

Neutrinos @LLR: introduction to the group activities

Margherita for the LLR Neutrino group

Biennale du LLR

Feb 2nd 2024

Neutrinos @LLR

Neutrino: a multi-source particle

Our group focuses on the studies of two kind of neutrino sources

Neutrino: a special particle to study

Neutrino oscillations: while travelling from the source to the detector point, a neutrino created with a certain flavor has a certain probability to convert into another neutrino flavor

Neutrino: a special particle to study

Neutrino oscillations: while travelling from the source to the detector point, a neutrino created with a certain flavor has a certain probability to convert into another neutrino flavor

Neutrinos, and anti-neutrinos, exist in **3 flavors**: $\mathbf{v}_{e} \, \mathbf{v}_{\mu} \, \mathbf{v}_{\tau}$ The flavor mixing is only possible if neutrinos have masses Oscillations happen because what propagate are the mass-eigenstates \mathbf{v}_{i} , related to the flavor eigenstates via the PMNS mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha}^{*} |\nu_{i}\rangle$$

Neutrinos and the matter/anti-matter asymmetry

Neutrinos and the matter/anti-matter asymmetry

More details in the slides from 2021 LLR biennale

Neutrino: a unique probe of astrophysical objects - DSNB

Expected one supernova per second in observable Universe

Since *v* travel freely across the Universe, could we look for past SN neutrinos? This is the Diffuse Supernova Neutrino Background!

Neutrino: a unique probe of astrophysical objects - DSNB

DSNB study can shed light on many astrophysical aspects like BH formation rate, star formation rate. Expected one supernova per second in observable Universe

Since *v* travel freely across the Universe, could we look for past SN neutrinos? This is the Diffuse Supernova Neutrino Background!

Neutrinos @LLR : T2K &...

Neutrinos @LLR : T2K &...

Neutrinos @LLR : T2K &...

Most recent T2K results on oscillation parameters

World leading measurement of the atmospheric parameters!

Still compatible with both octants, slightly preferring the upper one

Large region of δ_{CP} values excluded at 3σ Preference for ~maximal CP violation ($\delta_{CP} \approx -\pi/2$) Preference for Normal Ordering ¹³ P0D replaced with a totally active target **SuperFGD**: segmented 1cm³ cubes FGD Sandwiched by 2 TPCs

T2K phase II: ND280 Upgrade

New horizontal

Super FGD

2 millions of 1cm³ cubes. Optical fibers in 3 directions

Improvements w.r.t. current ND280:

- vertex reconstruction
- Acceptance 4π
- Low momentum protons (p_n >300MeV)

New horizontal

TPCs

- Vertex activity
- Neutron detection
- Reduce systematics related to v cross sections

Installation almost complete (>70%) @JPARC!!!!

Data taking has started !

ND280

detector

TOK nhaca II. NDORO Unarada

Run number : 16070 | SubRun number :3 | Event number : 74227 | Spill : 59219 | Time : Wed 2023-12-20 22:50:20 JST Partition : 61 | Trigger: Beam Spill

Reduce systematics related to v cross sections

 P0D replaced with a totally active target **SuperFGD**: segmented 1cm³ cubes FGD Sandwiched by 2 TPCs

T2K phase II: ND280 Upgrade

Super Kamiokande

SK is a 50 kton water Cherenkov detector Inner detector ~11000 20 inch PMTs Outer detector ~2000 8 inch PMTs

v_u CCQE interaction

$\boldsymbol{v}_{_{e}}\text{CCQE}$ interaction

Super Kamiokande

SK is a 50 kton water Cherenkov detector Inner detector ~11000 20 inch PMTs Outer detector ~2000 8 inch PMTs $\overline{\nu}_{e}$

Gadolinium added since 2019 (???) to increase neutron capture rate ⇒ strong participation of LLR in the hardware work!

v_u CCQE interaction

 W^+

Super Kamiokande

SK is a 50 kton water Cherenkov detector Inner detector ~11000 20 inch PMTs Outer detector ~2000 8 inch PMTs $\overline{\nu}_{e}$

Gadolinium added since 2019 (???) to increase neutron capture rate ⇒ strong participation of LLR in the hardware work!

v_{μ} CCQE interaction

$\boldsymbol{v}_{e}^{}$ CCQE interaction

- 30 us

 W^+

 \triangleright

Diffuse Supernovae Neutrino Background @LLR

LLR leader of DSNB analysis since 2019: 2 papers w/o Gd already out, preparing new analysis with more sophisticated neutron and prompt tagging

Sensitivity studies for the Gd era

Rate analysis (model independent), before Gd era

The Kamiokande series

Moving to Hyper-Kamiokande Hyper-Kamiokande Hyper-Kamiokande physics program Positron Solar neutrinos Proton decay Cosmic ray Not long enough to oscilla Proton

MEAMARMARMARMARMARMARMARMARMARMARMuch more details in Benjamin's

presentation at last CS