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My recent activities

» Migration from VOMS to IAM
» |AM instances have been deployed for Bellell group
» Integration of Japanese ID federation (GakuNin)

» Deep learning for batch job scheduler
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» Paper was accepted for JSSPP 2023 conference, and published

» https://link.springer.com/chapter/10.1007/978-3-031-43943-8 7

» Deep learning for physics analysis in collider physics
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Introduction

Hype Cycle for Artificial Intelligence, 2023 > “Foundation models” was one of the
keywords for Al technology in 2023
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Expectations
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» Fine-tuning for a target application
(transfer learning)

Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity

Time

Plateau will be reached: : .
— Q: Is the concept of foundation models
[]

e Gartner  beneficial to collider physics

23 Gartner, Inc. and/or its affiliates. All rights reserved. 2079794

Gartner.com
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Sustainability

Run 3 (u=55) Run 4 (1=88-140) Run 5 (u=165-200)

> Deep Learning (DL) requires a large amount ¢ ramaiiey . I | ‘
Of tralnlng data % 40:_ e Conservative R&D _:

S ~ v Aggressive R&D ]

. s . B - — Sustained budget model -

» In HEP, training data are typically generated £ 3o~ (020 oy E

by Monte Carlo (MC) simulations S b 2
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«— Computationally expensive — ]
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» Electric power consumption, Green computing e R W
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Year

— Maximizing DL performance with a limited amount of data is a key concept
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Transfer learning

Source task Target task

Source data Target data

Transfer learned
Large amount knowledge Small amount

}_
of data/labels Source model > Target model of data/labels

< Source labels > <arget Iabel§
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Use case of physics analysis

Higgs analysis

» Many analysis channels in collider physics 2
> nggS, EXOtiC’ SUSY! etC Pre-training . "g Exotic analysis
> Currently, dedicated DL models are | Sowcemodel | i | Ll g omogel
| (Foundation model) -
trained from scratch for each channel | | ,
«— Large amount of training data (MC) for . Lergeamountofdata | - SUsYanalysis
each channel > Target model
— If transfer learning can be applied to different analysis channels, : _Smalamountofdata ;

computing resources for MC simulations and DL training are saved
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Limitation of idea

Higgs analysis

1. Large amount of MC simulations is still

2 —-—) Target model
required for the pre-training phase §
i i vaining ) 3 xoti i
2. Choice of physics process of MC retane_ | 8 =xoflc analysis
rcem =
simulations is arbitrary Foundaton model) > Target model
» Transfer learning shows better oy © Susvanalysis
performance between similar physics |

—5—) Target model

processes (Ref: PoS(ISGC2022)016)

Small amount of data

— Real particle collision data are used in the pre-training phaseto ...
overcome these limitations
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Event classification

» The concept was examined using “event classification” problem

» A typical problem in HEP, signal event vs. background event

CMS Experiment at the LHC, CERN W CMS Experiment at the LHC, CERN
' Data recorded: 2012-Oct-06 20:47:04.040922 GMT Data recorded: 2012-May-15 23:31:46.164184 GMT
= E Run / Event / LS: 204577 / 127412443 | 89 > B2 Run /Event / LS: 194224 / 493851506 / 331
w \% .
Ty 9 113 ' 93
| Signal” event | Background” event
| c L .
(H—yy candidate) (SM photon production)

— Reconstructed particles (objects) are the basic information for the classification
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Event classification

» Two phases of the training:

______________________________________________

‘" Pre-training phase " Event classification phase

Transfer learning
Source model

(Foundation model)

> Target model

Training using
real collision data

Training (fine-tuning)
using MC sim. data
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____________________________________________

— Event classification performance (AUC) is compared with and without the
pre-training phase
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Datasets

» Pre-training phase:

» CMS 13TeV opendata

CMS

» Pre-selection: (at least 1 lepton) + (at least 2 b-jets) + (at least 2 light-jets)

» ~ 1M events are available after the pre-selection

» Event classification phase:

» 2HDM vs. ttbar

» Madgraph + Pythia8 + Delphes

Signal

(C MS Card) (a) 2HDM signal process G2

(c) tt background process  bo
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https://cmsexperiment.web.cern.ch/news/cms-embarks-data-collection-13-tev

Pre-training strategy

» Only low-level features of each object (4-vector, object-id) are used as inputs

» Self-supervised learning is employed to handle the unlabeled real data

» Strategy:

» Object-id (lepton, b-jet, light-jet, or MET) is randomly masked by zeros when
preparing a mini-batch
— DL model is trained to predict masked object-ids as a multi-label classification

» All input features, including object-id, are used in the target event classification
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Pre-training strategy

Inputs Outputs

pT n ¢ |mass obj:ct- objict-

Obj1 x1 y1i z1 i1 i1 i1
_ | Mask | — Random masks
Obj2 | x2 y2 z2 i2 0 j2 . ) .
Pre-training phase T > DL model g Increase prediction pattern
Objd | x4 y4 z4 4 4 i4 (data augmentation)
Obj5 | x5 y5 z5 i5 0 j5
Transfer

pr | n | ¢ |mass oplect

Obj1 x1 y1 z1 i1 j1
N . Obj2 | x2 y2 z2 i2 j2 | bL del ‘ Slgnal or
Event classification phase oo e > moade Backgrounc

Obj4 | x4 y4 z4 4 4

Obj5 | x5 y5 z5 i5 i5
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DL model

» Transformer encoder is employed:
» ~1.7M trainable parameters

Inputs Embedding module Feature module Classifier _ .
module ' !

_____________________________________

m variables = 9 o .

! \ r
= : o \ N
r N : Lo : —> & . Pre-training
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_______
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n objects

32| =
e sl3 Event
39 | & ! Classification

6,9 (6,64) (6,64) 1 . (6,64) (6,64) (5,64) (6,64) (6,64) (6 64) ;

— Weight parameters of embedding and feature modules are transferred and fine-tuned
— Classifier module is always trained from scratch
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Training detalls

» Basically, the same setting between the pre- CMS opedata full events
training and event classification phases: 024 T vl et

» SGD optimizer:

0.22 A

» Learning rate: 10->-10-4 (CosineAnnealingLR)
» Batch size: 1024, Epochs: 100

Pre-training (~1M events)

» Cross entropy loss: 0181

» Pre-training: lepton, b-jet, |-jet, or MET

0.16 A

» Event classification: 2HDM or ttbar 0 20 40 60 80 100

» NVIDIA A100: ~90 batches/s
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AUC of event classification
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» Significant improvement when
# of events in event classification
is small (~10%)
» Performances converged when #

of events increased to ~10°

«— Expected behavior of the transfer
learning




Scaling raw

/
1 —e— Average value

One standard error

o
o
\I

» Currently, event classification
performance improves by
Increasing events in the pre-
training phase

- AUC(w/o pre-train)
o o
o o
o o

o

o

=
1

~104 events

. S > (One training with 1079 events will
in event classification

require (A100 x 8) x 15 days)

AUC(w/ pre-train)
o
@)
w

104 10° 10°
Number of pre-training events (CMS opendata)
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Limitations of our experiments

» The scaling behavior encourages a pre-training with a larger data

» However, the number of events in the CMS open data itself is limited

— Discussions with ATLAS colleagues are ongoing g@
ICEPP

» We should adapt the pre-trained model to different signal events to evaluate
the generalization of the model

» We also need to evaluate the foundation model’s impact on reducing
computing costs
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Summary

» Focusing on transfer learning techniques and studying their applications to
collider physics

» Motivated by reduction of computing resources for future experiments
» Transfer learning: Self-supervised learning using real data — Event classification
» Significant improvements when the # of events in event classification is small

» The scaling behavior encourages pre-training with a larger data
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Input variables
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