Quantum computing for high-energy physics simulations

Mathieu PELLEN

University of Freiburg

LAPTh, Annecy, France 21st of March 2024

Outline:

 \rightarrow <u>Introduction</u>: Why quantum computing and high-energy physics?

- Basics of high-energy physics
 → How to compute a cross section
- Basics of quantum computing
 → How to build a quantum circuit
- Applications
 - \rightarrow Quantum integration [Agliardi, Grossi, MP, Prati; 2201.01547]
 - \rightarrow Colour amplitudes [Chawdhry, MP; 2303.04818]

[source: MatiasEnElMundo/Getty Images]

Mathieu PELLEN

LHC @ CERN, Geneva (Switzerland)

 \rightarrow 27km-long tunnel where protons are collided at high-energy (13.6 TeV currently) \rightarrow Allow to probe fundamental interactions

• Last discovery in high-energy physics (2012 @ LHC, CERN): the Higgs boson!

Life at the LHC (in reality)

Life at the LHC (on the theory side)

• Factorisation of mechanisms at:

- high-energy (perturbative)
 → Hard-scattering, parton-shower
- low-energy (non-perturbative)
 → parton-distribution function,
 hadronisation, underlying events,
 multiple-parton interactions, ...
- All aspects relevant when comparing theory predictions against experimental measurements!
- Monte Carlo method/integration!

[source: Sherpa]

• LHC = machine to measure cross sections ...

Mathieu PELLEN

Quantum computing for high-energy physics simulations

 \rightarrow Event generation:

 $\sim 15\%$ of ~ 3 billion cpuh.y^{-1} for ATLAS

 \rightarrow More in: [Buckley; 1908.00167], [Valassi et al.; 2004.13687]

 $\begin{array}{l} \rightarrow \mbox{ Event generation:} \\ \sim 15\% \mbox{ of } \sim 3 \mbox{ billion cpuh.y}^{-1} \mbox{ for ATLAS} \\ \rightarrow \mbox{ More in: } [Buckley; 1908.00167], [Valassi et al.; 2004.13687] \end{array}$

[ATLAS; CERN-LHCC-2022-005]

Mathieu PELLEN

 $\label{eq:scalar} \begin{array}{l} \rightarrow \mbox{ Event generation:} \\ \sim 15\% \mbox{ of } \sim 3 \mbox{ billion cpuh.y}^{-1} \mbox{ for ATLAS} \\ \rightarrow \mbox{ More in: } [Buckley; 1908.00167], [Valassi et al.; 2004.13687] \end{array}$

• One possible solution: GPU \rightarrow Selected references: [Borowka et al.; 1811.11720], [Carrazza et al.; 2002.12921, 2009.06635, 2106.10279], [Bothmann et al.; 2106.06507] + • Talk1 + • Talk2

 $\begin{array}{l} \rightarrow \mbox{ Event generation:} \\ \sim 15\% \mbox{ of } \sim 3 \mbox{ billion cpuh.y}^{-1} \mbox{ for ATLAS} \\ \rightarrow \mbox{ More in: } [Buckley; 1908.00167], [Valassi et al.; 2004.13687] \end{array}$

• One possible solution: GPU \rightarrow Selected references: [Borowka et al.; 1811.11720], [Carrazza et al.; 2002.12921, 2009.06635, 2106.10279], [Bothmann et al.; 2106.06507] + • Talk1 + • Talk2

- Can quantum computing be of any use in HEP?
 - \rightarrow to compute things faster/more efficiently?
 - \rightarrow to compute new things?

Reviews

- [Gray, Terashi; Gray:2022fou] (selected topics)
- [Delgado et al.; 2203.08805] (Snowmass)
- [Klco et al.; 2107.04769] (lattice)

Selected references

- Amplitude/loop integrals: [Ramirez-Uribe et al.; 2105.08703], [Bepari, Malik, Spannowsky, Williams; 2010.00046], [Chawdhry, MP; 2303.04818]
- Parton shower: [Bauer, de Jong, Nachman, Provasoli; 1904.03196], [Bepari, Malik, Spannowsky, Williams; 2010.00046],
 [Williams, Malik, Spannowsky, Bepari; 2109.13975], [Chigusa, Yamazaki; 2204.12500], [Gustafson, Prestel, Spannowsky, Williams; 2207.10694], [Bauer, Chigusa, Yamazaki; 2310.19881]
- Machine learning: [Filipek et al; 2105.04582], [Bravo-Prieto et al; 2110.06933], [Alvi, Bauer, Nachman; 2206.08391] ...
- Others: [Ciavarella; 2007.04447], [Perez-Salinas, Cruz-Martinez, Alhajri, Carrazza: 2011.13934], [Bauer, Freytsis, Nachman; 2102.05044], [Martenez de Lejarza, Cieri, Rodrigo; 2204.06496], [Agliardi, Grossi, MP, Prati; 2201.01547], [Martenez de Lejarza et al.; 2401.03023], [Cruz-Martinez, Robbiati, Carrazza; 2308.05657]

Quantum applications in high-energy physics

 \rightarrow Quantum applications still in their infancy!

• Is it possible?

Quantum applications in high-energy physics

 \rightarrow Quantum applications still in their infancy!

- Is it possible?
- Is there a (theoretical) quantum advantage?

Quantum applications in high-energy physics

 \rightarrow Quantum applications still in their infancy!

- Is it possible?
- Is there a (theoretical) quantum advantage?
- Is it more resource efficient than CPU/GPU?

 \rightarrow Look at the example of quantum simulation/integration in high-energy physics!

Quantum computers

[IBM]

[Landscape with the worship of the Golden calf, Claude Lorrain, Staatliche Kunsthalle, Karlsruhe (Germany)]

Basics of high-energy physics
 → How to compute a cross section

 \rightarrow Probability to measure a scattering process

 \rightarrow Predictable theoretically and measurable experimentally!

$$\sigma \propto \int \mathrm{d}\Phi |\mathcal{M}|^2$$

- $d\Phi$: phase-space, depends on final-state particles \rightarrow encodes kinematics
- $|\mathcal{M}|^2$: matrix element of the scattering process
 - \rightarrow encodes underlying theory and depends on kinematics

Cross section [example] (I)

Cross section [example] (I)

• $d\Phi \propto d\phi d \cos \theta$ • $|\mathcal{M}|^2 \propto 1 + \cos^2 \theta$ $\Rightarrow \sigma_{\text{incl}} \propto \int_0^{2\pi} d\phi \int_{-1}^{+1} d\cos \theta (1 + \cos^2 \theta)$

 \rightarrow No dependence on ϕ (symmetry around z axis) \rightarrow inclusive cross section (integration over whole phase space)

Cross section [example] (II)

- Experimental measurements performed in parts of the phase space
- Experiments also measure observables
 - \rightarrow angles, transverse momentum
- Analytical integration not an option!

Cross section [example] (II)

- Experimental measurements performed in parts of the phase space
- Experiments also measure observables
 - \rightarrow angles, transverse momentum
- Analytical integration not an option!
- ⇒ Solution: Monte Carlo integration!

$$\rightarrow \phi = 2\pi \cdot x_1, \ \cos \theta = 2 \cdot x_2 - 1$$

$$\Rightarrow \ \sigma \propto 2\pi \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 \left(1 + (2x_2 - 1)^2\right) \Theta(g(x_1, x_2))$$

- $\Theta(g(x_1, x_2))$ encodes experimental selection
- Error scaling as $1/\sqrt{\textit{N}_{\rm points}}$

Cross section (Monte Carlo)

 \rightarrow In general:

$$\sigma \propto \int_0^1 \mathrm{d} x_1 \cdots \int_0^1 \mathrm{d} x_n f(x_1, \cdots, x_n) \Theta(g(x_1, \cdots, x_n))$$

Cross section (Monte Carlo)

 \rightarrow In general:

$$\sigma \propto \int_0^1 \mathrm{d} x_1 \cdots \int_0^1 \mathrm{d} x_n f(x_1, \cdots, x_n) \Theta(g(x_1, \cdots, x_n))$$

• For a given observable $\mathcal{O} = \mathcal{O}(x_1, \cdots, x_n)$:

$$\sigma = \sum_{i} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}^{i}} = \sum_{i,l} c_{il} \frac{\mathrm{d}\sigma}{\mathrm{d}x_{l}^{i}}$$

- Integrating = guessing the values of a function at specific points (Riemann sum)
- More complex calculations ...
 - ... more integration variables ...
 - ... more computing resources!

• Basics of quantum computing → How to build a quantum circuit

Literature:

- Quantum Computation and Quantum Information, Nielsen and Chuang
- Programming Quantum Computers, Johnston, Harrigan, and Gimeno-Segovia

Mathieu PELLEN

Quantum computing for high-energy physics simulations

IT PROMISES TO SOLVE SOME OF HUMANITY'S MOST COMPLEX PROBLEMS, IT'S BACKED BY JEFF BEZOS, NASA AND THE CIA. EACH ONE COSTS \$10,000,000 AND OPERATES AT 459° BELOW ZERO. AND NOBODY KNOWS HOW IT ACTUALLY WORKS

Mathieu PELLEN

Quantum computing for high-energy physics simulations

\rightarrow Any state can be written as

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

with $\alpha^2 + \beta^2 = 1$

\rightarrow Any state can be written as

$$\begin{split} |\psi\rangle &= \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \\ \text{with } \alpha^2 + \beta^2 &= \mathbf{1} \end{split}$$

 \rightarrow In quantum mechanics (and in quantum computing), any operation A is unitary

 $\psi \xrightarrow{A} \psi'$

$A |\psi\rangle = |\psi'\rangle$ with $A^*A = AA^* = \mathrm{Id}$

$$|\psi\rangle$$
 — A — $|\psi'\rangle$

Pauli-X (X)

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\psi = \alpha |0\rangle + \beta |1\rangle \Rightarrow \psi' = \alpha |1\rangle + \beta |1\rangle$$

$$-\oplus$$

$$\psi = \alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \rightarrow \psi' = \alpha \left| \mathbf{1} \right\rangle + \beta \left| \mathbf{0} \right\rangle$$

Hadamard (H) $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ $\psi = \alpha |0\rangle + \beta |1\rangle \rightarrow \psi' = \alpha \frac{|0\rangle + |1\rangle}{\sqrt{2}} + \beta \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ H

Controlled not (CNOT, CX)

- If 0 \rightarrow nothing happens; If 1 \rightarrow Pauli-X (X)!
- Control qubit (top) and target qubit (bottom)

Generalised controlled gate (CU)

$$CU = \begin{bmatrix} \mathrm{Id}_2 & 0 \\ 0 & U \end{bmatrix}$$

 \rightarrow One *control* qubit and many *target* qubits

Measurement process

$$\rightarrow$$
 State: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

$$\rightarrow \text{Probabilities:} \begin{cases} \text{for} & |0\rangle : \alpha^2 \\ \text{for} & |1\rangle : \beta^2 \end{cases}$$

NB: Probability obtained after many measurements!
Measurement process

$$\rightarrow$$
 State: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

$$\rightarrow \text{Probabilities:} \begin{cases} \text{for} & |0\rangle : \alpha^2 \\ \text{for} & |1\rangle : \beta^2 \end{cases}$$

NB: Probability obtained after many measurements!

 $\rightarrow \alpha$ and β encode information that can be measured/computed!

Applications

$\ensuremath{\scriptstyle\rightarrow}$ Quantum integration

[Agliardi, Grossi, MP, Prati; 2201.01547]

 \rightarrow Colour amplitudes

Grover algorithm/iteration

- Very general quantum algorithm
- Quadratic speed up
 - $\rightarrow \mathcal{O}(\sqrt{N})$ operations instead of $\mathcal{O}(N)$
- Most famous example: unstructured database search

• Example (from [Johnston, Harrigan, Gimeno-Segovia; Programming Quantum Computers])

 \rightarrow What solution is contained in our quantum register?

111

13

114

[Brassard, Hoyer, Mosca, Tapp; Quantum Amplitude Amplification and Estimation; quant-ph/0005055]

$$|\mathcal{A}|0
angle = \sqrt{1-a}|\Psi_0
angle + \sqrt{a}|\Psi_1
angle$$

QAE estimates *a* with high probability such that the estimation error scales as O(1/M) [as opposed to $O(1/\sqrt{M})$]

M: number of applications of A

[Brassard, Hoyer, Mosca, Tapp; Quantum Amplitude Amplification and Estimation; quant-ph/0005055]

$${\cal A}|0
angle=\sqrt{1-a}|\Psi_0
angle+\sqrt{a}|\Psi_1
angle$$

QAE estimates a with high probability such that the estimation error scales as O(1/M) [as opposed to $O(1/\sqrt{M})$]

M: number of applications of \mathcal{A}

- \rightarrow What the (orignal) algorithm provides:
 - An estimate: $\tilde{a} = \sin^2(\tilde{\theta}_a)$ with $\tilde{\theta}_a = y\pi/M$, $y \in \{0, ..., M-1\}$, and $M = 2^n$
 - A success probability (that can be increased by repeating the algorithm)
 - A bound: $|a \tilde{a}| \leq \mathcal{O}(1/M)$

ightarrow Basis of quantum Monte Carlo integration and $\mathcal{O}(1/M)$ scaling

 \rightarrow Various algorithms/implementations available

[Intallura et al.; 2303.04945]

Mathieu PELLEN

- ightarrow Basis of quantum Monte Carlo integration and $\mathcal{O}(1/M)$ scaling
- \rightarrow Various algorithms/implementations available

[[]Grinko, Gacon, Zoufal, Woerner; 1912.05559]

Resulting estimation error for a = 1/2 and 95% confidence level with respect to the required total number of oracle queries.

Mathieu PELLEN

Quantum computing for high-energy physics simulations

Quantum integration

Extension to

$$\mathcal{A}|0
angle = \sum_{i} a_{i}|\Psi_{i}
angle$$

 \rightarrow Definition of a piece-wise function with $f(x_i) = a_i$.

Quantum integration

Extension to

$$\mathcal{A}|0
angle = \sum_{i} a_{i}|\Psi_{i}
angle$$

 \rightarrow Definition of a piece-wise function with $f(x_i) = a_i$.

So far used in finance for simple functions in 1D [Zoufal, Lucchi, Woerner; 1904.00043] [Woerner and Egger; 1806.06893], [Stamatopoulos et al.; 1905.02666, 2111.12509], [Rebentrost, Gupt, Bromley; Phys.Rev.A 98 (2018) 022321] \rightarrow Applicable to HEP? What are the limitations?

$$I=\int \mathrm{d}x\,f(x)g(x)$$

Mathieu PELLEN

Quantum integration

Extension to

$$\mathcal{A}|0
angle = \sum_{i} a_{i}|\Psi_{i}
angle$$

 \rightarrow Definition of a piece-wise function with $f(x_i) = a_i$.

So far used in finance for simple functions in 1D [Zoufal, Lucchi, Woerner; 1904.00043] [Woerner and Egger; 1806.06893], [Stamatopoulos et al.; 1905.02666, 2111.12509], [Rebentrost, Gupt, Bromley; Phys.Rev.A 98 (2018) 022321] \rightarrow Applicable to HEP? What are the limitations?

$$I=\int \mathrm{d} x\,f(x)g(x)$$

• In finance:

- f: probability
- g: payoff

Applications

• $e^+e^- \rightarrow q\bar{q}$ (in QED) $\rightarrow 1D$ problem

$$\sigma \sim \int_{-1}^{1} \int_{0}^{2\pi} \mathrm{d}\cos\theta \mathrm{d}\phi \left(1 + \cos^{2}\theta\right)$$

• $e^+e^- \rightarrow q\bar{q}'W \rightarrow 2D$ problem

$$\begin{split} \sigma &\sim \int_{M_W^2}^s \int_0^{s_1^{\mathrm{Max}}} \int_{-1}^1 \int_0^{2\pi} \int_0^{2\pi} \mathrm{d}\Phi_3 \left| \mathcal{M}_{\mathsf{e}^+\mathsf{e}^- \to q\bar{q}'\mathsf{W}} \right|^2 \\ &\sim \int_{M_W^2}^s \int_0^{s_1^{\mathrm{Max}}} \mathrm{d}\tilde{\Phi}_3 \left| \mathcal{M}' \right|^2 \end{split}$$

with $\mathcal{M}' = \mathcal{M}_{e^+e^- \to q\bar{q}'W}$ (cos $\theta_1 = 0, \ \phi_1 = \pi/2, \ \phi_2 = \pi/2$).

Loading of distribution / encoding into qubits

Encoding the distribution to be integrated into qubits (coefficients of states)

- Exact loading [Shende, Bullock, Markov, quant-ph/0406176] (resource intensive)
- Using quantum machine learning (qGAN) [Zoufal, Lucchi, Woerner; 1904.00043] (not exact)

Loading of distribution / encoding into qubits

Encoding the distribution to be integrated into qubits (coefficients of states)

- Exact loading [Shende, Bullock, Markov, quant-ph/0406176] (resource intensive)
- Using quantum machine learning (qGAN) [Zoufal, Lucchi, Woerner; 1904.00043] (not exact)
- Example: Exact loading $1 + x^2$

$$\rightarrow$$
 3 qubits: 2³ = 8 bins

Mathieu PELLEN

Quantum computing for high-energy physics simulations

Integration - $1 + x^2$

• Matching boundary of integration (3 qubits $\Rightarrow 2^3$ bins)

Domain	low stat.		high stat.		very high stat.		exact	
Domain	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta [\%]$
[-0.75;0]	0.345	-3.31	0.332	0.706	0.334	0.0331	0.334	-8.31×10^{-3}
[-0.5; 0]	0.215	-5.86	0.201	1.15	0.203	0.0986	0.203	-0.0161
[-0.25;0]	0.112	-17.1	0.0939	1.87	0.0960	-0.284	0.0957	-0.0389

Integration - $1 + x^2$

• Matching boundary of integration (3 qubits $\Rightarrow 2^3$ bins)

Domain	low stat.		high stat.		very high stat.		exact	
Domain	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta [\%]$
[-0.75;0]	0.345	-3.31	0.332	0.706	0.334	0.0331	0.334	-8.31×10^{-3}
[-0.5; 0]	0.215	-5.86	0.201	1.15	0.203	0.0986	0.203	-0.0161
[-0.25;0]	0.112	-17.1	0.0939	1.87	0.0960	-0.284	0.0957	-0.0389

• Non-matching boundary of integration

		[-0.7]	7; 0.6]		$\left[-0.625; 0.375 ight]$			
Qubits number	high stat.		exact		high stat.		exact	
	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta[\%]$	σ	$\delta [\%]$
3	0.402	-28.0	0.406	-27.1	0.296	-28.1	0.299	-27.5
4	0.463	-17.0	0.468	-16.0	0.408	-1.07	0.412	$5.96 imes10^{-3}$
5	0.527	-5.46	0.532	-4.62	0.408	-1.07	0.412	$5.96 imes 10^{-3}$
6	0.542	-2.76	0.547	-1.81	0.408	-1.07	0.412	$5.96 imes10^{-3}$

Integration - 2D $[{\rm e^+e^-} \rightarrow q \bar{q}' {\rm W} ~{\rm with}~{\rm angles}~{\rm fixed}]$

Quantum computing for high-energy physics simulations

Mathieu PELLEN

Integration - $2D~[{\rm e^+e^-} \rightarrow q \bar{q}' {\rm W}$ with angles fixed]

\mathbf{Qubits}	Cuid dim	.	S_1	\mathcal{S}_2		
number	Gria ann.	σ	$\delta[\%]$	σ	$\delta[\%]$	
4	4×4	0.55	0	0.70	-4.1	
5	5×5	0.52	-4.92	0.53	-26.6	
6	6×6	0.47	-14.1	0.79	9	
6	7 imes 7	0.62	-14.4	0.70	-3.0	
6	8 imes 8	0.55	0	0.78	7.6	

 S_1 : matching boundary of integration S_2 : no matching boundary of integration [Agliardi, Grossi, MP, Prati; 2201.01547]

Working but control of uncertainty crucial!

Remarks

- Use Qiskit (IBM python software) subroutines and noiseless quantum simulation (perfect quantum computer)
- For present application, too many qubits for test on real hardware
 - \rightarrow 4 qubits for representation \rightarrow 9 total qubits
 - \rightarrow 6 qubits for representation \rightarrow 13 total qubits
- Largest quantum computer on IBM quantum experience:
 - 7 qubits previously (127 qubits now)
 - ightarrow Simulators can go up to 5000 qubits

Remarks

- Use Qiskit (IBM python software) subroutines and noiseless quantum simulation (perfect quantum computer)
- For present application, too many qubits for test on real hardware
 - \rightarrow 4 qubits for representation \rightarrow 9 total qubits
 - \rightarrow 6 qubits for representation \rightarrow 13 total qubits
- Largest quantum computer on IBM quantum experience:
 - 7 qubits previously (127 qubits now)
 - ightarrow Simulators can go up to 5000 qubits

Summary

- First application of quantum integration in HEP
- Theoretical quadratic speed-up
- Main challenge: error estimate

Applications

 \rightarrow Quantum integration

\rightarrow Colour amplitudes

[Chawdhry, MP; 2303.04818]

Alternative to loading - [Chawdhry, MP; 2303.04818]

$$\mathcal{M} \sim \sum \operatorname{Tr}\left(\mathcal{T}^{a_1} \dots \mathcal{T}^{a_n}\right) \mathcal{K}(1, \dots, n)$$

- Kinematic part: made of spinors and tensors (and kinematic invariants)
- Colour part: made of SU(3) generators of QCD

Alternative to loading - [Chawdhry, MP; 2303.04818]

$$\mathcal{M} \sim \sum \operatorname{Tr}\left(\mathcal{T}^{a_1}...\mathcal{T}^{a_n}\right)\mathcal{K}(1,...,n)$$

- Kinematic part: made of spinors and tensors (and kinematic invariants)
- Colour part: made of SU(3) generators of QCD

Remarks

- First step towards a full quantum amplitude/Monte Carlo
- Useful for a quantum parton shower

Mathieu PELLEN

Quantum computing for high-energy physics simulations

- $[T^a, T^b] = \mathrm{i} f_{abc} T^c$.
- $T^a, T^c, ...: SU(3)$ generators
- Gell-Mann matrices

$$\mathcal{T}^{1} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{T}^{2} = \frac{1}{2} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{T}^{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{T}^{4} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$\mathcal{T}^{5} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & -i \\ i & 0 & 0 \end{pmatrix}, \quad \mathcal{T}^{6} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathcal{T}^{7} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \mathcal{T}^{8} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Attention! T^a are not unitary!

 \rightarrow In our example, colour factor: $T^a_{ij}T^a_{jk} = C_F \delta_{ik}$

- Gluon: 8 colours \rightarrow 3 qubits (2³)
- Quark: 3 colours \rightarrow 2 qubits (2²)

- Gluon: 8 colours \rightarrow 3 qubits (2³)
- Quark: 3 colours \rightarrow 2 qubits (2²)

Make non-unitary matrices unitary again!

 \rightarrow extend dimension and modify them

$$\overline{T^{1}} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{T^{2}} = \frac{1}{2} \begin{pmatrix} 0 & -\mathbf{i} & 0 & 0 \\ \mathbf{i} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{T^{3}} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\mathbf{i} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{T^{4}} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{T^{5}} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -\mathbf{i} & 0 \\ 0 & 1 & 0 & 0 \\ \mathbf{i} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{T^{6}} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{T^{7}} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i} & 0 \\ 0 & 0 & -\mathbf{i} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \overline{T^{8}} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- One-to-one correspondence between Feynman diagram and circuit
- Gates for qqg (Q) and ggg (G) vertices to simulate QCD (colour) interaction

- One-to-one correspondence between Feynman diagram and circuit
- Gates for qqg (Q) and ggg (G) vertices to simulate QCD (colour) interaction

- One-to-one correspondence between Feynman diagram and circuit
- Gates for qqg (Q) and ggg (G) vertices to simulate QCD (colour) interaction

Example

$$\langle \Omega |_{\mathcal{U}} \prod_{i=1}^{N_{ops}} \{ B(\alpha_i) A \} | \Omega \rangle_{\mathcal{U}} = \prod_{i=1}^{N_{ops}} \alpha_i$$

Mathieu PELLEN

Quantum computing for high-energy physics simulations

Total counts are: ('000000010101': 226, '00010010011': 342, '000000010110': 225, '000000001101': 696. '0001 0010010': 362, '00000010001': 872, '00010001101': 2006, '00000001100': 643, '00010001100': 2006, '000100 001101 1051. '00000001111': 638. '00000010010': 904. '00010000010': 1057. '00100010101': 52353. '000100 18188': 3342. '00100000181': 5942. '00010000111': 1845. '0000001011': 210. '00100001181': 36223. '00100 0101111': 51877. '00000001110': 643. '00010010000': 4838. '00000010100': 5421. '00010000100': 1035. '0010 00000001: 107280. '00010000011': 1075. '00100000111': 6795. '00100001011': 145043. '00100010010': 10275 '00010000000': 65548, '00000000000': 27415, '00010001111': 2031, '00100000110': 7004, '000000001011': 25 51, '00100001111': 36471, '00010010111': 8866, '00010000101': 1077, '0010001010': 52220, 00010010110 00100010100'' 185855. '00100001100'' 36173. '00010010101'' 8850. '00100010000'' 14129. '00100001 118': 36925, '00100000100': 6858, '00100010011': 10182, '0010000001': 6950, '00010001110': 2018, '00100 000011': 5983. '00000010011': 815. '00010001011': 7957. '0001000001': 340. '001000010001': 10163. '00010 000001': 1092, '00100000010': 7010}

→ Trace defined in $|0000000000\rangle = |0_{11}\rangle$ state: $|\psi\rangle = \frac{C}{N}|0_{11}\rangle + ...$ ⇒ $\frac{27415}{N_{shots}=1000000} \sim$ $\left(\frac{C}{N} = \frac{(N_c=3)C_F}{N_c^{n_q=1}(N_c^2-1)^{n_g=1}}\right)^2$ → Colour factors encoded in one single state (as needed for QAE) → Any colour factor computable

• Colour factors as squared

(done [Chawdhry, MP; 2303.04818])

Outlook

- Colour factors as squared (done [Chawdhry, MP; 2303.04818])
- Colour factor as amplitudes (done)

Outlook

- Colour factors as squared (done [Chawdhry, MP; 2303.04818])
- Colour factor as amplitudes (done)
- Interferences (on-going)
 - \rightarrow special feature of quantum computing
 - \rightarrow relevant for parton-shower
Outlook

- Colour factors as squared (done [Chawdhry, MP; 2303.04818])
- Colour factor as amplitudes (done)
- Interferences (on-going)
 - \rightarrow special feature of quantum computing
 - \rightarrow relevant for parton-shower

- First building blocks for full amplitude
- Quantum advantage? (in addition to QAE)
 To compute colour factors for many gluons? (difficult problem)

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand
- More natural definition of objects to be computed
 - \rightarrow Example of colour algebra

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand
- More natural definition of objects to be computed
 - \rightarrow Example of colour algebra
- Estimate of resources needed for actual computation on near-term quantum computers (scalling, noise, connections, ...)
 → On-going collaboration with QUANTINUUM (Cambridge, UK)

- Reliable error estimate
 - \rightarrow Taking into account binning effects / multi-dimension integrand
- More natural definition of objects to be computed
 - \rightarrow Example of colour algebra
- Estimate of resources needed for actual computation on near-term quantum computers (scalling, noise, connections, ...)
 → On-going collaboration with QUANTINUUM (Cambridge, UK)
- Can there be quantum advantage for event generation? [Bravo-Prieto et al; 2110.06933]

• Is it possible? \rightarrow Yes.

Is there a quantum advantage?
 → In principle, yes. In practice for now, no.

• Is it possible? \rightarrow Yes.

Is there a quantum advantage?
 → In principle, yes. In practice for now, no.

Is it more resource efficient than CPU/GPU?
 → At the moment, not known.

• Are we witnessing a quantum revolution?

• When can we do useful quantum computations in the future?

Mathieu PELLEN

Quantum computing for high-energy physics simulations

BACK-UP

$$B_{1}(\alpha) = \begin{pmatrix} \sqrt{1 - |\alpha|^{2}} & \alpha \\ -\alpha & \sqrt{1 - |\alpha|^{2}} \end{pmatrix}$$
(1)
$$B(\alpha)A|k\rangle = \begin{cases} \alpha |0\rangle + \sqrt{1 - |\alpha|^{2}} |1\rangle & \text{if } k = 0 \\ |k + 1\rangle & \text{if } 0 < k < 2^{N_{\mathcal{U}}} - 1 \\ \sqrt{1 - |\alpha|^{2}} |0\rangle - \alpha |1\rangle & \text{if } k = 2^{N_{\mathcal{U}}} - 1 \end{cases}$$
(2)

$$\langle \Omega |_{\mathcal{U}} B(\alpha) A | \Omega \rangle_{\mathcal{U}} = \alpha$$
 (3)

$$\langle \Omega |_{\mathcal{U}} \prod_{i=1}^{N_{ops}} \{ B(\alpha_i) A \} | \Omega \rangle_{\mathcal{U}} = \prod_{i=1}^{N_{ops}} \alpha_i$$
(4)