su(;ftware Cere;iﬁpedudata JSON ° Results of the procedure are recorded in
the
43

Specific streams added to monitor CPUvsGPU on an event by event basis.



Event by event comparisons

« Big effort in reducing the CPU / GPU difference.
« The current differences between CPU/GPU objects are very small
« Online DQM system allow to monitor the differences in real timel

CMS Preliminary 13.6 TeV CMS Preliminary 13.6 TeV CMS Preliminary 13.6 TeV
g 1600 g | 3000 3 80 3000
s 1400 § [ § 70t
§ 4000}~ § a00f 2500 £ F 2500
g | 1200 s £ 60f
§ 3000 1000 gsoo_ 2000 g 50 2000
H > 800 g 1500 £ 40 / 1500
§ 2000/~ o 5200~ S 300
£ - o £ 1000 § F - 1000
B 400 > § 20 2

1000 51001 s
é P : 200 é 500 é 10:_-..-’___. 500
% 7000 2000 3000 4000 5000 0 O 400 200 300 400 500 ° " % 620 3 40 50 60 70 80 °
Number of hits running the reconstruction on CPU Number of tracks running the reconstruction on CPU Number of vertices running the reconstruction on CPU

Comparison of the number of Comparison of number of pixel Comparison of number of pixel
reconstructed hits (rechits) in the tracks per event vertices per event

pixel detector per event
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Still ...

e HLT menu made of ~/00 HLT paths. Each HLT path
is made of sequences and filters.

e Even though the difference in the Relative differrnce of event yield

objects are very small, we saw 350
differences of ~1% in the trigger 300
results of few HLT paths. 250

200

« Considering the HLT with a rate > 5 Hz (~400 5
paths):
o 185 paths have no difference at all
150 paths have difference on <1% of events

O
o 60 paths have difference on >1% of events
o 4 paths have difference on >2% of events

100

50

. Bl =

[0,05] (051 (1,1.5] (152 (2.25] (253 (3,35 %

Bottom line: we (as CMS) are discussing on how to deal with this. The path seems we will need to
take most of these in account as irreducible and quote them. 45
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Heterogenous Offline

Overlap between heterogeneous algorithms running
online with their offline counterparts

.
Pixel Tracks and vertices are not directly used G
offline, but they provide seeds for the Kalman
Filter
o Phase-2 pixel reconstruction will be replaced
by Patatrack pixel reconstruction in 2023

For Phase-2 HGCAL replaces the ECAL-HCAL
endcap calorimeters
o HGCAL Reconstruction by the TICL
framework will be completely ported to
Alpaka in 2023.
Developments ongoing for heterogeneous
tracking in the Outer Tracker.

Overall aiming towards a 10% offload of Phase-2
offline reconstruction, and common modules for Circles

Run 3 in the next months. CPU time for offline Phase-2 reconstruction in ttbar events with an average
of 200 overlapping proton-proton collisions as of CMSSW_13_1_0_pre3 4]



CMS GPU Resources

Tier-2 sites
(about 160)

Tier-1 sites

&+

i
&

Fis
&

fie
@

Wisconsin
MIT
Purdue
Florida
Nebraska
ucsp
Caltech

e Many Tier-1and Tier-2 sites are already
equipped with GPUs.

e Most are opportunistic but o few are
dedicated to CMS.

(e

GPU Pool size per resource type v

== NVIDIA A100-PCIE-40GB 68

NVIDIA Tesla V100-SXM2-32GB 32
- TeslaT4 32
== NVIDIA TITAN X (Pascal) 16
== NVIDIA TITAN Xp 16

== Tesla V100S-PCIE-32GB 8
== Quadro RTX 6000 6
== NVIDIA A100-SXM4-80GB 2]
== NVIDIA GeForce GTX 1080 2

from the dashboard
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https://monit-grafana.cern.ch/d/2qoPfS0Mz/cms-submission-infrastructure-gpus-monitor?orgId=11&from=now-7d&to=now

WM Infrastructure

Submitters

( 1

CMS,
Global Pool of WMAgents
Workqueue 1
|J WMAgent
l h GlideinWMS/
Reqiiare ]< 1 Global Pool
WMAgent

——» External flow
——— > WMAgent flow
————» WMCore flow

Specific parameter requests have been added for workflows that require GPUs
Introduction of GPU parameters:

o RequestGPUs, RequiresGPU, GPUMemoryMB, CUDACapability, Worker
CUDARuntime nodes
GPU site Whitelisting:
o Provide a list of sites that are equipped with GPUs (see the dashboard)
Details of integration in WMCore Twiki and summary in this CHEP talk

o Additional work for improving GPU support is on-HgToCinogndor
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https://monit-grafana.cern.ch/d/2qoPfS0Mz/cms-submission-infrastructure-gpus-monitor?orgId=11&from=now-7d&to=now
https://www.twiki.org/
https://indico.jlab.org/event/459/contributions/11466/attachments/9305/13502/20230511%20Heterogenous%20resources%20CMS%20CHEP23.pdf

WM Infrastructure

I

Pool of WMAgents
1

. Global
Submitters Workqueue
1 A
q J |
ReqMgr2 ]4—
e —

Specific parameter requests hd
Introduction of GPU paramete

o RequestGPUs, RequiresG
CUDARuntime
e GPU site Whitelisting:
o Provide allist of sites tha
e Details of integration in WMCo

'RequestType': 'TaskChain',
'SubRequestType': 'RelVal’,
'Task1": {

'RequiresGPU'": None,
'TaskName': 'ZMM_14TeV_TuneCP5_2021_GenSim'},
'Task2': {

'GPUParams': None,

'RequiresGPU'": None,

'TaskName': 'Digi_2021"},
'Task3'": {

'GPUParams': {"CUDACapabilities": ['7.5"],
'CUDADriverVersion' ",
'CUDARuntime': '"11.2',
'CUDARuntimeVersion': ",
'GPUMemory': '8000',
'GPUName': "},
'RequiresGPU': 'required’,
'TaskName': 'Reco_Patatrack_PixelOnlyGPU_2021"},
'TaskChain': 3,
'TimePerEvent': 10}

GlideinWMS/
. Global Pool

Worker
- nodes

——» External flow
——— > WMAgent flow
————» WMCore flow

o Additional work for improving GPU support is on-HgToCinogndor
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https://monit-grafana.cern.ch/d/2qoPfS0Mz/cms-submission-infrastructure-gpus-monitor?orgId=11&from=now-7d&to=now
https://www.twiki.org/
https://indico.jlab.org/event/459/contributions/11466/attachments/9305/13502/20230511%20Heterogenous%20resources%20CMS%20CHEP23.pdf

CMS GPUs Test in Production (for Validation)

Track (quality > loose)

e GPU workflows are already running in
central production '3

Track (quality > loose)

The HLT configuration was utilized

On GridKa TOpAS cluster (24x A100,

24x V1005, 8x V100, expandable to KIT GPU hours
HPC cluster) and Wisconsin (35xT4) =

B Production
B User

e Example of the usage of the GPU cluster ot

) . s -
the Wisconsin Tier-2 site More details in this CHEP talk

Hours

o Have run both Data and MC wfs

Large scale validation of CMS reconstruction
code before it was deployed and used for data-
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https://indico.jlab.org/event/459/contributions/11825/attachments/9463/14024/GPU_workflows-CKK-CHEP-2023_v2.pdf

Open questions and future challenges - |

1. Use of GPUs in CMS MC production multi-step workflows?

o Multi-step jobs (multiple cmsRun executions with different settings per job), not all of them caopable
of making use of the GPUs. Implemented in WM, need some adjustments to work for the SI.
o See developments in dmwm/WMCore#11689

Containerized

2. Benchmarking of GPUs

Server Specs: P CACGERpH > <
* CPU ~
Intel Platinum 8362 @ 2.80GHz Server =)
Cores per socket: 32 o
Sockets: 2 CPU GPU
o Arequirement for pledge definition and * GPU _
R Model name: Nvidia L4 Benchmark Suite
resource OCQUISIthﬁ. Total board power: 72 W
. GPU clocks: 2 GHz (Boost)
o Progress has been done recently using a l
MadGroph CPU+GPU workflow. Benchmarking B Anaiysis
including also power consumption. e

o Full HEPScore?3 teom report.

by D. Giordano and K.Tuteja

See Brokering to heterogeneous resources in the CMS Computing Grid by A. Pérez-Calero Yzquierdo o2



https://github.com/dmwm/WMCore/pull/11689
https://indico.cern.ch/event/1225116/contributions/5519006/attachments/2713539/4712490/GDB-13-09-2023-giordano.pdf
https://indico.cern.ch/event/1230126/contributions/5315429/attachments/2640892/4573012/20230507_Heterogenous_resources_CMS_WLCG_CHEP23.pdf

Open questions and future challenges - Il

3. Predictable workflow runtimes, a key parameter for an efficient matchmaking of
jobs to slots:
o Requires benchmarking.
o Hard because of the high diversity among GPU types.

4. GPU usage accounting:
o Also requires GPU resource benchmarking
o Could use HTCondor's GPUsAverageUsage as proxy

i.  Cron job uses the NVIDIA driver and tools libraries to query statistics on all of the

GPUs
ii. Generate usage report back to the slot info and payload job classad

See Brokering to heterogeneous resources in the CMS Computing Grid by A. Pérez-Calero Yzquierdo

o3



https://indico.cern.ch/event/1230126/contributions/5315429/attachments/2640892/4573012/20230507_Heterogenous_resources_CMS_WLCG_CHEP23.pdf

One more thing



Engaging the community and partners

o The «sociologicaly factor here is of key importance. It will be
difficult to find the sweet spot. It goes under the risk column.

o A working example/history of engagement and training comes
from the Patatrack R&D project:

« Continuous support throughout the development

« Thanks to experts and the support of partners like
CERN openlab, Flatiron Institute, Intel, NVIDIA, E4

« Three/four times per year CMS Patatrack
Team organize the Patatrack Hackathon. Main themes:
algorithms and implementations, performance
portability, heterogeneous computing, machine
learning, software engineering.

« Huge Boosts of productivity, perfect for newcomers.

« Building links and a community with common interests.

» Extend beyond experiment boundaries? NVIDIA.




Engaging the community and partners

o The «sociologicaly factor here is of key importance. It will be .
difficult to find the sweet spot. It goes under the risk column.?@{_; | L

SNCleROes 14 Hackathons organized so far with 30
from the Patotielelgdleifele]g}ds

Foster a familiar environment: about 200kg of
pasta cooked in total....

-

b

~

NVIDIA.




Questions?
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