Simulations optiques pour Virgo_nEXT

 $\bullet \bullet \bullet$

Clément JACQUET, Christelle BUY, Matteo BARSUGLIA, Eleonora CAPOCASA

Finesse (3.0) - 1/3 Outil de simulation de détecteur d'ondes gravitationnelles ¹

- Principe de fonctionnement :
 - Librairie python permettant de simuler des systèmes contenant : des lasers, des modulateurs, des miroirs plans et/ou sphériques, des détecteurs d'amplitude et/ou de puissance, des lentilles etc...
 - Finesse calcule l'amplitude du champ en chaque point de l'interféromètre en supposant un régime stationnaire.
 - La simulation est réalisée dans le domaine fréquentiel

• Exemples d'utilisation :

- Calcul des signaux d'erreurs pour établir la stratégie de contrôle de l'interféromètre
- Calcul de fonctions de transfert
- Etude de la sensibilité au bruit quantique
- Ce que Finesse prend en compte vs ce qu'il ne prend pas en compte
 - 🛛 🕺 Les modes d'ordres supérieurs (Hermite-Gauss et Laguerre-Gauss) 🗸
 - Astigmatisme
 - 0 🛛 La polarisation 🖊
 - Les variations temporelles #

Exemple 1, signaux d'erreurs (VIR-1000A-23)

Exemple 2, Distribution de puissance d'un des modes résonants²

[1] A Freise, G Heinzel, H Lück, R Schilling, B Willke, and K Danzmann. Frequency-domain interferometer simulation with higher-order spatial modes. *Classical and Quantum Gravity*, 21(5):S1067–S1074, 2004. Finesse is available at http://www.gwoptics.org/finesse. URL: http://stacks.iop.org/0264-9381/21/S1067.

Finesse (3.0) - 2/3

Objectifs des prochaines simulations (à l'APC et au L2IT)

- Coeur des futures simulations :
 - Partir d'un interféromètre dans la configuration Virgo nEXT avec cavité stables
 - L'interféromètre est considéré stable et déjà contrôlé (Pas de problème de désalignement angulaire et longitudinal)
- Phénomènes étudiés, conséquence de l'injection d'une forte puissance:
 - Pertes optiques
 - Mismatch
 - Impact des défauts des optiques
 - Effets thermiques et impact sur la possibilité d'injecter 10 DB de squeezing ?

Schéma optique de Virgo-nEXT avec ses cavités stables

Finesse (3.0) - 3/3

Exemple d'une simulation réalisée avec finesse³

- Simulation de Virgo dans sa configuration Virgo nEXT
 - Miroirs sans défauts de surface
 - Miroirs sans épaisseur
- Fréquence modulant le mouvement des miroirs
 - \circ $\hat{}$ Déphasage de pi entre les deux cavité Fabry-Perot
 - Fréquence variant de 5Hz à 5kHz

• Détecteurs

- Mesurant le bruit quantique (pression de radiation et shot noise)
- Mesurant uniquement le shot noise

Réponse de l'interféromètre Virgo_nEXT face au bruit quantique (avec et sans prise en compte de la pression de radiation)

[3] Cavity eigenmodes, Finesse 3.0 documentation website, dernière consultation: 27/02/2024, https://finesse.ifosim.org/docs/latest/examples/9_aligo_sensitivity.html

05-03-2023

Status et planning 1/2

Ligo - optimisation des lentilles pour le mismatch dans le système de squeezing⁴

- Objectifs de l'étude (2018):
 - Les 5dB injectés descendaient à 1.6dB au darkport, au lieux des 3/3.5 dB attendus au vu des pertes connues
 - L'hypothèse principale était le mismatch entre le squeezer, l'interféromètre et l'OMC.
 - Ajuster la position et le rayon de courbure des lentilles pour adapter les modes
- Choix des optiques à prendre en compte dans la simulation
 - "Turning mirrors", isolateur de faraday sans épaisseur ne sont pas pris en compte et considérée comme négligeable.
 - Les optiques jouant un rôle important dans les comportements à observer sont conservés (PRM, SRM, I/ETM, etc...)
- Comparaison entre mesure sur l'instrument et résultats de la simulation pour calibrer les paramètres optiques
 - Mesure de profil du faisceau réalisée directement sur l'instrument
 - Des erreurs apparaissent et les coefficients à appliquer sur les paramètres pour faire correspondre le modèle semble très importants

[4] A. Green and al, FINESSE Squeezing Mode Matching Study for LLO, Ligo-T1900159, Nov 26th-Dec 7th 2018, https://dcc.ligo.org/DocDB/0160/T1900159/001/Summary.pdf

Status et planning 2/2

Ligo - optimisation des lentilles pour le mismatch dans le système de squeezing⁴

- Simulation et mesures sont comparées après le mode cleaner
 - Les résultats ne correspondent toujours pas aux mesures (même en gardant la correction appliquée précédemment)
 - Les résultats peuvent de nouveau être corrigés en changeant les paramètres.
- Enjeux lors de l'élaboration d'une simulation
 - S'assurer de la consistance entre résultats de la simulation et la réalité de l'interféromètre
 - Nécessite un bonne compréhension de l'interféromètre et de la Physique de Finesse

21

Première étapes du travail

- Bien comprendre chaque paramètre et méthode de calcul via Finesse
- Simulation (intégrer tous les paramètres) d'un ITF parfait, cavités stables, miroirs larges (contexte Virgo_nEXT)
- Regarder ce qui est négligeable et ce qui est nécessaire (dimension finie, épaisseur, défauts tout autres effets)

<u>Étre certain que l'interféromètre est</u> <u>correctement simulé et que les</u> <u>résultats correspondent bien à la</u> <u>réalité.</u>

- Comprendre précisément l'impact des effets thermiques de forte puissance dans l'ITF lorsqu'on injecte 1.5MW dans les bras
- Comprendre comment compenser les effets thermiques : l'utilisation des corrections sur les optiques

Etude de l'interféromètre en vue de Virgo_nEXT, de l'injection d'une forte puissance et des 10dB de squeezing pour améliorer la sensibilité.

Annexes - Ressources utiles pour apprendre finesse

Première utilisation de finesse pour simuler un interféromètre pour la détection d'ondes gravitationnelle :

[1] A Freise, G Heinzel, H Lück, R Schilling, B Willke, and K Danzmann. Frequency-domain interferometer simulation with higher-order spatial modes. *Classical and Quantum Gravity*, 21(5):S1067–S1074, 2004. Finesse is available at http://www.gwoptics.org/finesse. URL: http://stacks.iop.org/0264-9381/21/S1067.

Documentation utilisée :

[2] Quantum-noise limited sensitivity of Advanced LIGO, Finesse 3.0 documentation website, dernière consultation: 27/02/2024, https://finesse.ifosim.org/docs/latest/examples/cavity_eigenmodes.html

[3] Cavity eigenmodes, Finesse 3.0 documentation website, dernière consultation: 27/02/2024, https://finesse.ifosim.org/docs/latest/examples/9_aligo_sensitivity.html

[4] A. Green and al, FINESSE Squeezing Mode Matching Study for LLO, Ligo-T1900159, Nov 26th-Dec 7th 2018, https://dcc.ligo.org/DocDB/0160/T1900159/001/Summary.pdf

Sites de références :

Documentation de finesse 3.0 : https://finesse.ifosim.org/docs/latest/index.html#

Documentation de finesse 2.0 : <u>https://www.gwoptics.org/finesse/</u>

Ressources utiles pour apprendre finesse :

[3] C. Bond, D. Brown, A. Freise, and K. Strain. Interferometer Techniques for Gravitational-Wave Detection. Living Reviews in Relativity, 2016. doi:10.1007/s41114-016-0002-8

[4] D. D. Brown. Interaction of light and mirrors: Advanced techniques for modelling future gravitational wave detectors. PhD thesis, University of Birmingham, 2015. URL: http://etheses.bham.ac.uk/6500/9/BrownD16PhD_Final.pdf.

05-03-2023