

CC-IN2P3 report status FJPPL 2024 – 30/01/2024

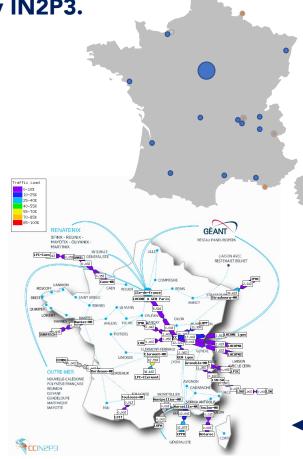
Preview

CCIN2P3

- Missions
- IN2P3 Experiments
- Staff
- Computer rooms
- Equipex+ FITS
- Electricity cost evolution
- Computing platform evolutions
- Mass storage platform evolutions
- Infrastructure deployment methods
- Network connectivity evolution
- Summary

Missions

Providing IT resources to the scientific experiments supported by IN2P3.


• Data storage, analysis and computing resources

Providing common institutional services

 Mail and messaging services, project management tools, documents management service, CAD services, etc.

Providing, managing and planning future evolutions of the network connectivity of IN2P3 sites

IP management, routing, coordination of network operators deployments

2024-01-30

CC-IN2P3 - FJPPL 2024

IN2P3 experiments Satellites spatiaux: **EUCLID** SPIRAL 2 T2K DUNE **PLANCK** Modane Toulon Chicago 🌘 Tsukuba **SUPERNEMO** LHC La Palma Kaiping **FERMI VIRGO** CTA **KM3NeT** JUNO **AMS** Gamsberg Désert d'Atacama La Serena **AUGER**

*Environ 80 autres expériences ou projets

Malargue


Staff

80 people, 85% on permanent positions

- 2 researchers
- 14 people non IT (Administration and financial service, Communication, Facility Service Management)
- 64 people for IT (Applications, Computing, Network, System, Storage, Support)

The number of people working at CC-IN2P3 is constant for years

Computer rooms

2 computer rooms VIL1 and VIL2

VIL1

- Built in 1986
- 850 m2, 1MW IT, 150 racks
- Old cooling system in the raised floor (PUE=2)

- Built in 2011
- 850 m2, 3.6 MW IT, 240 racks
- Modern cooling system with hot corridors (PUE=1.4)

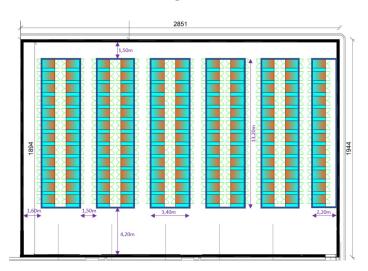
Equipex+ FITS

Project involving the two computer centers IDRIS and CC-IN2P3 of the CNRS, aiming to provide IT facilities to French research infrastructures

4 use cases to start: LHC experiments, LSST / Vera Rubin Observatory, French Institute of Bioinformatics (IFB), Synchrotron Soleil

Two parts in this project:

- Build a storage system distributed across IDRIS and CC-IN2P3, interconnected to identity federation systems and implementing different classes of services (double copies etc.)
- Renovation of a computer room at IDRIS and construction of a new room at CC-IN2P3


https://www.fits.cnrs.fr/

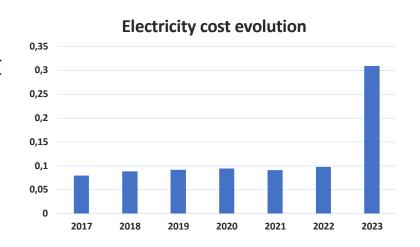
2024-01-30 CC-IN2P3 – FJPPL 2024

Equipex+ FITS

CCIN2P3

- New IT room at CC-IN2P3: VIL3 132 racks, 550 m², 2 MW for IT
- The consortium of companies for the building has been selected, work will start on February 2024

Electricity cost evolution



High increase of the electricity cost in 2023

• Less than 10 cents of € per kWh in 2022 to 31 cents of €

Electricity bill over years

- 1,09 M€ in 2020
- 1,10 M€ in 2021
- 1,20 M€ in 2022
- 3,80 M€ in 2023

In comparison, the annual budget of the CC-IN2P3 is 7.3 M€ for CAPEX+OPEX

New public procurement in 2024, downward trend is expected

• Price should be lower than 20 cents of € per kWh

Computing evolutions

2019: 1 computing platform driven by Univa Grid Engine

- HTC, HPC and GPU computing activities
- Grid and non grid jobs

2020 : 2 computing platforms

- HTCondor for HTC grid jobs
- Univa Grid Engine for non grid HTC, HPC and GPU jobs

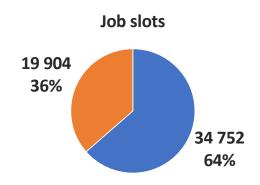
2021: purposes, status and plan presented at the Evaluation and Survey Committee

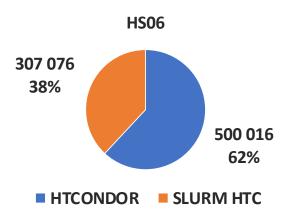
• Univa Grid Engine replacement scheduled on Q1 2022

Purposes:

- Resolving growing operational challenges
- Reducing financial costs associated with the escalating pricing of the UGE software license

9


Computing in 2023



- Q1 2020 : HTCondor for HTC grid jobs
- Q1 2022 : Slurm for HTC, HPC and GPU non grid jobs

At the end: very positive

- Deployment schedule fully respected
- Some few adjustments required to completely meet expectations
- Since the progressive withdrawal of UGE, at least 260 k€ have been saved
- The team gradually gained expertise throughout the projects to reach a high level of operation

2024-01-30 CC-IN2P3 – FJPPL 2024 10

Computing perspectives

Another way to access HTC Slurm resources

- The Jupyter Notebooks Platform is using Dask to submit Slurm jobs
- In production since April 2023
- Heavily used by LSST

Some questions about the HPC and GPU future in 2024?

- Hardware need to be renewed (7 years old for HPC, 5 years for GPU)
- HPC activity is very (very) low
- Except for L2IT activities, GPU activity infrequent

Evolution and perspectives

- How to reduce the power consumption : Direct Liquid Cooling study and ARM based servers evaluation
- Work in progress on jobs and resources allocation optimization

2024-01-30 CC-IN2P3 – FJPPL 2024

Computing resources

Platform Slurm - HTC partition for "local" activities

- 307 076 HS06, 19 904 jobs slots
- 192 servers Dell C6525, 6 144 cores
- 68 servers HPE XL225n, 3 808 cores

Platform Slurm – GPU partition

- 18 x Dell PowerEdge C4140 / 4 x NVIDIA V100 32GB (01/2019)
- Very low activity, 2 servers have been shutdown in 2023 to save electricity

Platform HTCondor – HTC for GRID environments (EGI/WLCG)

- 500 015 HS06, 34 752 job slots
- 216 servers Dell C6420, 4320 cores
- 240 servers Dell C6525, 7 680 cores
- 98 servers HPE XL225n, 5 376 cores

2024-01-30

CC-IN2P3 - FJPPL 2024

GPU resources

GPU in the Jupyter Notebooks Platform

- 10 x Dell PowerEdge C4130 / 4 x NVIDIA K80 24GB (06/2016)
- Transferred from UGE to JNP in 2022
- Need to be "upgraded" in 2024

GPU in the Slurm batch cluster

- 18 x Dell PowerEdge C4140 / 4 x NVIDIA V100 32GB (01/2019)
- Very low activity, 2 servers have been shutdown in 2023 to save electricity

Purchased for and by the L2IT (direct use, not in batch farm)

- 1 x Dell PowerEdge R725 2 x NVIDIA RTX8000 48GB (10/2020)
- 1 x Dell PowerEdge R725 2 x NVIDIA A100 80GB (12/2021)
- 1 x HPE ProLiant DL385 Gen10+ 2 x NVIDIA A100 80GB (12/2022)
- High activity of research and development

Mass storage evolution

2019: 4 Oracle SUN StorageTek SL8500 tape libraries

- Used by the backup service IBM Spectrum Scale (3 PB)
- Used by the mass storage system HPSS (80 PB)
- Faced to Oracle position on discontinuing SL8500 tape library, decision to replace all Oracle hardware by 2024

2020 : installation of the first Spectra Logics TFinity tape library

- Installation during confinement (March 2020)
- Start to move data from Oracle to Spectra Logics

2021 : purposes, status and plan presented at the Evaluation and Survey Committee

- Extend the first Spectra tape library
- Due to Oracle maintenance contract issue, speed up the data migration and prepare the purchase of a second tape library

2024-01-30

Mass storage in 2023

- Oracle tape libraries retired on January 2023
- The primary copy (3PB) of the backup system has been transferred on disks.

Capacity and usage

- Capacity 270 PB (2 x 135) in Spectra libraries
- 150 PB currently used on tapes and continuously growing
- 2 accessors, 48 x IBM TS1160 drives, 6965 cartridges JE 20TB per library

A the end:

- 60 PB moved in the first 18 months, the remaining 20 PB were moved in 2022
- The production quite stable
- Some problems encountered with robotics on very high load
- Activity balance across both libraries required in the future

Storage perspectives

Evolutions and perspectives on storage:

- Preparing a procurement and a purchase of a third tape library during 2024
- Monitoring, adapting to guaranty performances of storage platforms both on disks and tapes
- Enhancement of the data lifetime cycle for all collaborations with a mandatory Data Management Plan
- Growing usage of Ceph for internal usage (Openstack, Kubernetes), but as a replacement of file spaces (replacement of GPFS and Isilon)

2024-01-30 CC-IN2P3 – FJPPL 2024

Infrastructure deployment methods

Bare metal

Computing nodes, storage servers, upport services

Cloud IAS Openstack

- R&D, support services for CC-IN2P3
- Service hosting for experiments

Cloud PAAS OKD (Kubernetes + Docker)

- R&D, support services for CC-IN2P3
- Growing demand by experiments

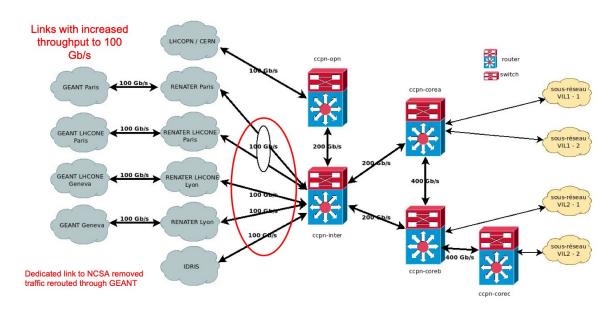
Operating system

- Still deploying CentOS 7 for the computing platform
- Rocky Linux / RHEL 8 & 9 for core services

Network

Evolution of the external throughput planned on 2023, but deferred due to issues encountered by RENATER

Additional 100Gbps link for LHCOPN


• 15/01/2024 => 200 Gbps

Additional 100Gbps link for LHCONE

• 29/01/2024 => 200 Gbps

Ready to cope with the LHC Data Challenge 2024 starting in February

It was very tight!

More than 400 TB data are transferred each day with our partners

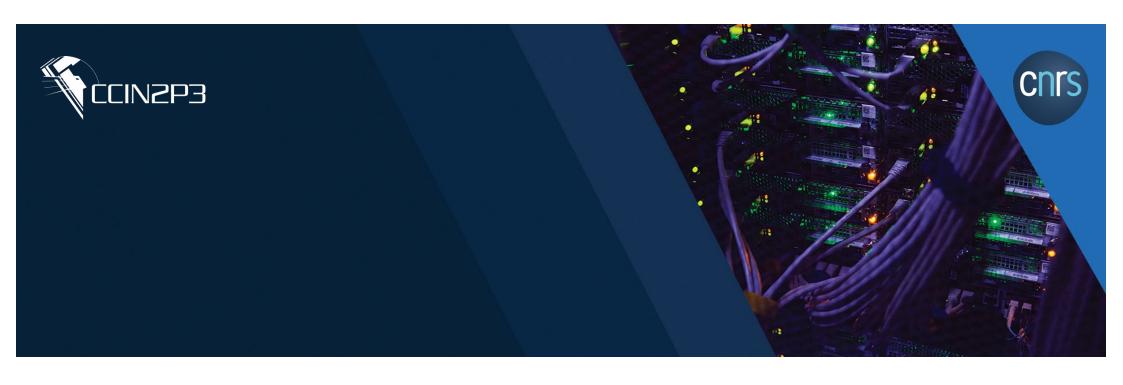
Summary

Many concerns about the evolution of the price of the electricity

2024 should be better than 2023

FITS project is ongoing on a good way for the new building and the distributed storage

What will be the future for HPC and GPU usages at CC-IN2P3?


- HPC requests for 2024 are low
- GPU requests seem to be more driven by the JNP platform and R&D than the batch activity

Waiting for LHC collaborations to provide OS specification for replacing the current CentOS 7 into computing farms

• EL9 should be the future, but when?

We are ready for the coming soon data challenge 2024, this is the most important for now.

19

Thank you