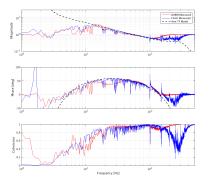
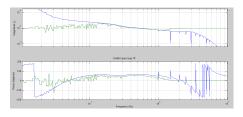
Rôle des simulations dans le commissioning

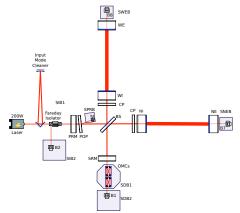
Michal Was

LAPP/IN2P3 - Annecy




Simulations and commissioning

- Simulations provide the expected behavior of the interferometer
- Typical situation: simulations → commissioning
 - Predict expected behavior using simulations
 - Try to control interferometer based on expected behavior
 - Real interferometers are different from simulations
 - Empirically try other solutions until one works
- Less explored path: commissioning → simulations
 - Observe unexpected behavior in interferometer
 - Reproduce behavior in simulations
 - Understand the physics of the behavior
 - Solve the unexpected problem
 - In practice getting answer from simulations takes 1-2 months

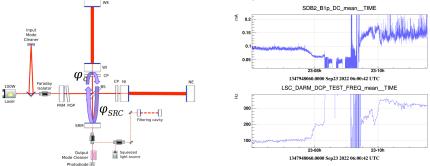

An example of unexpected behavior - VIR-0044A-17

- Not understood feature in the DARM control loop transfer function
- Same feature observed in plane wave simulations
- But physics of it never understood

Simulation problem

- Have a realistic model of the interferometer
- Simulations can never be a complete representation of real life
- Simplify physics or simplify model?
 - Simplify physics: plane wave, modal decomposition, simple pendulum suspension, ...
 - Simplify model: one arm cavity only, a couple cavity PR + arm, full interferometer without INJ/DET telescopes, ...
- Understanding the meaning of results is more important than the simulation itself

A missed problem - VIR-0258A-20

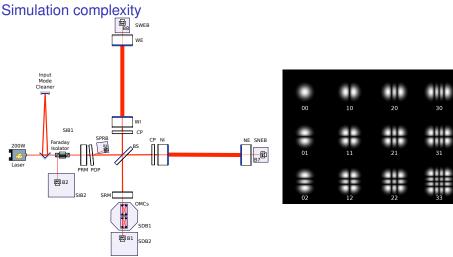

• Finesse simulation up to higher order mode 5

Starting parameters	No SR	SR
Recycling gain	38.2	38.3
DF power	0.54 μW	4µW
TEM ₀₀ power	1.7e-9 W	2.8e-10 W

ΔRoC = 10 (on NE)	No SR	SR
Recycling gain	37.2	32.9
DF power	28mW	190mW
TEM ₀₀ power	10µW	6mW

- Power due to arm cavity differential mode mismatch amplified by factor 7 with SR
- Nobody understood that it is a fundamental problem of degenerate signal recycling

Resonant sideband extraction with a degenerate SRC

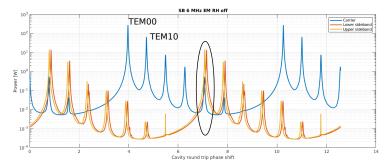

Resonant sideband extraction - TEM00 anti-resonant in signal recycling cavity

$$\varphi_c^{00} + \varphi_{\rm SRC} = (2n+1)\pi$$

- Higher order mode resonance conditions
 - ▶ stable arm cavities \Rightarrow HOM not resonant in the arms $\varphi_c^{mn} = \varphi_c^{00} + \pi$
 - SRC degenerate $\rightarrow \varphi_{SRC}$ same for all modes $\varphi_c^{mn} + \varphi_{SRC} = 2n\pi$
 - ⇒ Signal recycling acts as defect amplifier
- \Rightarrow SR increases HOM power by factor \sim 7 when well aligned
 - ~ 100 mW during O3
 - ~ 700 mW at present

VIR-0923A-22

Michał Wąs ()



- Analytical computation can be understood by a person
- Plane wave simulation simplest form of longitudinal control
- order 0 and 1 simulation first level of angular control
- order 0, 1 and 2 simulation first level of thermal compensation simulation
- FFT simulation often the longitudinal or angular control impact is lost
- Mirror maps low order (low angle) scattering and defects
- Mirror rugosity higher order (high angle) scattering

Michał Wąs ()

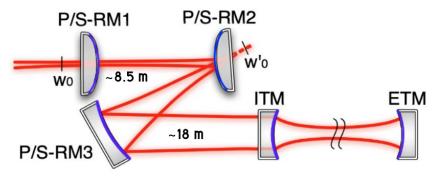
CRAPP (())

Higher order mode can matter

- Position of higher order modes and sidebands as function of arm length
- One free spectral range
- Superposition of 4th order carrier and fundamental of 56 MHz sideband
- ⇒ Interferometer control fails
 - Mirror radius of curvature changes due to laser absorption
 - Superposition condition changes when locking interferometer

VIR-0232A-22

Simulation for commissioning


simulations \longleftrightarrow commissioning

Need a two person team: simulation expert and interferometer expert

- Running the interferometer is complicated
- Running a simulation is complicated
- Simulation model needs to be developed before commissioning starts
 - And tested on some example of potential problems
 - Establish a good communication between the two person team
- Once commissioning starts
 - New questions from interferometer expert will appear
 - Simulation expert need to be reactive and try to find answers
 - Taking more than 1 week to provide an answer is not useful

Some first questions for Virgo stable recycling cavities

- How to do the initial mirror positioning and alignment?
 - How to get from ~ mm/mrad installation errors to ~ um/urad alignment needed for cavity resonance
- How to make a precise automatic alignment of recycling cavities with 3 mirrors instead of 1 mirror
- How to do the mode matching of recycling cavities
 - Distance between RM2 and RM3 is critical
- Goal should be to commission interferometer in simulation before commissioning real hardware