

Quantum noise reduction goals for Virgo upgrades and Einstein Telescope

Eleonora Capocasa

Workshop R&Ds - développements instrumentaux pour Virgo et ET

Marseille, 6 mars 2024

Same target as A#, Voyager, Virgo_nEXT, Cosmic Explorer

- Phase noise ~ 10 mrad
- Total losses ~ 8%

• Current results LIGO: losses: 25% Phase noise: < 20 mrad Virgo (O3): losses: 32-41% Phase noise: 40 mrad

Squeezing degradation sources

Quantum noise relevant parameters

Einstein Telescope

Parameter	Units	HF Detector	LF Detector	Parameter	O5	Initial post-O5
Interferometer configuration	Tuned	dual-recycled Fabry-Pe	erot-Michelson	Injected squeezing	12 dB	12 dB
Laser wavelength	nm	1064	1550	initiation leases	6 = 07	12 CD E E 07
Laser power	W	500.0	1.7	Injection losses	0.5%	0.0%
Arms length	km	10	10	FC losses	30 ppm	$30 \mathrm{ppm}$
Arms circulating power	kW	3000	18	Readout losses	6%	4.5%
ITM transmissivity	%	0.7	0.7	Arm-cavity roundtrip losses	75 ppm	75 ppm
Arm finesse		888	888	Signal extraction cavity (SEC) roundtrin losses	1000 ppm	1000 ppm
Arm half-bandwidth	Hz	8.3	8.3			
Signa	l extraction cavi	ty (SEC)		Phase noise	25 mrad	15 mrad
SEM transmissivity	%	5.0	20	Mismatching squeezing - filter cavity	0.5%	0.5%
SEC tunephase	rad	0.0	0.75	Mismatching squeezing - interferometer	2%	1%
SEC length	m	100	100	Measured squeezing at high-frequency	5.5 dB	7.5 dB
	Squeezing inject	ion		Incastrict squeezing at ingh nequency	5.5 UD	1.9 uD
Squeezing type	F	requency-dependent so	queezing			
Injected squeezing	dB	18	10			
Injected squeezing angle	rad	0.00	0.3			
Filter cavity length	m	1000	1000/1000			
Filter cavity input transmissivity	ppm	1773	357.1/ 138			
Filter cavity half-bandwidth	Hz	21.16	4.26/1.65			
Filter cavity detuning	Hz	-21.15	19.51/-7.65			
	Readout loss					
Photodetector Inefficiency	%	1	1			
Faraday isolator	%	1	1			
Output mode cleaner	%	1	1			
Inter	nal loss of interfe	erometer				
ETM transmissivity	ppm	5.0	5			
Arm Loss per mirror	ppm	37.5	20			
Arm round trip loss	ppm	80	45			
SEC loss	ppm	1000.0	1000			
Sc	queezing injection	n loss				
OPA cavity	%	1.0	1			
Faraday isolators	%	2	3			
FC end mirror transmittance	ppm	5	5			
FC round-trip loss	ppm	45	20			

Virgo n_EXT

4

Target squeezing degradation budget

Target squeezing degradation budget

Virgo_nEXT

- Total Injection loss target 3%
 - ▶1% OPA
 - ▶ 2% Faraday Isolator (several passes)

- Development and characterisation of a vacuum squeezing source in synergy with Virgo_nEXT, as a continuation of the ANR Exsqueez project (IJCLab):
 - comparative measurements with the OPO in air and in vacuum (and homodyne photodiodes in
 - vacuum in an enclosure currently under construction)
 - The first squeezing measurements expected by the end of the year
- Faraday isolation loss reduction: current 1% -> goal 0.35%

- Arm cavity round trip losses (75 ppm) already compliant with requirement
- SEC losses are more critical
 - Theoretical budget for Virgo: 1000 ppm but current value is much larger (few %?)

```
BS antireflective (round trip) - pick off for control
Compensating plate antireflective (round trip)
Optics scattering
Total
```

- Measured LIGO value 6000 ppm
- 10dB goal -> 500/1000 ppm

1000 ppm	
200 ppm	
200 ppm	
600 ppm	

• Reduction of Anti-reflecting coating to 50 ppm through a better control of the deposition system (LMA)

- Interesting discussion in <u>XGCD (Next-Generation collaborative design) meeting</u>
- - Alternative to compensation plates
 - •BS thermal lenses issue

•CE SEC loss target of 500 ppm seems very critical and it is being carefully considered in the design

https://indico.gssi.it/event/621/

- Photodiode efficiency (>99%) should be compliant with requirements
- Replace monolithic OMC cavity by an open cavity or a hollow cavity to remove absorption losses and Rayleigh scattering losses inside the cavity medium.

• Design and test of a reduced loss output mode cleaner (LAPP)

Readout chain losses

Mode-mismatching

- Several cavities to be matched: important source of losses
- Frequency dependent degradation effect. Some uncertainties in the modelling.
- Goal: <1%
- Not only curvature mismatch correction, but also astigmatism and higher order aberrations.

R&D

 Adaptive matching telescopes, developing new mismatching sensing scheme (**APC**)

 Higher order mismatches between the arms and the SEC due to optical path length distortions in the ITMs with high power: can TCS compensate ?

Scheme of possible mode matching sensors and actuators implementation for VnEXT.

11

Precision mode-matching is a central design driver

Example of "anti-squeezing" around HOM resonances in DARM spectrum

Model assumes a **1%** SEC mode-mismatch with arms

Effective rotation of SQZ angle via mode scattering process:

 $TEM00 \rightarrow LG10 \rightarrow TEM00^*$

*having accumulated *different* phase relative to the unscattered TEM00 field

Mode-mismatching for Cosmic Explorer

Highlights from CE optical design

Jon Richardson (University of California, Riverside), Paul Fulda (University of Florida) https://indico.gssi.it/event/621/

- Currently 50-90 ppm of round trip losses -> target 20 ppm
- Measured losses systematically higher than expected. Loss budget not fully understood

 Reduce scattering from mirrors (20 ppm RTL target): • Optimisation of the coating process to reduce the point defect density: study impact of the process parameters (IBS source parameters, post-annealing) (LMA) • Implement an in-situ monitoring system to study the contaminant in the Grand Coater machine (LMA)

R&D:

- Filter cavity with adaptive finesse (IJCLAB in collaboration with LKB, LAPP, LMA ANR QFilter):
 - Simulation activity on going
 - Possible implementation on CALVA
- - cavity)
 - Table top experiment under development

• Filter cavity topology study for optimal quantum noise in a detuned interferometer (**APC** - ANR quantum-FRESCO): On-going simulation to find the best design to perform a non-trivial phase rotation (2 filter cavities, coupled)

14

- ET/Virgo n_EXT are targeting 10 dB of quantum noise reduction
 - Well established technology: frequency dependent squeezing with filter cavities.
- Main challenges:
 - Total loss reduction below 8%
 - Thermal effect from high power
 - ET-LF cavity needs 2 filter cavities with very narrow bandwidth
- Strong synergy with Virgo_nEXT, A#, CE (same 10dB target and same technologies)

Back up

ET configuration and noise budget

Virgo_nEXT parameters

Parameter	O4 high	O4 low	O5 high	O5 low	VnEXT_low
Power injected	25 W	40 W	60 W	80 W	277 W
Arm power	120 kW	190 kW	290 kW	390 kW	1.5 MW
PR gain	34	34	35	35	39
Finesse	446	446	446	446	446
Signal recycling	Yes	Yes	Yes	Yes	Yes
Squeezing type	FIS	FDS	FDS	FDS	FDS
Squeezing detected level	3 dB	4.5 dB	4.5 dB	6 dB	10.5 dB

- Technology : frequency dependent squeezing with filter cavities for post O5 and 3G
 - Successfully demonstrated in A+
- Incremental approach to reduce optical losses and phase noise to target value

*Note that Virgo_nEXT will use stable cavities

Quantity	LIGO A+
Arm length (km)	4
Laser wavelength (um)	1064
Arm power (MW)	0.75 (~0.35)
Squeezing (dB)	6
Mirror mass (kg)	40
Arm cavity loss (round trip, ppm)	75
Signal Extraction Cavity loss (round	5000

CE	ET_HF
20/40	10
1064	1064
1.5	3
10	10
320	200
40	75
500	1000

For comparison: Virgo_nEXT parameters

Parameter	O4 high	O4 low	O5 high	O5 low	VnEXT_low	
Power injected	25 W	40 W	60 W	80 W	277 W	
Arm power	120 kW	190 kW	290 kW	390 kW	1.5 MW	
PR gain	34	34	35	35	39	
Finesse	446	446	446	446	446	
Signal recycling	Yes	Yes	Yes	Yes	Yes	
Squeezing type	FIS	FDS	FDS	FDS	FDS	
Squeezing detected level	3 dB	4.5 dB	4.5 dB	6 dB	10.5 dB	
Payload type	AdV	AdV	AdV	AdV	Triple pendulum	
ITM mass	42 kg	42kg	42 kg	42 kg	105 kg	
ETM mass	42 kg	42kg	105 kg	105 kg	105 kg	
ITM beam radius	49 mm	49 mm	49 mm	49 mm	49 mm	
ETM beam radius	58 mm	58 mm	91 mm	91 mm	91 mm	
Coating losses ETM	2.37e-4	2.37e-4	2.37e-4	0.79e-4	6.2e-6	
Coating losses ITM	1.63e-4	1.63e-4	1.63e-4	0.54e-4	6.2e-6	
Newtonian noise reduction	None	1/3	1/3	1/5	1/5	
Technical noise	"Late high"	"Late low"	"Late low"	None	None	
BNS range	90 Mpc	115 Mpc	145 Mpc	260 Mpc	500 Mpc	

