#### Improving the absolute calibration of the GW detectors

Benoit Mours (IPHC) March 5, 2024 Workshop R&Ds - Développements Instrumentaux / Virgo-ET

D

## Why do we need a good calibration

#### Find the sources

- Source position from:
  - Time of flight
  - Relative signal amplitude
- Measure the Hubble constant
  - Source distance given by GW amplitude
  - Calibration uncertainty translate to H<sub>0</sub> uncertainty
- Measure astrophysical source rate
  - Calibration uncertainty translate to volume uncertainties
- Testing General Relativity
  - Need a good calibration over frequency range
- <u>ا</u>
- Needed accuracy (largest SNR observed around 40):
  - Sub-percent level for current/O5 detectors
  - Sub-per mille level for ET







### Current calibration systems uncertainties

• Calibration: build an actuator which moves a mirror of a well known amount

- PCal: developed by LIGO and Virgo
  - Push the mirror with an auxiliary laser
  - Uncertainties: see <u>LIGO-P2300412-v7</u>
  - Virgo PCal currently at 0.6 % (VIR-0107A-24)
    - Dominated by optical losses uncertainties

Table 3. Relative standard uncertainties (%) in displacement factors and contributing parameters (indented) the LHO and Virgo end station Rx sensor outputs. Parameters that are NOT common to both end stations are in blue text.

|           |                 | LHO   |       |                  | Virgo |                   |
|-----------|-----------------|-------|-------|------------------|-------|-------------------|
| Parameter |                 | X-End | Y-End | Type             | Ends  | Type              |
| $X_x^c$   | and $X_{y}^{c}$ | 0.29  | 0.29  | $U_{rel}$        |       |                   |
|           | X/Y corr. fact. | 0.26  | 0.26  | urel, comb.      | 1.    | 1                 |
|           | $X_X$ and $X_Y$ | 0.44  | 0.37  | $U_{rel}$        | 0.40  | $U_{rel}$         |
|           | Deform. mod.    | _     |       |                  | 0.30  | $u_{rel, comb.}$  |
|           | Inc. angle      | 0.03  | 0.03  | $u_{rel, TypeB}$ | 0.16  | $u_{rel,TypeB}$   |
|           | ETM mass        | 0.01  | 0.01  | $u_{rel,TypeB}$  | 0.05  | $u_{rel,TypeB}$   |
|           | Rotation        | 0.41  | 0.31  | $u_{rel, TypeB}$ | 0.09  | $u_{rel,TypeB}$   |
|           | Optical eff.    | 0.03  | 0.10  | $u_{rel}, TypeB$ | 0.10  | $u_{rel,TypeB}$   |
|           | Rx responsiv.   | 0.14  | 0.17  | $u_{rel, comb.}$ | 0.15  | $u_{rel,  comb.}$ |

- NCal developed in Virgo since O2
  - Push the mirror with a variable gravitational field
  - Preliminary uncertainty for O4b around 0.2 % (see details later)
- $\rightarrow$  Will focus this talk on the NCal R&D

# NCal principle

- Rotor made of two masses
  - Center of mass is not moving
  - The non-linear Newtonian force creates the signal
  - Signal at twice the rotor frequency
  - Signal goes as  $1/d^4 \rightarrow Mirror$  to NCal distance is critical
- Expected benefits
  - Signal depends mainly on the rotor geometry, mass & position
    - Replace power measurements (PCal) by distance measurement (NCal)
  - Mass of the mirror cancels out
  - No aging effect of the signal
  - Simple interface with the detector (no viewports)
- Challenges:
  - Metrology
  - Fast rotation
  - Parasitic couplings
  - Reliability







## O4b NCal system

- 6 NCals around the NE mirror
- 2 couples of NCals along the north-south axis
  - Remove mirror-NCal distance uncertainty (at first order)
  - Near NCal at 1.7 m with PVC rotors
  - Far NCal at 2.1 m with Aluminum rotors
- Est setup dedicated to:
  - Parasitic coupling studies
  - Frequency scan
- Maximum operating frequency:
  - I20-I50 Hz in h(t) for AI rotors
- Permanent operation since last August
  - PVC rotors installed in February





## Knowing the NCal relative distance

- Use a mechanical template to install the NCal supports
- Get positions from geometrical survey

North-South distance known to  $\pm 0.58$  mm









#### Rotor uncertainties

- Careful in-house machining
  - Tracking the material used
- Accurate
  - Density measurement
  - Rotor metrology
  - Specific FEM modelling code
- A lot of technical reports by Antoine Syx

| Code         |        | Title                                                           | Date     | Author(s)                                                                                        |
|--------------|--------|-----------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------|
| VIR-0203A-24 | PUBLIC | Characteristics of the rotor R4-10 for the O4 NCal system       | 28/02/24 | Florian Aubin, Eddy Dangelser, Benoit<br>Mours, Antoine Syx, Pierre Van Hove                     |
| VIR-0193A-24 | ABC    | Density of the PVC used for the O4 NCal rotors MSTRUCTED MCCESS | 23/02/24 | Florian Aubin, Eddy Dangelser, Benolt<br>Mours, Antoine Syx, Dominique Thomas<br>Pierre Van Hove |
| VIR-0948A-23 | NRC    | Characteristics of the rotor R4-08 for the O4 NCal system       | 26/10/23 | Florian Aubin, Eddy Dangelser, Benoit<br>Mours, Antoine Syx, Pierre Van Hove                     |
| VIR-08618-22 | NRK    | Characteristics of the rotor R4-07 for the O4 NCal system       | 16/06/23 | Eddy Dangelser, Dimitri Estevez, Benoit<br>Mours, Mehmet Ozturk, Antoine Syx                     |
| VIR-0670C-22 | ABK.   | Characteristics of the rotor R4-04 for the O4 NCal system       | 16/06/23 | Eddy Dangelser, Dimitri Estevez, Huber<br>Kocher, Benoit Mours, Mehmet Ozturk,<br>Antoine Syx    |
| VIR-0530A-23 | PUBLIC | Effect of a rotor misalignment (twist) on the O4 NCal signal    | 05/06/23 | Dimitri Estevez, Benoit Mours, Antoine                                                           |
| VIR-0860B-22 | NBLC   | Characteristics of the rotor R4-06 for the O4 NCal system       | 29/11/22 | Eddy Dangelser, Dimitri Estevez, Benoit<br>Mours, Mehmet Ozturk, Antoine Syx                     |
| VIR-0895A-22 | PUBLIC | Characteristics of the rotor R4-31 for the O4 NCal system       | 19/09/22 | Eddy Dangelser, Dimitri Estevez, Benoit<br>Mours, Mehmet Ozturk, Antoine Syx                     |
| VIR-0859A-22 | PARK.  | Characteristics of the rotor R4-05 for the O4 NCal system       | 08/09/22 | Eddy Dangelser, Dimitri Estevez, Benoit<br>Mours, Mehmet Ozturk, Antoine Syx                     |
| VIR-06648-22 | NBK    | Characteristics of the rotor R4-03 for the O4 NCal system       | 08/09/22 | Eddy Dangelser, Dimitri Estevez, Huber<br>Kocher, Benoit Mours, Mehmet Ozturk,<br>Antoine Syx    |
| VIR-06618-22 | ABK    | Characteristics of the rotor R4-02 for the O4 NCal system       | 08/09/22 | Eddy Dangelser, Dimitri Estevez, Huber<br>Kocher, Benoit Mours, Mehmet Ozturk,<br>Antoine Syx    |
| VIR-0591C-22 | NBK    | Characteristics of the rotor R4-01 for the O4 NCal system       | 08/09/22 | Eddy Dangelser, Dimitri Estevez, Huber<br>Kocher, Benoit Mours, Mehmet Ozturk,<br>Antoine Syx    |
| VIR-0160A-22 | AB.C.  | Density of the material used for the first O4 NCal rotors       | 07/02/22 | Eddy Dangelser, Dimitri Estevez, Huber<br>Kocher, Benoit Mours, Mehmet Ozturk,<br>Antoine Syx    |







## Checking parasitic coupling

- Rotate the rotor by about 90°
  - Actually 89.7° due to rotor/mirror size
- Expect cancelation of the NCal signal
- Measured residual signal: 0.1 %
  - Aluminum rotor with magnetic shielding
  - Part is due to alignment uncertainty
  - Other part from parasitic coupling: residual magnetic field

Hrec\_hoft\_20000Hz\_Gated\_500Hz\_FFT





#### Current NCal uncertainties

#### Preliminary

| Parameter            |                                  | Formula                | $h_{rec}/h_{inj}$ near [%] | $h_{rec}/h_{inj}$ far [%] |
|----------------------|----------------------------------|------------------------|----------------------------|---------------------------|
|                      | NCal to NCal distance            | $4\delta d/d$          | 0.14                       | 0.11                      |
|                      | NCal to beam axis angle $(\phi)$ | $\delta\phi\sin(\phi)$ | 0.08                       | 0.08                      |
| Positioning          | NCal to mirror distance (d)      | numerical              | 0.01                       | 0.01                      |
|                      | NCal twist $(\psi)$              | numerical              | $\le 10^{-3}$              | $\leq 3 	imes 10^{-3}$    |
|                      | NCal vertical position $(z)$     | $5/2(z/d)^2$           | $8 	imes 10^{-3}$          | $5 	imes 10^{-3}$         |
| Rotor induced strain |                                  | see end of section 4   | 0.057                      | 0.061                     |
| Roto                 | r deformation at 21 Hz           | numerical              | 0.03                       | $\leq 10^{-2}$            |
| Residual co          | oupling (including magnetic)     | see section 5          | $\leq 0.1$                 | 0.2                       |
| Total                |                                  | quadratic sum          | 0.20                       | 0.25                      |

## Comparing Virgo PCal and NCal (Preliminary)

• Typical ratios: (VIM plots, only statistical uncertainties):

- PCal\_NE/NCal : ~1.3 %
- PCal\_WE/NCal : ~ 0.4 %
- NCal: Far/Near: ~ 0.1 %









### Current R&D effort

- Mostly funded by ANR grant (2021-2025): ACALCO
  - IPHC (PI) and LAPP
  - Funding of two PhD: Antoine Syx(NCal) and Cervane Grimaud (PCal)
  - + some budget for hardware and travels
- Great for Virgo:
  - Calibration deployment and operation funded by ANR (not just the R&D)
- Must continue the R&D for the NCal system:
  - Improve NCal accuracy:
    - New rotors materials, improve rotor machining, metrology
  - Improve NCal frequency range
    - Mechanical improvements
    - Study small rotor deformations to correct them
  - Study/improve NCal reliability
  - Improve NCal positioning system for better NCal-NCal distance knowledge
  - $\rightarrow$  Need person-power and funding for R&D

## Summary

- Calibration is going to be more and more challenging
- NCal is the most accurate system
- PCal is versatile and could be calibrated using the NCal
- Need both systems
- The ANR ACALCO is ending in 2025, need follow-up funding