Oscillation Analysis in the T2K and Hyper-K Experiments

T2K

Denis Carabadjac

dcarabadjac@llr.in2p3.fr

Biennale LLR 02.02.2024

UNIVERSITE PARIS-SACLAY

Motivation

Probing the models beyond the Standard Model

Probing cosmology theories

The study of neutrino oscillations is a pursuit of fundamental scientific knowledge

Neutrino oscillations

The study of neutrino oscillations is a pursuit of fundamental scientific knowledge

Neutrino oscillations describe a physics phenomenon where a neutrino created with a specific lepton flavor (electron, muon, or tau) can later be measured to have a different flavor.

Neutrino oscillations

$$\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array} = U_{PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$U_{PMNS} = U(\delta_{CP}, \theta_{12}, \theta_{13}, \theta_{23})$$

 $\Delta m_{ij}^2 = m_i^2 - m_j^2$

Oscillation parameters: δ_{CP} , θ_{12} , θ_{13} , θ_{23} + Δm_{12}^2 , $|\Delta m_{32}^2|$, sign(Δm_{32}^2)(Mass ordering)

With accelerator neutrino experiment we can measure δ_{CP} , θ_{23} , θ_{13} , $|\Delta m_{32}^2|$ Small sensitivity to mass ordering (MO)*

*thus usually results are presented under different hypothesis of MO

Neutrino oscillations

- neutrino energy measurement is crucial for oscillation inference
- oscillation channel (to electron or muon) and mode (neutrino or antineutrino) carries comlementary information, on oscillation

To infere the neutrino oscillation we need to measure accurately the flavour and neutrino energy
We would like to measure different oscillation channels and different modes

Requirements for an experiment

• We need neutrino which we can be produced with abundant flux

• We need to monitor this flux

• We need measure this flux before neutrino oscillations

• Finally, we need to measure this flux after neutrino oscillations

Carabadjac Denis (LLR/CEA)

Feb 2, 2024

• We need neutrino which we can be produce with abundant flux

• We need to monitor this flux

• We need measure this flux before neutrino oscillations

• Finally, we need to measure this flux after neutrino oscillations

Proton accelerator

- 30 GeV proton accelerator
- Carbon target for pions production
- 3 magnetic horns for pion focusing (positive or negative)

 $\pi^+ \rightarrow \mu^+ + \bar{\nu}_{\mu} \longrightarrow \text{Antineutrino mode}$ Horn polarity

Neutrino mode

Accelerator

- 30 GeV proton accelerator
- Carbon target for pions production
- 3 magnetic horns for pion focusing (positive or negative)

Accelerator

- 30 GeV proton accelerator
- Carbon target for pions production
- 3 magnetic horns for pion focusing (positive or negative)

 $\pi^+ \rightarrow \mu^+ + \bar{\nu}_{\mu} \longrightarrow$ Antineutrino mode

$$\pi^- \rightarrow \mu^- + \nu_{\mu} \longrightarrow$$
 Neutrino mode

Accelerator neutrino experiment can measure properties on neutrino and antineutrino and to study the assymetry between them

Can measure δ_{CP} responsible for CP violation in lepton sector

Experimental measurement

• We need neutrino which we can be produce with abundant flux

• We need to monitor this flux

• We need measure this flux before neutrino oscillations

• Finally, we need to measure this flux after neutrino oscillations

Experimental measurement

 We need measure this flux before neutrino oscillations

• We need to monitor this flux

Experimental measurement

- We need neutrino which we can be produce with abundant flux
- We need to monitor this flux

We need measure this flux before neutrino oscillations

• Finally, we need to measure this flux after neutrino oscillations

Detects water Cherenkov light from charged particle and reconstructs events with PMT charge & timing information.

	Super-Kamiokande	
Site	Mozumi	
Number of ID PMTs	11,129	
Photo-coverage	40%	
Mass/Fiducial Mass	50 kton/22.5 kton	

Super-Kamiokande events

Ring imaging water Cherenkov detector provides informative event reconstruction:

- 1) Number of Cherenkov photons ∝ momentum of the particle
- 2) Arrival time \propto interection position
- 3) Number of cherenkov rings ∝ number of the produced charged particle

4) The ring shape \propto **type of the particle**:

- electron generates electro-magnetic shower ring is diffused
- muon generates a sharp ring

Oscillation Analysis in T2K

T2K Data

Carabadjac Denis (LLR/CEA)

Spectra at ND

Comparison unosc/oscilated flux

Dis, app

 $N_{obs}^{\nu_{\alpha}}(E_{\nu}^{true}) =$

Results:

Mass ordering results

T2K Run1-11 Preliminary

Inverted Ordering exclusion

$$CLs = \frac{p_{value}(IH)}{1 - p_{value}(NH)}$$

Carabadjac Denis (LLR/CEA)

T2K recent results

T2K experiment after 2027

HK experiment

HyperK has an extensive physics program

HyperK has an extensive physics program Accelerator neutrinos

Concord

Solar neutrinos

 MSW effect in the sun-• NSI in the Sun

Proton decay Próbe GUT

Hyper-K experiment

Next generation of long-baseline experiments

- New far detector (x8 of fiducial mass)
- Increase of beam power (500kW -> 1300kW) ☐ stat!
- Additional near detector Intermediate Water Cherenkov Detector (IWCD)
- ND280 Upgrade Done

	Super-Kamiokande	Hyper-Kamiokande
Site	Mozumi	Tochibora
Number of ID PMTs	11,129	20,000
Photo-coverage	40%	20% (x2 sensitivity)
Mass/Fiducial Mass	50 kton / 22.5 kton	260 kton / 187 kton

Hyper-Kamiokande sensitivity studies

HK sensitivity studies

 $\sim 8800 \text{ events}$

Total number of events in all samples more than 25000!

For comparison: T2K has recorded 600 events by 2024

 \sim 2400 events

Sensitivity studies are performed for three syst. models:

- Statistics only (zero systematic uncertainties)
- T2K 2020 systematics model (where we are now)
- Improved systematics

The Improved systematics model was produced by scaling the T2K-2020 error model by

- scaling the uncertainties by $\frac{1}{\sqrt{N}}$, where N = 7.5 is the relative increase in neutrino beam exposure from T2K to Hyper-K
- putting additional constraints to the cross-section model uncertainties (coming from higher expected performance of upgraded ND280 and IWCD)

HK sensitivity to δ_{CP}

Hyper-K preliminary

True normal ordering (known), 10 years $(2.7 \times 10^{22} \text{ POT } 1.3 \text{ v.}\overline{v})$ $\sin^2\theta_{13}$ =0.0218±0.0007, $\sin^2\theta_{23}$ =0.528, Δm_{32}^2 =2.509×10⁻³eV²/c⁴

Significant impact from systematics

1σ error on δ_{CP}

For Improved syst. model: **20**. **2**° For T2K 2020 syst. model: **23**. **9**°

For comparison: T2K δ_{CP} resolution is around 70°

Relative 1σ resolution:

For Improved syst. model: $\varepsilon = 2.5\%$ For T2K 2020 syst. model: $\varepsilon = 3.8\%$

For comparison: T2K δ_{CP} resolution is around 9%

Conclusions

- Neutrino is a way to find out the hints of fundamental physics and oscillations help to study the neutrino
- Oscillation measurement faces many challenges from experimental and theoretical point nevertheless T2K could achieve fascinaing results
- Hyper-K being very ambitious project it comes with its own set of challenges (neutrino interaction and flux modelling, significant hardware challenges with various complex detectors, etc).

But it is very exciting as HK era promises to be a ground breaking period in neutrino research.

BACKUP

- 30 GeV proton accelerator
- Carbon target for pions production
- 3 magnetic horns for pion focusing (positive or negative)

$$\pi^+ \rightarrow \mu^+ + \bar{\nu}_{\mu} \longrightarrow$$
 Neutrino mode
 $\pi^- \rightarrow \mu^- + \nu_{\mu} \longrightarrow$ Antineutrino mode

- Off-axis detector
- Consists of multiple subdetectors
- Constrains neutrino flux and crosssection interaction

Have been recently upgraded providing:

- Lower down proton reconstruction threshold
- Neutron tagging.
- 4pi coverage of particles tracking

Carabadjac Denis (LLR/CEA)

• Monitors the neutrino beam direction and intensity

Example of data event

Fiducial mass = 27.2 kton

 Detects water Cherenkov light from charged particle and reconstructs events with PMT charge & timing information.

Carabadjac Denis (LLR/CEA)

T2K recent results

 Δm_{32}^2 10 -2*∆*lnI DataRun1_11, w/ RC Asimov at Best fit (NH) T2K Run1-11, 2023 Asimov at Best fit (IH) Data fit OA23 (NH) Preliminary w/ systematics Data fit OA23 (IH) 6 2σ C.L 3E 90% C.L 1σ C.L $\pm \times 10^{-3}$ 2.3^{\Box} 2.45 2.5 2.55 2.6 2.65 2.7 2.35 2.4 Δm_{32}^2 (NO) / $|\Delta m_{31}^2|$ (IO) [eV²]

HK sensitivity to $\sin^2 \theta_{23}$ octant

