# Pre-training strategy using real particle collision data for event classification in collider physics

Tomoe Kishimoto

Computing Research Center, KEK

tomoe.kishimoto@kek.jp

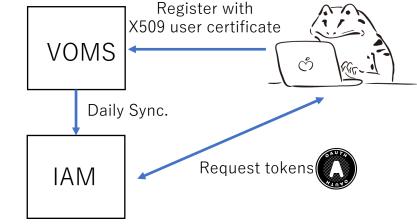
Ref: arXiv:2312.06909





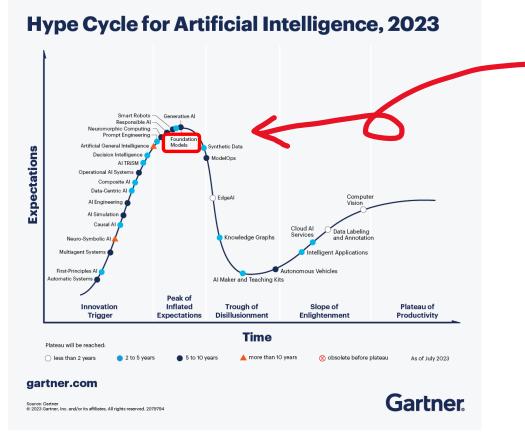
# My recent activities

- Migration from VOMS to IAM
  - IAM instances have been deployed for Bellell group
  - Integration of Japanese ID federation (GakuNin)
- Deep learning for batch job scheduler
  - > Paper was accepted for JSSPP 2023 conference, and published
  - <u>https://link.springer.com/chapter/10.1007/978-3-031-43943-8\_7</u>
- Deep learning for physics analysis in collider physics





#### Introduction



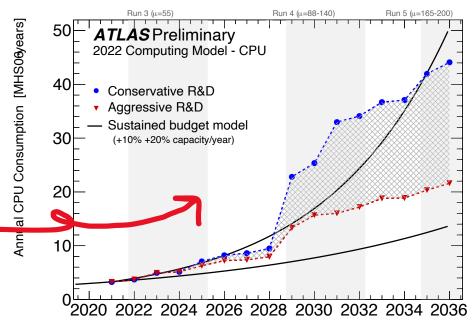
- "Foundation models" was one of the keywords for AI technology in 2023
  - Pre-training using a large amount of unlabeled data
  - Fine-tuning for a target application (transfer learning)
- $\rightarrow$  Q: Is the concept of foundation models beneficial to collider physics



加速器だから見える世界。 **KEK** 

# Sustainability

- Deep Learning (DL) requires a large amount of training data
  - In HEP, training data are typically generated by Monte Carlo (MC) simulations
    - ← Computationally expensive
- Electric power consumption, Green computing

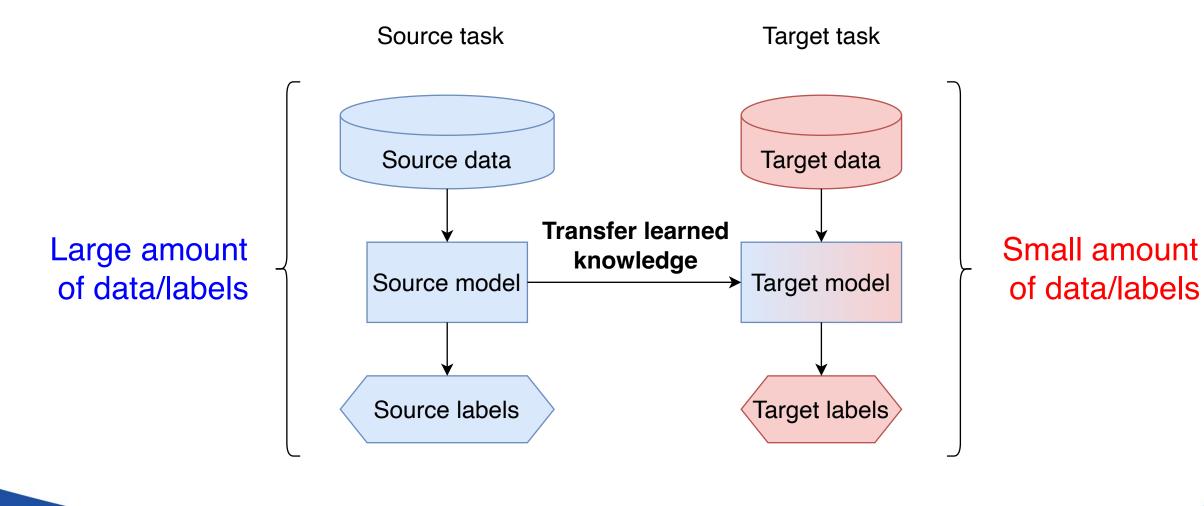


Year

 $\rightarrow$  Maximizing DL performance with a limited amount of data is a key concept



# **Transfer learning**

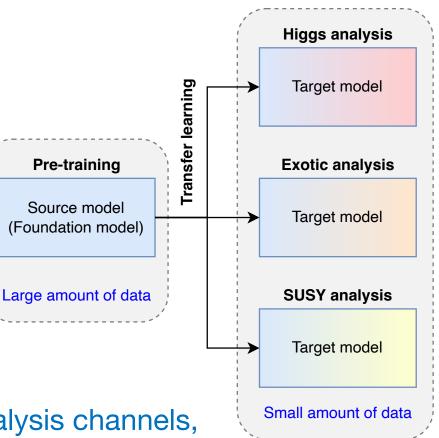


## Use case of physics analysis

> Many analysis channels in collider physics

- Higgs, Exotic, SUSY, etc
- Currently, dedicated DL models are trained from scratch for each channel
   Large amount of training data (MC) for each channel

 $\rightarrow$  If transfer learning can be applied to different analysis channels, computing resources for MC simulations and DL training are saved

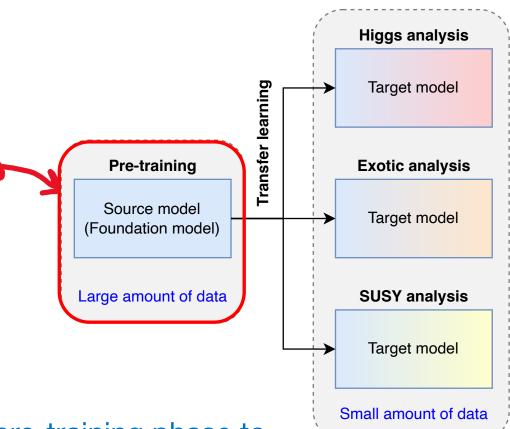




# Limitation of idea

- 1. Large amount of MC simulations is still required for the pre-training phase
- 2. Choice of physics process of MC simulations is arbitrary
  - Transfer learning shows better performance between similar physics processes (Ref: PoS(ISGC2022)016)

 $\rightarrow$  Real particle collision data are used in the pre-training phase to overcome these limitations

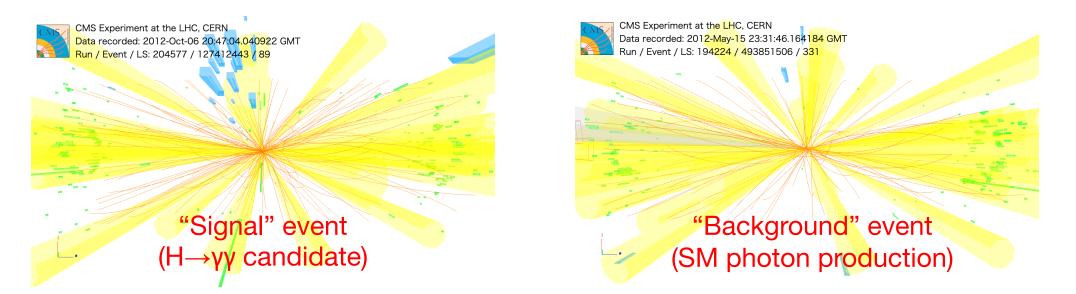


加速器だから見える世界。 **KEK** 

## **Event classification**

#### > The concept was examined using "event classification" problem

> A typical problem in HEP, signal event vs. background event

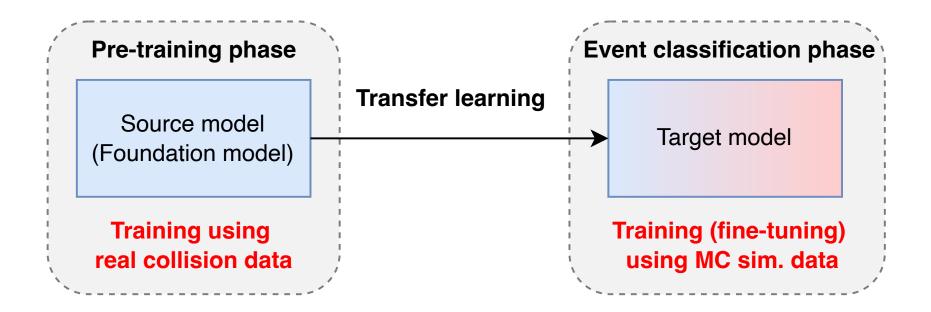


 $\rightarrow$  Reconstructed particles (objects) are the basic information for the classification



## **Event classification**

 $\geq$  Two phases of the training:



 $\rightarrow$  Event classification performance (AUC) is compared with and without the pre-training phase

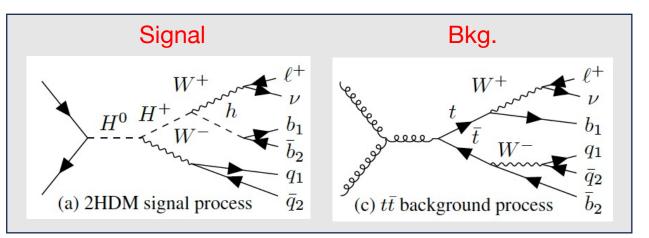


#### Datasets

- Pre-training phase:
  - CMS 13TeV opendata



- Pre-selection: (at least 1 lepton) + (at least 2 b-jets) + (at least 2 light-jets)
- > ~ 1M events are available after the pre-selection
- Event classification phase:
  - > 2HDM vs. ttbar
  - Madgraph + Pythia8 + Delphes (CMS card)





# Pre-training strategy

> Only low-level features of each object (4-vector, object-id) are used as inputs

Self-supervised learning is employed to handle the unlabeled real data

> Strategy:

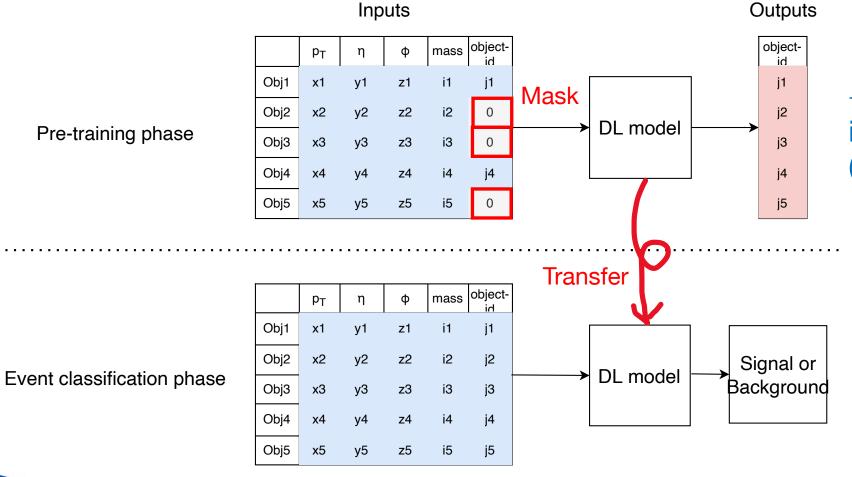
Object-id (lepton, b-jet, light-jet, or MET) is randomly masked by zeros when preparing a mini-batch

 $\rightarrow$  DL model is trained to predict masked object-ids as a multi-label classification

> All input features, including object-id, are used in the target event classification



# Pre-training strategy

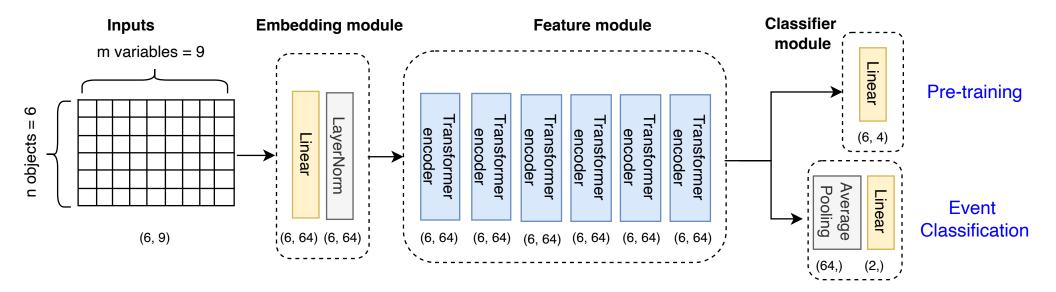


加速器だから見える世界。

→ Random masks increase prediction pattern (data augmentation)

# DL model

- > Transformer encoder is employed:
  - > ~1.7M trainable parameters

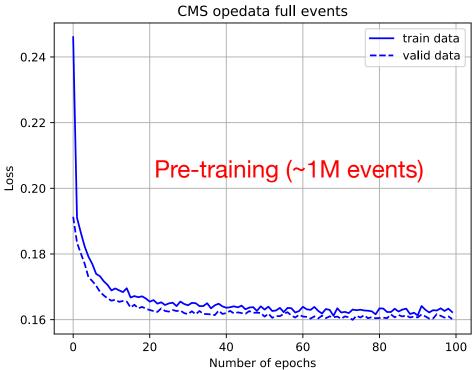


 $\rightarrow$  Weight parameters of embedding and feature modules are transferred and fine-tuned  $\rightarrow$  Classifier module is always trained from scratch



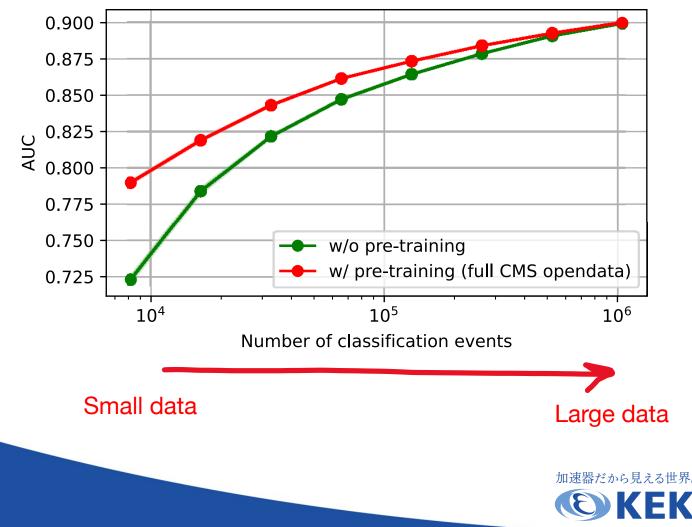
# **Training details**

- Basically, the same setting between the pretraining and event classification phases:
  - SGD optimizer:
    - > Learning rate:  $10^{-2}$ - $10^{-4}$  (CosineAnnealingLR)
  - Batch size: 1024, Epochs: 100
  - Cross entropy loss:
    - Pre-training: lepton, b-jet, l-jet, or MET
    - Event classification: 2HDM or ttbar
- > NVIDIA A100: ~90 batches/s

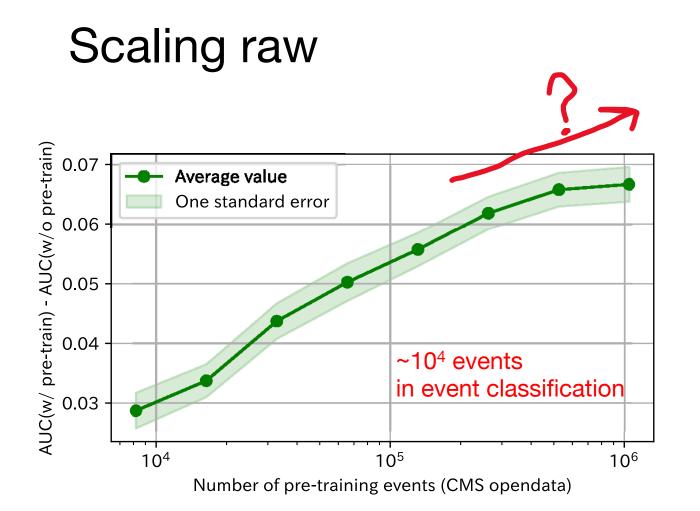




#### AUC of event classification



- Significant improvement when
  # of events in event classification
  is small (~10<sup>4</sup>)
  - Performances converged when # of events increased to ~10<sup>6</sup>
- ← Expected behavior of the transfer learning



- Currently, event classification performance improves by increasing events in the pretraining phase
- (One training with 10<sup>10</sup> events will require (A100 x 8) x 15 days)



## Limitations of our experiments

> The scaling behavior encourages a pre-training with a larger data

> However, the number of events in the CMS open data itself is limited

 $\rightarrow$  Discussions with ATLAS colleagues are ongoing



We should adapt the pre-trained model to different signal events to evaluate the generalization of the model

We also need to evaluate the foundation model's impact on reducing computing costs

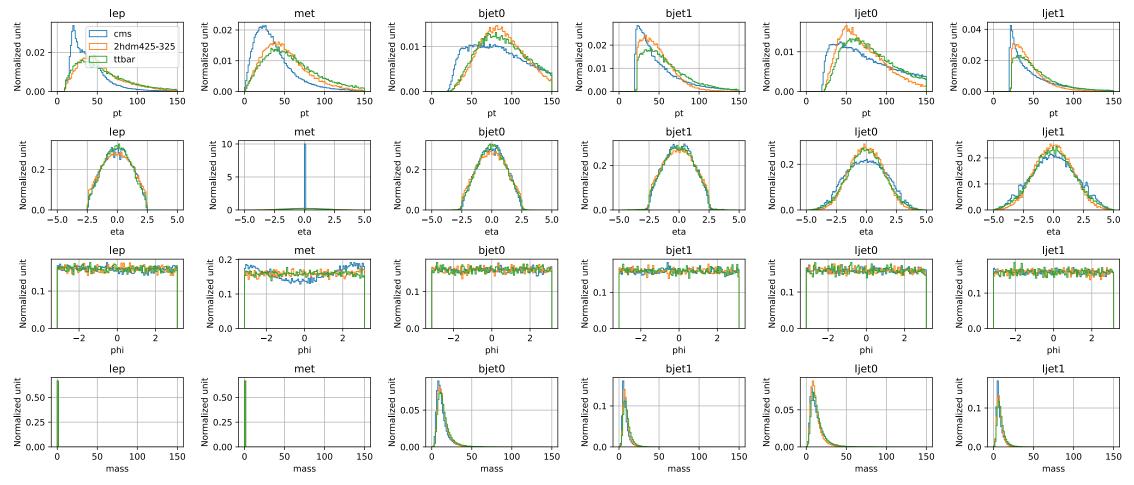


# Summary

- Focusing on transfer learning techniques and studying their applications to collider physics
  - > Motivated by reduction of computing resources for future experiments
- > Transfer learning: Self-supervised learning using real data  $\rightarrow$  Event classification
  - > Significant improvements when the # of events in event classification is small
  - > The scaling behavior encourages pre-training with a larger data



#### Input variables



КЕК т.кізнімото

2023/9/15

16