
Heterogenous Computing in High Energy Physics

(a CMS perspective)

Adriano Di Florio (CC-IN2P3)

FJPPL, 30-31 January 2024

Outline and disclaimers

2

In these slides I will summarize what has happened, is happening and will happen in
CMS on the heterogenous side, focussing on how we tackled some challenges.

Disclaimer: I tried to give a general picture, some technical details may be missing.
Materials readapted from many sources.

Why

An interlude, towards HL LHC (in a nutshell)

4

o Accelerator and detectors upgrade: many
channels, high granularity.

o More data: double Run 1,2,3 integrated
luminosity in one year.

o Mirror data (×10 statistic wrt today) with
(many) simulated events.

o From ~50 to 140/200 parasitic collisions per
bunch crossing.

o 4/5x event sizes (stress on
network+storage+tape infrastructure).

o Proton physics + Heavy Ions.

An interlude, towards HL LHC: CPU
needs

5

o On the bright side: things are improving (trends have headed down). But still.

o Budget vs needs for ATLAS and CMS.

Heterogeneous Architectures

6

Wholesale electricity prices in Europe
€ per megawatt hour

Courtesy of B. Panzer (CERN)

o Hardware cost dominated by market trends, which (our) science cannot influence (anymore).

o Necessity to diversify (micro)architectures (for many years to be essentially focusing on a single
one): CPU (x86_64, Power, ARM, RISC) and accelerators (e.g. GPUs, departing from single vendor leadership).

o Heterogeneity is hitting the mass market.
o Power consumption becoming more important than ever (accelerators help).

High Performance Computing

7

HPCs Only

🇺🇸

🇪🇺

o HPCs more and more visible in the scientific computing
infrastructure (massive investments from financing agencies).

o Several Exascale machines will be available during the next
decades.

o HPCs used by all LHC experiments to some extent.

o HPCs for High Throughput Computing come at a price, e.g.:
• Data access (access, bandwidth, caches ...)
• Environment less open than Grid one (OS, access policies,

…)
• Top performance comes with exotic architectures

An interlude, towards HL-LHC

8

o But where will we spend our HS06 in 2030?

o Most of them go in event reconstruction.
o And most of it for simulations: ∼no access to data (HPC friendly).

What

CMS Trigger(s) in a nutshell

10

• Collisions in the LHC happen at 40MHz, impossible to save all events
• Level 1 trigger: first filtering based on FPGAs and custom electonics reduces the rate to 100 kHz
• High Level Trigger (HLT): streamlined version of reconstruction software reduces the rate to about

1kHz for O(1GB/s) data readout

Since Run-3 (2022+), CMS operates an heterogeneous HLT farm:

● CMS software, running on 200 nodes:
○ ~26k CPU cores AMD Milan 7763
○ 400 NVIDIA T4 GPUs

● Event size ~MB

CMS Phase-2 upgrade:

● L1T 100kHz -> 750kHz (7.5x)
● Pile-up 60 -> 200 (~3x)
● More complex detectors

Almost an order of magnitude higher performance required: CPU
evolution is not able to cope with the increasing demand of
performance.

CMS HLT Trigger towards Phase2

11

IntroductionWhere it started . . .

While looking for opportunities for GPU offloading:

● No single hotspot
● Many instances of the same algorithm with

different configurations (regional, global)
● Chains of algorithms containing enough

parallelism
● Early in the reconstruction, no dependencies

and then move downstream
● Enough expertise in the particular

reconstruction algorithm and parallelism

Identified three targets:

● Global pixel reconstruction chain, from RAW
data down to pixel-only tracks and vertices

● ECAL local reconstruction
● HCAL local reconstruction

Make CPU and GPU codes to run together efficiently
in the CMSSW framework

Online reconstruction timing measured on pileup 50 events from Run2018D
on a full Run-2 HLT node (2x Intel Skylake Gold 6130) with HT enabled,
running 16 jobs in parallel, with 4 threads each.

12

Introduction. . . with a bunch of questions

● How do I make the code run faster?
● Should I change the data structures and memory management?
● What if the algorithm is not exposing enough parallelism?
● What if there is no single algorithm or detector that is a hotspot taking most of

the reconstruction time?
● How do I integrate the code into the framework?
● How do I make the code portable?
● How do I make sure that the CPU threads are not idle waiting for the GPU?
● How do I balance the number and type of GPUs with the fraction of GPU code in

the software?
● How do I match the GPU requirements of the job with the machines available on

the grid?
● How do I engage the community to develop heterogeneous code?

13

IntroductionHeterogenous Architecture

14

• Avg bandwidth between CPU and
host memory

• Low core count/Powerful ALU
• Complex control unit
• Large caches

Latency

• High bandwidth between GPU
cores and GPU memory

• High core count
• No complex control unit
• Small caches

Throughput

IntroductionGPU Programming Model

15

GPU code is executed by many “threads” in parallel
• Parallel functions, aka “kernels” spawn threads organized in a “grid” of

blocks
Threads in the same block can:
• Communicate via fast on-chip shared memory
• Synchronize

Threads in the same block work in steplock in groups (aka warps) of 16, 32, 64
threads depending on the GPU brand.
• Preferred access to main device memory is coalesced
• Lose an order of magnitude in performance if cached access pattern used

on GPU

One of the 132 Streaming
Multiprocessors of a
NVIDIA H100

IntroductionWhere we are now (at HLT)

Ful ly integrated in the CMSSW
framework
• can be reused in the offline reconstruction
• validated offline on GPU-equipped nodes on CMS Tier-1
• and Tier-2s commissioned and optimised over last year
• deployed in production since the beginning of LHC Run-3
• better physics pefromances

With the deployment of a GPU-equipped HLT farm:

• 70% better event processing throughput
• 50% better performance per kW
• 20% better performance per initial cost

Work is ongoing to rewrite more:

• particle flow clustering
• seeding of the electron reconstruction
• full primary vertex reconstruction

and more, targeting also the Phase-2 reconstruction
2× AMD EPYC
7763
2× NVIDIA T4

-40% time / event

16

More computing power = better physics performance● Usage of a more accurate
reconstruction
○ eg. migration to single iteration tracking

● Reduction of intermediate filters
○ eg. removal of b-tagging based on calo jets

● New timing consuming modules
○ eg. dedicated tracking for LLP, ParticleNet,

soft electron reco
● Improve scouting in quality and rate:

○ muons, photons, electrons, P F jet/MET, tracks
P F candidate for offline studies (eg. boosted obj.)

○ special version of Particle Flow based on
pixel-track-based to minimize the impact on
CPU

○ rate up to 30 kHz (ie. 30% of L1 rate!)
● Necessary step for Phase-2 HLT (PU 200) 17

Faster == Better

17

More computing power = better physics performance● Usage of a more accurate
reconstruction
○ eg. migration to single iteration tracking

● Reduction of intermediate filters
○ eg. removal of b-tagging based on calo jets

● New timing consuming modules
○ eg. dedicated tracking for LLP, ParticleNet,

soft electron reco
● Improve scouting in quality and rate:

○ muons, photons, electrons, P F jet/MET, tracks
P F candidate for offline studies (eg. boosted obj.)

○ special version of Particle Flow based on
pixel-track-based to minimize the impact on
CPU

○ rate up to 30 kHz (ie. 30% of L1 rate!)
● Necessary step for Phase-2 HLT (PU 200) 18

Faster == Better

18

How

GPU reconstruction in CMS
HLT 2022
• The HLT menu has total of ~4400 modules

• GPU Offloaded parts
– Pixel detector reconstruction: from RAW data

unpacking up to tracks and vertices (11
modules)

– ECAL local reconstruction (4 modules)
– HCAL local reconstruction (3 modules)

• 57 unique kernels, ranging from 2 µs to 7 ms
in these events

• Memory pool to amortize cost of raw memory
allocations and provide asynchronous allocation interface in CUDA stream order

• All offloaded modules have CPU versions that are used for reference measurement
20

Steps to run

20

• Each CUDA-using module
launches their CUDA work by
directly interacting with the CUDA
API

• All these modules launch their
work into the same CUDA stream
– Mimics the behavior of the

default CUDA stream
• Every CUDA-using module does

a blocking synchronization
– cudaStreamSynchronize()

• 15-45 % improvement compared
to CPU-only

212023-05-09 Matti Kortelainen | Performance of
Heterogeneous Algorithm Scheduling in

CMSSW

Let’s Start Simple

21

Add
multiple
CUDA
streams

• Each non-branching chain of
modules within an event uses a
separate CUDA stream.

• Each concurrent event has its
own chains.

• Every CUDA-using module still does a
blocking synchronization
– Tested cudaDeviceSchedule{Auto,

Spin, Yield, BlockingSync}, all gave
practically the same performance
• Reporting cudaDeviceScheduleAuto

…

222023-05-09

Add CUDA Streams

Example module chains where
3 CUDA streams are used.

22

• Each non-branching chain of
modules within an event uses
a separate CUDA stream
– Each concurrent event has its

own chains
• Every CUDA-using module still

does a blocking synchronization
– Tested cudaDeviceSchedule{Auto,

Spin, Yield, BlockingSync}, all gave
practically the same performance
• Reporting

cudaDeviceScheduleAuto

+ 7 %

232023-05-09

+ 20 %

Add Multiple CUDA Stream

23

External
worker
mechan
ism

• Replace blocking waits with a callback-style solution
• Traditionally the algorithms have one function called by the framework,

produce()
• That function is split into two stages
– acquire(): Called first, launches the asynchronous work
– produce(): Called after the asynchronous work has finished

• acquire() is given a reference-
counted smart pointer to the
task that calls produce()
– Decrease reference count

when asynchronous work has
finished

– Capable of delivering exceptions

CPU

Accelerator

acquire() produce()other work

GPU, FPGA,
etc

Ev
en

t d
ata

Callback

External Worker Mechanism

24

Make
each
CUDA
module
external
worker

• Use of CUDA streams stays the same
• Every CUDA module does a

non-blocking synchronization
– It follows that the modules depending on the

data of the CUDA-using module are
scheduled to be run only after the
GPU work has finished

– We use cudaStreamAddCallback() to
queue a host-side callback function
that notifies the CMSSW framework of
the completion of the GPU work
• cudaStreamAddCallback() is

deprecated,
cudaLaunchHostFunc() gave
same performance

+ 1 %

252023-05-09 Matti Kortelainen | Performance of
Heterogeneous Algorithm Scheduling in

CMSSW

- 1.5 %

External Worker Mechanism

25

• Use of CUDA streams stays the
same

• Modules that produce only
“device-side” information do not
really need synchronization with host
– Instead we make the consuming

module to call
cudaStreamWaitEvent() in case
it would use a different stream

– Now framework can schedule
the consuming modules without
waiting their GPU work to finish

• This is the setup used in CMSSW

copy
to host

Kernels

copy
to host

Minimize the external worker use

26

Minimiz
e the
external
worker
use

• Use of CUDA streams stays the
same

• Modules that produce only
“device-side” information do not
really need synchronization
– Instead we make the consuming

module to call
cudaStreamWaitEvent() in case
it would use a different stream

– Now framework can schedule
the consuming modules without
waiting their GPU work to finish

• This is the setup used in CMSSW

+ 1 %

27Matti Kortelainen | Performance of
Heterogeneous Algorithm Scheduling in

CMSSW

Minimize the external worker use

Further improvements with our own pool of threads waiting on
cudaEventSynchronize(): ~2 % better on top of cudaStreamAddCallback().

27

Where

29

• New code written using the native CUDA API, targetting NVIDIA GPUs

• But most offline sites (CERN, WLCG) do not use GPUs…

• Two «by-hand» approaches:

• common kernels, different wrappers;
• ad hoc compatibility layer, with a lot of #ifdefs

• two implementations: legacy (CPU-only) and parallel (GPU-only)
• duplication of development, maintenance and validation efforts

• Adoption of GPUs from other vendors in HPCs is increasing
• LUMI-G, in Finland, and Frontier, at Oak Ridge, use AMD MI250X

GPUs
• Aurora, at Argonne National Laboratory, will use Intel Xe GPUs

• Can we target different CPUs and GPUs with a single code base ? Yes. No
free lunch.

how do we run there ?

maintainance issues!

code duplication!

an
d

ho
w

 d
o

w
e

ru
n

he
re

?

Perfromance Portability

IntroductionA vast zoology

okkos

std::par

o Performance portability layers: aim to provide performance portability across accelerators through
the abstraction of the underlying levels of parallelism. Rapidly changing ~O(months) portability
solutions.

o HEP-CCE cross-experiment initiative has

31

Software

H
ar

dw
ar

e

• After a thorough investigation
and discussion Alpaka

• N.B.: this is not cast in stone.
CMS is still continuously
exploring the rapidly changing
~O(years) portability solution
landscape.

• With a portable SoA model (see
later).

Performance Portability: Solutions

● alpaka is a header-only C++17 abstraction library for heterogeneous software development
●

●

●

it aims to provide performance portability
across accelerators through the abstraction of
the underlying levels of parallelism
may expose the underlying details when necessary
(almost) native performance on different hardware

● supports all platforms of interest to CMS
● x86, ARM and Power CPUs

– with serial and parallel execution
● NVIDIA and AMD GPUs

– with CUDA and ROCm backends
● support for Intel GPUs and FPGAs is under development, based on SYCL and oneAPI

● it is production-ready today !
● open source project, easy to contribute to: https://github.com/alpaka-

group/alpaka/
6 / 14 32

https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/

● evaluated on Run-3 algorithms within the
Patatrack pixel-only standalone reconstruction

● good performance on current hardware
●

●

running on an AMD EPYC “Milan” 7763 CPU
(64 cores / 128 threads SMT)
running on an NVIDIA Tesla T4 GPU

● header-only library, easy to integrate in the CMS
framework

●

●

support multithreading in the host application
support multiple targets in a single build

–

–

GPUs from different vendors and different generations
CPUs with different execution modes, e.g. parallel execution
using TBB

● low-level approach, very close to CUDA
● easy to port code from CUDA, and to teach to students

Patatrack Preliminary 13 TeV

13 TeV

NVIDIA Tesla T4
GPU

Patatrack Preliminary

AMD EPYC Milan 7763 CPU
64 cores / 128 threads

Performances in

33

https://github.com/cms-patatrack/pixeltrack-standalone/

NVIDIA Tesla T4 GPU

async memory allocations
give

+270% throughput

Patatrack Preliminary 13 TeV

caching allocators give +25% throughput

● more flexible support for CUDA and HIP
●

●

support for CUDA and HIP APIs in the host
compiler support for CUDA and HIP targets
in a single build

● asynchronous memory allocations, on
backends that support them

● cudaMallocAsync/ cudaFreeAsync()
● CUDA ≥ 11.2, ROCm ≥ 5.4, CPUs

● caching of GPU resources
●

●

streams and events
device and host memory buffers

● contribute to the SYCL implementat ion

● support for USM memory model in
oneAPI

●

●

●

more efficient atomic operations
improved memory buffer and kernel
syntax bug fixes, improvements to the
tests, etc.

fruitful collaboration with the Alpaka
development team

●

●

●

improve efficiency for CMSworkflows
contribute support for new features and
architectures students’ projects !

in
progress

May 9th, 2023

CMS contributions in

34

Structures

IntroductionStructures of Arrays

SoA use widespread in CMSSW with many ad-hoc implementations.

A Generic SoA [1] has been developed to automate definition and implementation of
runtime sized SoAs:

• Layout divides a buffer into runtime sized columns
• View is the interface to the data. Lightweight, this is the structure passed to kernels

o Just pointers to columns, size
• Buffers host memory, pinned host memory or device memory, allocated from the

framework (CUDA or Alpaka)

PortableCollection wraps the Layout and View
• Manages the buffer allocation
• Provides an interface for memory transfers
• Manages serialization to ROOT files

36

https://developer.nvidia.com/cuda-toolkit
https://github.com/alpaka-group/alpaka

IntroductionBuffers, Layouts and Views

• Layout helper function computes necessary buffer
size from the number of elements

• Layout computes column addresses at
construction time

• Add padding at end of columns for cache line
alignment

• Also computes auxiliary strides and sizes for Eigen
and serialization

• Cache line size configurable at compile time

• Minimal memory footprint to minimize kernel launch parameters
size: one pointer per column; size (number of elements); stride size
for Eigen elements.

• View is the data access interface
• Const variant of the class
• Constructor variant taking per-column bare pointers
• Map existing structure to View interface
• Used during porting to SoA

• Layout classes provide automatically corresponding trivial
View 37

IntroductionStructure definition:

38

• C++ statically typed: code generation before compile time with macros
• Based on Boost::PP

IntroductionPortable collections

39

PortableCollection wraps the Layout and View:

• Available for Alpaka and CUDA.
• Manages the buffer allocation.
• Host and Device side.
• Provides an interface for memory transfers.
• Manages serialization to ROOT files.

Validation

caveat emptor

May 9th, 2023

parallel algorithms have some additional problems with respect to serial ones

Ø more complicated to design and implement efficiently

e.g. divergences in the parallel execution may lead to suboptimal performance

Ø undefined order of execution may produce results that are not
fully reproducible

e.g. in combinatorial algorithms and reductions

caveat emptor

41

• Tracks sharing one or more hits are considered ambiguous: only one
is good while the others are fake.

• The GPU tasks work in parallel. The tasks are completed in a random order.
The resolution is order dependent and therefore the result is not deterministic.

X X

X X

Assuming we have 3 candidate tracks
with quality q(c)>q(b)>q(a).
We can have different results depending on
the order :

1) b vs c→ b removed.
Both a and c survive (no shared hits)

2) a vs b → a removed; then c vs b → b removed.
Only c survives.

a b c

42

Intrinsic differences: an example

May 9th, 2023

● Data processed by DAQ and HLT
(DQM streams)
○ Delivered on our P5 machines

● Data processing by a suite of
CMSSW application (clients)
○ On-the-fly reconstruction from raw

data.
○ Production of plots of physics

observables sensitive to detector
functioning and operations
uploaded in the DQM Online GUI.

● Plots are inspected by DQM shifters with
the support of the DQM DOCs 24/7
○ Issues spotted are reported to

subsystem experts and SL

● Results of the procedure are recorded in
the Run Registry

DQM online is a system that allows
to monitor the CMS sub-detector in
nearly real-time during data taking

Specific streams added to monitor CPUvsGPU on an event by event basis. 43

Heterogenous DQM

• Big effort in reducing the CPU / GPU difference.
• The current differences between CPU/GPU objects are very small
• Online DQM system allow to monitor the differences in real time!

44

Event by event comparisons

caveat emptor

May 9th, 2023

Bottom line: we (as CMS) are discussing on how to deal with this. The path seems we will need to
take most of these in account as irreducible and quote them.

● HLT menu made of ~700 HLT paths. Each HLT path
is made of sequences and filters.

● Even though the difference in the
objects are very small, we saw
differences of ~1% in the trigger
results of few HLT paths.

• Considering the HLT with a rate > 5 Hz (~400
paths):
○ 185 paths have no difference at all
○ 150 paths have difference on <1% of events
○ 60 paths have difference on >1% of events
○ 4 paths have difference on >2% of events

45

Still …

Offline

Overlap between heterogeneous algorithms running
online with their offline counterparts

● Pixel Tracks and vertices are not directly used
offline, but they provide seeds for the Kalman
Filter
○ Phase-2 pixel reconstruction will be replaced

by Patatrack pixel reconstruction in 2023

● For Phase-2 HGCAL replaces the ECAL-HCAL
endcap calorimeters
○ HGCAL Reconstruction by the TICL

framework will be completely ported to
Alpaka in 2023.

● Developments ongoing for heterogeneous
tracking in the Outer Tracker.

● Overall aiming towards a 10% offload of Phase-2
offline reconstruction, and common modules for
Run 3 in the next months. CPU time for offline Phase-2 reconstruction in ttbar events with an average

of 200 overlapping proton-proton collisions as of CMSSW_13_1_0_pre3 47

Heterogenous Offline

IntroductionCMS GPU Resources

● Many Tier-1 and Tier-2 sites are already
equipped with GPUs.

● Most are opportunistic but a few are
dedicated to CMS.

from the dashboard
48

https://monit-grafana.cern.ch/d/2qoPfS0Mz/cms-submission-infrastructure-gpus-monitor?orgId=11&from=now-7d&to=now

IntroductionWM Infrastructure

● Specific parameter requests have been added for workflows that require GPUs
● Introduction of GPU parameters :

○ RequestGPUs, RequiresGPU, GPUMemoryMB, CUDACapability,
CUDARuntime

● GPU site Whitelisting:
○ Provide a list of sites that are equipped with GPUs (see the dashboard)

● Details of integration in WMCore Twiki and summary in this CHEP talk
○ Additional work for improving GPU support is on-HgToCinogndor

49

https://monit-grafana.cern.ch/d/2qoPfS0Mz/cms-submission-infrastructure-gpus-monitor?orgId=11&from=now-7d&to=now
https://www.twiki.org/
https://indico.jlab.org/event/459/contributions/11466/attachments/9305/13502/20230511%20Heterogenous%20resources%20CMS%20CHEP23.pdf

Introduction

● Specific parameter requests have been added for workflows that require GPUs
● Introduction of GPU parameters :

○ RequestGPUs, RequiresGPU, GPUMemoryMB, CUDACapability,
CUDARuntime

● GPU site Whitelisting:
○ Provide a list of sites that are equipped with GPUs (see the dashboard)

● Details of integration in WMCore Twiki and summary in this CHEP talk
○ Additional work for improving GPU support is on-HgToCinogndor

…
'RequestType': 'TaskChain',
'SubRequestType': 'RelVal',
'Task1': {

…
'RequiresGPU': None,
'TaskName': 'ZMM_14TeV_TuneCP5_2021_GenSim'},

'Task2': {
...

'GPUParams': None,
'RequiresGPU': None,
'TaskName': 'Digi_2021'},

'Task3': {
…

'GPUParams': {'CUDACapabilities': ['7.5'],
'CUDADriverVersion': '',
'CUDARuntime': '11.2',
'CUDARuntimeVersion': '',
'GPUMemory': '8000',
'GPUName': ''},

'RequiresGPU': 'required',
'TaskName': 'Reco_Patatrack_PixelOnlyGPU_2021'},

'TaskChain': 3,
'TimePerEvent': 10}

WM Infrastructure

50

https://monit-grafana.cern.ch/d/2qoPfS0Mz/cms-submission-infrastructure-gpus-monitor?orgId=11&from=now-7d&to=now
https://www.twiki.org/
https://indico.jlab.org/event/459/contributions/11466/attachments/9305/13502/20230511%20Heterogenous%20resources%20CMS%20CHEP23.pdf

IntroductionCMS GPUs Test in Production (for Validation)

● GPU workflows are already running in
central production

○ The HLT configuration was utilized
○ On GridKa TOpAS cluster (24x A100,

24x V100S, 8x V100, expandable to KIT
HPC cluster) and Wisconsin (35xT4)

● Example of the usage of the GPU cluster at
the Wisconsin Tier-2 site

○ Have run both Data and MC wfs
Large scale validation of CMS reconstruction
code before it was deployed and used for data-
taking

Release Validation workflows to validate updates
in GPU reconstruction code

More details in this CHEP talk

51

https://indico.jlab.org/event/459/contributions/11825/attachments/9463/14024/GPU_workflows-CKK-CHEP-2023_v2.pdf

IntroductionOpen questions and future challenges - I

1. Use of GPUs in CMS MC production multi-step workflows?
○ Multi-step jobs (multiple cmsRun executions with different settings per job), not all of them capable

of making use of the GPUs. Implemented in WM, need some adjustments to work for the SI.
○ See developments in dmwm/WMCore#11689

2. Benchmarking of GPUs

○ A requirement for pledge definition and
resource acquisition.

○ Progress has been done recently using a
MadGraph CPU+GPU workflow. Benchmarking
including also power consumption.

○ Full HEPScore23 team report. by D. Giordano and K.Tuteja

See Brokering to heterogeneous resources in the CMS Computing Grid by A. Pérez-Calero Yzquierdo 52

https://github.com/dmwm/WMCore/pull/11689
https://indico.cern.ch/event/1225116/contributions/5519006/attachments/2713539/4712490/GDB-13-09-2023-giordano.pdf
https://indico.cern.ch/event/1230126/contributions/5315429/attachments/2640892/4573012/20230507_Heterogenous_resources_CMS_WLCG_CHEP23.pdf

IntroductionOpen questions and future challenges - II

3. Predictable workflow runtimes, a key parameter for an efficient matchmaking of
jobs to slots:
○ Requires benchmarking.
○ Hard because of the high diversity among GPU types.

4. GPU usage accounting:
○ Also requires GPU resource benchmarking
○ Could use HTCondor’s GPUsAverageUsage as proxy

i. Cron job uses the NVIDIA driver and tools libraries to query statistics on all of the
GPUs

ii. Generate usage report back to the slot info and payload job classad

See Brokering to heterogeneous resources in the CMS Computing Grid by A. Pérez-Calero Yzquierdo 53

https://indico.cern.ch/event/1230126/contributions/5315429/attachments/2640892/4573012/20230507_Heterogenous_resources_CMS_WLCG_CHEP23.pdf

One more thing

55

o The «sociological» factor here is of key importance. It will be
difficult to find the sweet spot. It goes under the risk column.

o A working example/history of engagement and training comes
from the Patatrack R&D project:

• Continuous support throughout the development
• Thanks to experts and the support of partners like

CERN openlab, Flatiron Institute, Intel, NVIDIA, E4
• Three/four times per year CMS Patatrack

Team organize the Patatrack Hackathon. Main themes:
algorithms and implementations, performance
portability, heterogeneous computing, machine
learning, software engineering.

• Huge Boosts of productivity, perfect for newcomers.
• Building links and a community with common interests.

Ø Extend beyond experiment boundaries?

Engaging the community and partners

56

o The «sociological» factor here is of key importance. It will be
difficult to find the sweet spot. It goes under the risk column.

o A working example/history of engagement and training comes
from the Patatrack R&D project:

• Continuous support throughout the development
• Thanks to experts and the support of partners like

CERN openlab, Flatiron Institute, Intel, NVIDIA, E4
• Three/four times per year CMS Patatrack

Team organize the Patatrack Hackathon. Main themes:
algorithms and implementations, performance
portability, heterogeneous computing, machine
learning, software engineering.

• Huge Boosts of productivity, perfect for newcomers.
• Building links and a community with common interests.

Ø Extend beyond experiment boundaries?

Engaging the community and partners

Foster a familiar environment: about 200kg of
pasta cooked in total….

14 Hackathons organized so far with 30
participants

fin

Questions?

Back up 💾

