

DSNB Search With SK Diffuse Supernova Neutrino Background

Antoine Beauchêne - *February* 2nd, 2024 Biennale LLR 2024

Super-Kamiokande

- <u>Water mass (Fiducial mass)</u>: 50 kton (22.5 kton)
- 11 129 PMTs in the inner detector
 - Diameter: 50 cm —
 - <u>Time resolution</u>: $\sigma \approx 3.4$ ns _
 - Photocathode coverage: 40% ____
- Located 1 km under Mt. Ikeno
 - Shield from cosmic muons

February 2^{*nd*}, 2024

 v_{μ}

Core-Collapse Supernova

- Death of massive stars $(M \gtrsim 8 M_{\odot}) \longrightarrow (CC)SN$: Powerful source of ν !
 - $\sim 10^{58} \,\nu \,\mathrm{in} \sim 10 \,\mathrm{s}$
 - $\approx 99\%$ of the released energy $\leftrightarrow \sim 10^{59}$
 - <u>All flavours</u> are generated: ν_{e} , $\bar{\nu}_{e}$ and ν_{x} (

- <u>Only one detected</u>: SN1987A (11 events with Kamiokande)

February 2^{*nd*}, 2024

9
 MeV $\left.\right\} \sim 10$ MeV $\left.\right/\nu$

$$(x \in \{\mu, \tau\})$$

CNTS IN2PS

- - $\sim 10^{58} \nu \text{ in} \sim 10 \text{ s}$
 - $\approx 99\%$ of the released energy $\leftrightarrow \sim 10^{59}$ MeV
 - <u>All flavours are generated</u>: ν_e , $\bar{\nu}_e$ and ν_x ($x \in \{\mu, \tau\}$)

- **Difficult to detect**: Flux decreases $\propto r^{-2}$ & Small cross section
- Only one detected: SN1987A (11 events with Kamiokande)

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

CONS IN2P

- Death of massive stars ($M \gtrsim 8 M_{\odot}$) \longrightarrow (CC)SN: Powerful source of ν !
 - $\sim 10^{58} \nu \text{ in} \sim 10 \text{ s}$
 - $\approx 99\%$ of the released energy $\leftrightarrow \sim 10^{59}$ MeV
 - <u>All flavours are generated</u>: ν_e , $\bar{\nu}_e$ and ν_x ($x \in \{\mu, \tau\}$)

- **Difficult to detect**: Flux decreases $\propto r^{-2}$ & Small cross section
- Only one detected: SN1987A (11 events with Kamiokande)

February 2^{*nd*}, 2024

$\sim 10 \text{ MeV}/\nu$

WEAK IN THESE ONES **PATIENCE IS**

Sensitive only to galactic SNe Rare events (~ 1 - 3/century)!!

DSNB Search With Super-Kamiokande

Diffuse Supernova Neutrino Background

- *ν* from every SN in the observable Universe since its beginning
 - <u>Estimated SNe rate</u>: ~ 1 SN/s
 - **Isotropic** and time independent _
- <u>Information about</u>:
 - Star formation rate
 - Fraction of SNe forming BH
 - History of our Universe (cosmology)
 - Exotic neutrino properties (e.g. decay)

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

Description

• DSNB flux:
$$\Phi(E_{\nu}) = c \int_{z_0=0}^{z_{\text{max}}} \sum_{s} R_{\text{SN}}(z,s) \sum_{\nu_{\beta}} \frac{1}{z_{\beta}} \sum_{s} \frac{1}{z_{\beta}} \sum_{s}$$

Antoine Beauchêne

February 2nd, 2024

 $\sum_{\sigma_{\beta}, \bar{\nu}_{\beta}} F_{\beta}(E_{\nu}(1+z), s) \frac{\mathrm{d}z}{H(z)}$

Description

• DSNB flux:
$$\Phi(E_{\nu}) = c \int_{z_0=0}^{z_{\text{max}}} \sum_{s} \frac{R_{\text{SN}}(z,s)}{s} \sum_{\nu_{\beta}} \frac{1}{z_{\beta}} \sum_{s} \frac{1}{z_{\beta}}$$

Redshift-dependent SN rate

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

Cranter Ser 198 IN2P3

POLYTECHNIQUE

Description

• DSNB flux:
$$\Phi(E_{\nu}) = c \int_{z_0=0}^{z_{\text{max}}} \sum_{s} R_{\text{SN}}(z, s) \sum_{\nu_{\beta}} \sum_{r_{\beta}} \frac{1}{r_{\beta}} \sum_{s} \frac{1}{r_{\beta}} \sum_{r_{\beta}} \frac{1}{r_{\beta}} \sum_{s} \frac{1}{r_{\beta}} \sum_{r_{\beta}} \frac{1}{r_{\beta}} \sum_{s} \frac{1}{r_{\beta}} \sum_{s} \frac{1}{r_{\beta}} \sum_{r_{\beta}} \frac{1}{r_{\beta}} \sum_{s} \frac{1}{r_{\beta}} \sum_{r_{\beta}} \frac{1}{r_{\beta}} \sum_{s} \frac{1}{r_{\beta}} \sum_{r_{\beta}} \sum_{r_{\beta$$

Redshift-dependent SN rate

Fermi-Dirac distribution

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

neutrino emission spectrum

IN₂P

Description

• DSNB flux:
$$\Phi(E_{\nu}) = c \int_{z_0=0}^{z_{\text{max}}} \sum_{s} R_{\text{SN}}(z, s) \sum_{\nu_{\beta}} \sum_{r_{\beta}} \frac{1}{r_{\beta}} \sum_{r_{\beta}} \sum_{r_{\beta}} \frac{1}{r_{\beta}} \sum_{r_{\beta}} \sum_{r_$$

Redshift-dependent SN rate

Pinched Fermi-Dirac distribution

• Better fit of spectra from simulations

Antoine Beauchêne

February 2^{*nd*}, 2024

neutrino emission spectrum

Description

• DSNB flux:
$$\Phi(E_{\nu}) = c \int_{z_0=0}^{z_{\text{max}}} \sum_{s} \frac{R_{\text{SN}}(z,s)}{s} \sum_{\nu_{\beta}} \frac{1}{2} \sum_{\nu_{\beta}} \frac{1}{2} \sum_{s} \frac{1}{2} \sum_{\sigma} \frac{1}{2} \sum_{s} \frac{1}{2} \sum_{\nu_{\beta}} \frac{1}{2} \sum_{\sigma} \frac{$$

Redshift-dependent SN rate

<u>ΛCDM model</u>

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

SN neutrino emission spectrum

CITS IN2PS

5

Description

• <u>DSNB flux</u>: $\Phi(E_{\nu}) = c \int_{z}$ $J_{z_0=0}$

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

CINTS IN2PA

12

INSTITUT POLYTECHNIQUE DE PARIS

DSNB events

• <u>Observables</u>: e^+ energy E_{e^+} , Cherenkov angle θ_C and number of neutrons n

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

DSNB events

• <u>Main detection channel</u>: <u>Inverse</u> <u>Beta</u> <u>Decay</u>

Neutron capture

• <u>Observables</u>: e^+ energy E_{e^+} , Cherenkov angle θ_C and number of neutrons *n*

Antoine Beauchêne

February 2^{*nd*}, 2024

CNTS IN2P3

Other events (Backgrounds)

• <u>Reactor</u>:

- **Irreducible** because $\sim 10^3$ times more than DSNB events below 10 MeV

Antoine Beauchêne

February 2nd, 2024

DSNB Search With Super-Kamiokande

POLYTECHNIQUE DE PARIS

Other events (Backgrounds)

Reactor:

- **Irreducible** because $\sim 10^3$ times more than DSNB events below 10 MeV
- <u>Charged-Current (CC)</u>:
 - <u>Observables</u>: e^+ energy E_{e^+} and Cherenkov angle θ_C _

DSNB Search With Super-Kamiokande

POLYTECHNIQUE

Other events (Backgrounds)

Reactor:

- Irreducible because $\sim 10^3$ times more than DSNB events below 10 MeV
- <u>Charged-Current (CC)</u>:
 - <u>Observables</u>: e^+ energy E_{e^+} and Cherenkov angle θ_C
- <u>Neutral-Current (NC)</u>:
 - <u>Observables</u>: e^+ energy E_{e^+} , Cherenkov angle θ_C and number of neutrons *n* —

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

CINTS IN2PS

Other events (Backgrounds)

Reactor:

- Irreducible because $\sim 10^3$ times more than DSNB events below 10 MeV
- <u>Charged-Current (CC)</u>:
 - <u>Observables</u>: e^+ energy E_{e^+} and Cherenkov angle θ_C
- Neutral-Current (NC):
 - <u>Observables</u>: e^+ energy E_{e^+} , Cherenkov angle θ_C and number of neutrons *n* _

- Spallation:
 - Observables: Number of neutrons *n*

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

POLYTECHNIQUE

MSG cut

NCQE/DSNB events separation

Antoine Beauchêne

February 2^{*nd*}, 2024

See Andrew's poster !!

POLYTECHNIQUE

DSNB Search With Super-Kamiokande

CINTS IN2P3

Principle

• **<u>Unbinned</u>** and **model-dependent** analysis: Fit DSNB + 5 background spectra to data

Antoine Beauchêne

February 2^{*nd*}, 2024

Previous fitter

DSNB Search With Super-Kamiokande

POLYTECHNIQUE

Principle

- <u>**Unbinned**</u> and <u>model-dependent</u> analysis: Fit DSNB + 5 background spectra to data
- Define 3 regions depending on the Cherenkov angle θ_C
 - Mostly **visible** μ/π events (in the final-state)

Antoine Beauchêne

February 2nd, 2024

DSNB Search With Super-Kamiokande

Principle

- <u>**Unbinned**</u> and <u>model-dependent</u> analysis: Fit DSNB + 5 background spectra to data
- Define 3 regions depending on the Cherenkov angle θ_C
 - Mostly **visible** μ/π events (in the final-state) _
 - Mostly **NCQE** events with multiple final-state γ

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

Creating as

POLYTECHNIQUE

Principle

- <u>**Unbinned**</u> and <u>model-dependent</u> analysis: Fit DSNB + 5 background spectra to data
- Define 3 regions depending on the Cherenkov angle θ_C
 - Mostly **visible** μ/π events (in the final-state) _
 - Mostly **NCQE** events with multiple final-state γ _
 - Signal & backgrounds (ν_e CC, Decay e^- , Spallation)

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

Creating as

Principle

- <u>**Unbinned**</u> and <u>model-dependent</u> analysis: Fit DSNB + 5 background spectra to data
- Define 3 regions depending on the Cherenkov angle θ_C
 - Mostly **visible** μ/π events (in the final-state)
 - Mostly NCQE events with multiple final-state γ —
 - Signal & backgrounds (ν_e CC, Decay e^- , Spallation)
- Separated according to $N_{\text{tagged }n}$:
 - **Non IBD-like** events ____

Creating

Principle

- <u>**Unbinned**</u> and <u>model-dependent</u> analysis: Fit DSNB + 5 background spectra to data
- Define 3 regions depending on the Cherenkov angle θ_C
 - Mostly **visible** μ/π events (in the final-state)
 - Mostly NCQE events with multiple final-state γ _
 - Signal & backgrounds (ν_e CC, Decay e^- , Spallation)
- Separated according to $N_{\text{tagged }n}$:
 - Non IBD-like events _
 - **IBD-like** events

Creating

Extended maximum likelihood fit

• Define PDF_{*i*} (spectral categories *j*)

Simultaneously on the 6 regions

• We fit the number of observed events N_i that maximizes the following likelihood:

$$\mathscr{L}(\overrightarrow{E} \mid N_{s}, \overrightarrow{N}_{b}) = e^{-\sum_{j \in s+b} N_{j}}$$

- Background categories treated as **nuisance parameters**
- Systematic uncertainties with the spectral forms:
 - **Spectral distortions** of the PDFs

Fit Result: SK-VI

Fitted spectra

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

Fit Results

Likelihood for SK-VI

- Combined (stat. + sys.) $\approx 2.8 \sigma$ excess
- Previous analysis: Combined (stat. + sys.) $\approx 2.1 \sigma$ excess

- Need to improve phases combination
- <u>Also improving reduction steps</u>: e.g. MSG cut and neutron-tagging (BDT \rightarrow GNN)

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

DSNB Search With Super-Kamiokande

Conclusion

- Close Supernovæ are really rare events
- Can study the DSNB to probe SN properties and other phenomenon
- Many background sources:
 - Worked on reducing the one from NCQE —
 - Also improving neutron tagging algorithm —
- Introduced a new Spectral Fitter:
 - Still in the process of validating it
 - Getting closer to 3σ _

Antoine Beauchêne

February 2^{*nd*}, 2024

See my poster and Rudolph's one !!

DSNB Search With Super-Kamiokande

POLYTECHNIQUE

Hyper-Kamiokande

- <u>Construction</u>: $2020 \rightarrow 2027$ (on-time)
- <u>Water mass (Fiducial mass</u>): 50 kton (22.5 kton)
- 20 000 High Quantum Efficiency PMTs in the inner detector
 - Diameter: 50 cm
 - <u>Time resolution</u>: $\sigma \approx 1.3$ ns
 - <u>Photocathode coverage</u>: 20% —

10 km from Super-K

- Located 650 m under Mt. Nijugoyama
 - Shield from cosmic muons

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

31

Likelihood for SK-VI

- Best-fit nuisance parameters for systematics contained in $\pm 1 \sigma$
- Stat. dominated analysis
- SK-VI (stat. + sys.) $\approx 2 \sigma$ excess
- Previous analysis: SK-VI (stat. + sys.) $\approx 1.6 \sigma$ excess

February 2nd, 2024

 $-2\ln\frac{\mathcal{L}}{\mathcal{L}_{max}}$

DSNB model: Horiuchi+09 6 MeV, max

DSNB Search With Super-Kamiokande

Likelihood for SK-VI

- Best-fit nuisance parameters for systematics contained in $\pm 1 \sigma$
- Stat. dominated analysis
- Combined (stat. + sys.) $\approx 2.8 \sigma$ excess
- Previous analysis: Combined (stat. + sys.) $\approx 2.1 \sigma$ excess

February 2nd, 2024

 $2 \ln \frac{\mathcal{L}}{\mathcal{L}_{max}}$

DSNB model: Horiuchi+09 6 MeV, max

DSNB Search With Super-Kamiokande

Likelihoods for SK-I \rightarrow IV+VI

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

We reconstruct more DSNB events than the previous analysis in each phase

Cranter Ser 198

IN2P

Results for several models for SK-I \rightarrow IV+VI

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

CINCS IN 2P

Upper limits for several models for SK-I \rightarrow IV+VI

Antoine Beauchêne

February 2^{*nd*}, 2024

DSNB Search With Super-Kamiokande

POLYTECHNIQUE DE PARIS

