Multiboson interactions: from HH searches to EFT SM measurements

Alessandra Cappati

LLR, École Polytechnique, in2p3, CNRS

Séminaire 22 février 2024

Electro-Weak Interactions

Multiboson Couplings

The SM predicts the existence of **multiboson** couplings

Multi-gauge

- From non-Abelian structure of SU(2)
- Gauge invariance of vector boson kinetic terms enforces triple and quartic couplings
- $\circ~$ No vertices with only Z/ $\gamma,$ since both stem from the same field W $_3$ after GWS mixing

Multi-Higgs

- From shape of Higgs potential (quartic)
- From field expansion around the VEV (triple), after symmetry breaking

In common:

- All coupling strengths predicted exactly in EW theory
- Very hard to measure experimentally since relevant processes also occur through competing (dominant) diagrams

Multiboson Couplings

The SM predicts the existence of **multiboson** couplings

In this talk

Multi-gauge

- From non-Abelian structure of SU(2)
- Gauge invariance of vector boson kinetic terms enforces triple and quartic couplings
- No vertices with only Z/γ , since both stem from the same field W₃ after GWS mixing

Multi-Higgs

- From shape of Higgs potential (quartic)
- From field expansion around the VEV (triple), after symmetry breaking

In common:

- All coupling strengths predicted exactly in EW theory
- Very hard to measure experimentally since relevant processes also occur through competing (dominant) diagrams

Non-SM effects constrained using parameterization based on Effective Field Theories

- \rightarrow Do not introduce SM modifications of arbitrary magnitude
- \rightarrow Makes sure that the dimensionality of the respective operators is suppressed by a corresponding power of the new physics scale (\wedge)

Standard Model EFT (SMEFT)

Consistent EFT generalization of the SM with a series of higher dimensional operators which are invariant under $SU_{C}(3) \times SU(2)_{L} \times U(1)_{Y}$, using only SM fields

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{n_d} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}, \ d > 4 \quad \text{Free parameters: Wilson coefficients}$$

Gauge invariant operators

Х

EFT

Non-SM effects constrained using parameterization based on Effective Field Theories

- \rightarrow Do not introduce SM modifications of arbitrary magnitude
- \rightarrow Makes sure that the dimensionality of the respective operators is suppressed by a corresponding power of the new physics scale (\wedge)

Standard Model EFT (SMEFT)

Pros

- Model independent
- different measurements can be combined leading to more stringent results

Cons

- Invalid at energies too close to Λ or above (unitarity violation)
- Power of data diluted by the large freedom in choosing which operator to consider
- no common agreement on how to estimate uncertainties from missing higher orders

A.Cappati

HH production (non-resonant)

HH production can be used to directly study Higgs boson self-coupling and Higgs potential

At LHC mainly produced through gluon fusion via fermion loop

V (d) $Im(\phi)$ In SM, amplitude from 2 contributions, **destructive interference** \rightarrow Tiny cross-section, known with **high precision** (NNLO QCD) $(\phi^{\dagger}\phi) = \mu^2 \phi^{\dagger}\phi + \lambda (\phi^{\dagger}\phi)^2$

arXiv:1312.5672

 $\sigma_{13\text{TeV}} = 31.05^{+6\%}_{-23\%}$ fb (scale + m_t) Beyond SM, only triangle diagram sensitive to new physics in the Higgs potential (λ)

(anomalous Yukawa **Htt** couplings would modify both)

VBFHH and VHH

With full Run 2, possible to target also **subdominant** production modes: VBFHH, VHH \rightarrow Diagrams also involve a different coupling: VVHH

Exp. observation very hard, but small modifications to VVHH would lead to big changes in σ

HH beyond the SM: SMEFT

BSM processes can modify cross-section and kinematic properties

BSM effects parametrized as **multiplicative modifier** of the SM parameter λ : \mathbf{k}_{λ}

→ For **purely scalar operators**, description in terms of Wilson coefficients or modifiers are **equivalent**

For **VVHH** BSM effects also parametrized as modifier of the SM coupling: \mathbf{k}_{2V}

 \rightarrow Not equivalent to a SMEFT approach (only true for some models)

To combine with other anomalous quartic couplings, need proper dim-8 parametrization \rightarrow <u>JHEP 09 (2022) 038</u>

more on this later

In Run 1

Experimental searches performed in many final states

"Higgs hunter's rule": larger BR corresponds to lower purity and vice versa In Run 2: many **new** final states explored!

And many new
measurements
performed!
k_λ
k_{2V}
VBFHH and VHH production modes

HH Search in Rare Channels: bb41

First result in this channel!

→ Clear signature thanks to 4I decay, but tiny BR = 0.014% @mH=125GeV

- Triggers: single/double/triple and cross e, μ
- Selection:

2 pairs of OS SF leptons (e, μ) forming ZZ cand + **at least 2** AK4 **jets** with pT>20GeV and $|\eta|$ <**2.4**

To veto

events

VBFH(4I)

- If >2 jets in event, those with higher btag score (deepCSV) selected
- Signal region: 115<m4l<135

- backgrounds: single H and ZZ production (from MC), reducible background (from data)
- BDT to separate signal from background
- Results extracted fitting BDT discriminant

Observed (expected) limits @95% CL:

- σ(HH→bb4l) < 32.4 (39.6) σ_{SM}
- -8.8 < k_λ < 13.4 (-9.8 < k_λ < 15.0)

Full Run 2 Combination

Limit on **production cross-section** from full Run 2 combination of many channels

 $\sigma({\rm HH}) < {\bf 3.4}~(2.5)~\sigma_{\rm SM}$

Improvements w.r.t previous combinations (2016 results: σ (HH) < 22 (12) σ_{SM}) thanks to:

- analyses improvement/optimization
- object tagging improvement and trigger development
- addition of new channels

Limits on trilinear coupling

Nature 607 (2022) 60-68

Observed (expected) limits at 95% CL:

-1.24 (-2.28) < **k**₂ < **6.49** (7.94)

Assuming SM values for all other ks

Limits on quartic coupling

CMS-PAS-HIG-22-006

Search for VHH non-resonant, in $HH \rightarrow bbbb$

 \rightarrow compensate small σ with large BR (33%)

 \rightarrow V=W, Z, both leptonic and hadronic decays considered

- Events divided in categories according to the decay of V
- BDT/NN for bkg-signal separation

Observed (expected) limits at 95% CL:

```
σ(VHH) < 294 (124) σ<sub>SM</sub>
```

Search for VHH

CMS-PAS-HIG-22-006

Final states with multiple Gauge and Higgs Bosons

Final states suitable to investigate VVHH interactions

In this work:

- Reinterpret HH experimental results in terms of **dim-8 EFT operators**
- Focus on **genuine** SMEFT anomalous quartic operators
- Unitarity constraints considered
 - dedicated technique adopted
 - mass-dependent constraints set

Results in JHEP09(2022)038

EFT Framework

• Complete operator basis considered:

($\mathcal{O}_{S,0} = [(D_\mu \Phi)^\dagger D_ u \Phi] \times [(D^\mu \Phi)^\dagger D^ u \Phi]$	$\mathcal{O}_{M,0} = \mathrm{Tr}[\hat{W}_{\mu u}\hat{W}^{\mu u}] imes [(D_eta \Phi)^\dagger D^eta \Phi]$	$\mathcal{O}_{M,4} = [(D_\mu \Phi)^\dagger \hat{W}_{\beta u} D^\mu \Phi] imes B^{eta u}$
	$\mathcal{O}_{S,1} = [(D_\mu \Phi)^\dagger D^\mu \Phi] \times [(D_ u \Phi)^\dagger D^ u \Phi]$	$\mathcal{O}_{M,1} = \mathrm{Tr}[\hat{W}_{\mu u}\hat{W}^{ ueta}] imes [(D_eta \Phi)^\dagger D^\mu \Phi]$	$\mathcal{O}_{M,5} = [(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\nu}\Phi] \times B^{\beta\mu} + \mathrm{H.c.}$
	$\mathcal{O}_{S,2} = [(D_\mu \Phi)^\dagger D_ u \Phi] \times [(D^ u \Phi)^\dagger D^\mu \Phi]$	$\mathcal{O}_{M,2} = [B_{\mu u}B^{\mu u}] imes [(D_eta \Phi)^\dagger D^eta \Phi]$	$\mathcal{O}_{M,7} = [(D_\mu \Phi)^\dagger \hat{W}_{eta u} \hat{W}^{eta \mu} D^ u \Phi]$
	Scalar	$\mathcal{O}_{M,3} = [B_{\mu u}B^{ ueta}] imes [(D_eta \Phi)^\dagger D^\mu \Phi]$	MIXED

Simulation Setup

- Generator: MadGraph5_aMC@NLO v2.7.3
- Processes:
 - VBF-HH, ZHH, $gg \rightarrow ZZH$,
 - VBS (W[±]W[±] VBS, W[±]Z VBS, W⁺W⁻ VBS) (for validation)
 - Zbbbb (main background for ZHH)
- Wilson coefficients variations $f_x/\Lambda^4 = \{0, \pm 2, \pm 5, \pm 10, \pm 20\}$ TeV⁻⁴
- for VBF-HH, also k_{2V} variations (k_{2V} = {0, 1, ±2, ±5, ±10})

 Observable used to estimate the EFT sensitivity:
 σ[m_{min}, m_{max}] (cross-section in mass interval) m = invariant mass of the di- or tri- boson states

 m_{min} = 1.1TeV, m_{max} = \sqrt{s}

Réunion CMS au LLR

Validation on VBS

- Try to **reproduce CMS results**, for multiple processes
- σ computed as function of $f_{x}/\Lambda^{4} \rightarrow$ quadratic fits performed
 - 1. Take experimental limit on one operator from CMS publication
 - 2. Superimpose on the parabola the limit on the operator to Extrapolate 95% CL exclusion limit on σ
 - 3. Derive limits on all other operators
 - 4. Compare obtained limits with the published ones

Validation on VBS

- CMS results found to be incomplete, several operators not examined
- Validation successful: manage to reproduce results

	VBS $W^{\pm}W^{\pm} \rightarrow 2\ell 2\nu$		VBS $W^{\pm}Z \rightarrow 3\ell\nu$		VBS $W^{\pm}V$ semileptonic	
Coeff.	CMS exp.	estimated	CMS exp.	estimated	CMS exp.	estimated
$f_{ m M0}/\Lambda^4$	[-3.7, 3.8]	[-3.9,3.7]	[-7.6, 7.6]	input	[-1.0, 1.0]	[-1.0,1.0]
$f_{ m M1}/\Lambda^4$	[-5.4, 5.8]	input	[-11,11]	[-11,11]	[-3.0, 3.0]	[-3.1, 3.1]
$f_{ m M2}/\Lambda^4$	/	/	_	[-13, 13]	8 <u>—</u> 8	[-1.5, 1.5]
$f_{ m M3}/\Lambda^4$	/	/	_	[-19, 19]	-	[-5.5, 5.5]
$f_{ m M4}/\Lambda^4$	/	/		[-5.9, 5.9]		[-3.1, 3.1]
$f_{ m M5}/\Lambda^4$	/	/	—	[-8.3, 8, 3]	—	[-4.5, 4.5]
$f_{ m M7}/\Lambda^4$	[-8.3, 8.1]	[-8.5, 8.0]	[-14, 14]	[-14, 14]	[-5.1, 5.1]	input
$f_{ m S0}/\Lambda^4$	[-6.0, 6.2]	[-6.1,6.2]	[-24, 24]	[-25, 26]	[-4.2,4.2]	[-6.7, 6.8]
$f_{ m S1}/\Lambda^4$	[-18,19]	[-18,19]	[-38, 39]	[-38,39]	[-5.2, 5.2]	[-8.3, 8.4]
$f_{ m S2}/\Lambda^4$	-	[-18,19]	-	[-25, 26]	—	[-8.4, 8.5]

Implementation of Unitarity in VBS

- 1. Evaluate $\sigma[\mathbf{m}_{\min}, \mathbf{m}_{\max}]$ for several \mathbf{m}_{\max}
- For each σ, obtain m_{max}-dependent limits on operator coefficients with same procedure used for validation
- 3. Since only part of experimental data fall into $[m_{min}, m_{max}]$, limits on σ obtained at step 2 are **rescaled** in each test, assuming poissonian errors

Coeff.	VBS $W^{\pm}W^{\pm}$	VBS $W^{\pm}Z$	VBS $W^{\pm}V$ semilep.
$f_{ m M0}/\Lambda^4$	/	/	[-3.3,3.5]
$f_{ m M1}/\Lambda^4$	[-13, 17]	[-67, 71]	[-7.4, 7.6]
$f_{\mathrm{M2}}/\Lambda^4$	/	/	[-9.1, 9.0]
$f_{\mathrm{M3}}/\Lambda^4$	/	./	[-32, 30]
$f_{ m M4}/\Lambda^4$	/	[-36, 36]	[-8.6, 8.7]
$f_{ m M5}/\Lambda^4$	/	[-29,29]	[-10, 10]
$f_{ m M7}/\Lambda^4$	[-21, 18]	[-59, 57]	[-11,11]
$f_{ m S0}/\Lambda^4$	[-17,20]	/	[-8.5,9.5]
$f_{ m S1}/\Lambda^4$	/	/	/
$f_{ m S2}/\Lambda^4$	/	[-25, 26]	[-21, 25]

- Limits obtained w/ unitarity less stringent than those w/o
- If curves do not cross, available data are not enough to set more stringent limits than those imposed by unitarity

VBFHH Process

Similar to VBS, but experimental results in terms of \mathbf{k}_{2V}

- 1. Consider public HH \rightarrow 4b 95% CL limit on k_{2V}
- 2. Use the VBF-HH simulation as function of k_{2V} to set limit on the parabola and obtain limit on σ
- 3. From limit on σ , extract limits on corresponding coefficient

Validation: use limits on f_x as input and re-produce CMS limits on k_{2V}

- **VBF-HH** estimated limits **supersede** those obtained with VBS for f_{M0} , f_{M2} , f_{M3}
- Unitarity boundaries added as described for VBS

	VBS $W^{\pm}V$ semileptonic		VBF HH $\rightarrow b\overline{b}b\overline{b}$	
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity
$f_{ m M0}/\Lambda^4$	[-1.0,1.0]	[-3.3,3.5]	[-0.95, 0.95]	[-3.3,3.3]
$f_{ m M1}/\Lambda^4$	[-3.1, 3.1]	[-7.4, 7.6]	[-3.8, 3.8]	[-13, 14]
$f_{ m M2}/\Lambda^4$	[-1.5, 1.5]	[-9.1, 9.0]	[-1.3, 1.3]	[-7.6, 7.3]
$f_{ m M3}/\Lambda^4$	[-5.5, 5.5]	[-32, 30]	[-5.2, 5.3]	[-29,30]
$f_{ m M4}/\Lambda^4$	[-3.1, 3.1]	[-8.6, 8.7]	[-4.0, 4.0]	[-14, 14]
$f_{ m M5}/\Lambda^4$	[-4.5, 4.5]	[-10, 10]	[-7.1, 7.1]	[-26, 26]
$f_{ m M7}/\Lambda^4$	[-5.1, 5.1]	[-11,11]	[-7.6, 7.6]	[-27, 27]
$f_{ m S0}/\Lambda^4$	[-4.2,4.2]	[-8.5,9.5]	[-30,29]	/
$f_{ m S1}/\Lambda^4$	[-5.2, 5.2]	/	[-11, 10]	/
$f_{ m S2}/\Lambda^4$	-	[-21, 25]	[-17, 16]	/

"New" experimental final states: ZHH

No exp. result for ZHH available yet \rightarrow Simple analysis performed

- Estimate the **number of detectable events**: $N = \sigma \cdot L \cdot \varepsilon \cdot A$
 - Decays: H \rightarrow bb and Z \rightarrow II (I=e, μ)
 - Acceptance (A) requirements, typical LHC requirements: $p_T(b) > 30 \text{ GeV}, p_T(e, \mu) > 20 \text{ GeV}$ $|\eta(b)| < 2.5, |\eta(e, \mu)| < 2.4$
 - Efficiency (ε) for identification and selection taken from experimental papers
- **Background** Zbbbb process (simulated with $115 < m_{bb} < 135$ GeV)
- Estimate **upper limits** on σ with Feldman-Cousins
- Similar procedure as before to estimate limits on Wilson coefficients

With Run2 luminosity ($L = 140 \text{ fb}^{-1}$) no limits w/ unitarity

	$ZHH \rightarrow \ell^+ \ell^- b\overline{b}b\overline{b}$
Coeff.	no unitarity
$f_{ m M0}/\Lambda^4$	[-8.4,8.7]
$f_{ m M1}/\Lambda^4$	[-15, 15]
$f_{\mathrm{M2}}/\Lambda^4$	[-12,12]
$f_{ m M3}/\Lambda^4$	[-20,20]
$f_{ m M4}/\Lambda^4$	[-20,21]
$f_{ m M5}/\Lambda^4$	[-18,18]
$f_{ m M7}/\Lambda^4$	[-29,30]
$f_{ m S0}/\Lambda^4$	[-210,200]
$f_{ m S1}/\Lambda^4$	[-350, 380]
$f_{\mathrm{S2}}/\Lambda^4$	[-350, 380]

New experimental final states: $gg \rightarrow ZZH$

- Loop Induced process
- Very low σ
- H \rightarrow bb and Z \rightarrow II (I=e, μ) considered
- Even with large variations of Wilson coefficients σ remains small
 → process not sensitive enough to be investigated at LHC
- But, it demonstrates that is possible to simulate the process with new NLO UFO model constructed including dim-8 operators

Perspectives for HL-LHC: VBFHH

- Limits w/o unitarity obtained rescaling the excluded σ by $L^{-\frac{1}{2}}$ ($L = 3 \text{ ab}^{-1}$, 13 TeV)
- Limits w/ unitarity present significant gain more since m_{max} moves to larger values, allowing inclusion of more data in the sensitivity estimate
 - → limits improve by factor 4-5
 → first physical limit on f_{s1}

	VBS $W^{\pm}V$ semileptonic		$VBF HH \rightarrow b\overline{b}b\overline{b}$	
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity
$f_{ m M0}/\Lambda^4$	[-0.47,0.47]	[-0.96, 1.02]	[-0.43, 0.43]	[-0.90,0.87]
$f_{ m M1}/\Lambda^4$	[-1.5, 1.5]	[-2.3, 2.4]	[-1.7, 1.7]	[-3.5, 3.5]
$f_{ m M2}/\Lambda^4$	[-0.69,0.68]	[-2.1, 2.1]	[-0.62,0.61]	[-1.7, 1.7]
$f_{ m M3}/\Lambda^4$	[-2.5, 2.4]	[-6.8, 6.3]	[-2.4, 2.4]	[-6.5, 6.6]
$f_{ m M4}/\Lambda^4$	[-1.4, 1.4]	[-2.4, 2.5]	[-1.8,1.8]	[-3.9, 4.0]
$f_{ m M5}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.1]	[-3.2, 3.2]	[-6.9, 7.0]
$f_{ m M7}/\Lambda^4$	[-2.4, 2.4]	[-3.5, 3.5]	[-3.5, 3.5]	[-7.1,7.1]
$f_{ m S0}/\Lambda^4$	[-1.8, 2.0]	[-2.6, 3.3]	[-14,13]	/
$f_{ m S1}/\Lambda^4$	[-2.4, 2.4]	[-5.8, 6.1]	[-5.1, 4.5]	/
$f_{ m S2}/\Lambda^4$	[-2.3, 2.4]	[-4.8, 5.2]	[-8.1,7.1]	/

Perspectives for HL-LHC: ZHH

- Exclusion limit on σ recomputed for $L = 3 \text{ ab}^{-1}$, 13 TeV
- Possible to set limits w/ unitarity requirements on some M-type operators
- This was just simple analysis: important to develop strategies to enhance signal w.r.t. bkg

Considered multiboson, in particular multi-Higgs, interactions

- limits from CMS experiment on HHH and VVHH couplings set on couplings modifiers from ggHH, VBFHH, VHH production
- for VVHH, not possible to directly combine with other anomalous couplings

 \rightarrow reinterpretation in SMEFT needed

Presented study that reinterprets experimental results on k_{2V} limits in terms of constraints on Wilson Coefficients of **dim-8** SMEFT operators

• VBFHH can set limits comparable or even more stringent than those from VBS

 \rightarrow this time, combination with results from VBS possible!

COMETA European COST Action

Comprehensive Multiboson Experiment-Theory Action (COMETA)

Aim: improve measurements and interpretation of **multiboson** processes at LHC

> Involves experts from **theory** and **experimental** HEP, and **AI experts** within and outside academia

20+ EU countries involved 150+ members ~150k€/year for 4 years Foster **communication** between diverse research groups to develop advanced technology

Create an inclusive environment for **young** scientists, promote researchers in underfunded European countries COMETA

More info: COMETA <u>website</u> COST Action <u>page</u>

> If interested, you can **join** via this page!

Next event: 1st COMETA General meeting next week!

A.Cappati