Higgs Prospects at FCC-ee

Nicolas **Morange**, *IJCLab* Terascale Frascati, 17/04/2024

Laboratoire de Physique des 2 Infinis

Introduction: the FCC-ee project

Comprehensive long-term program maximizing physics opportunities

- Last European Strategy: next collider project should be a **Higgs Factory**
- 90.7 km circular collider at CERN: e⁺e⁻, then pp in long-term future
 - Z pole, WW threshold, ZH threshold, tt threshold
- Layout chosen out of ~ 100 initial variants, based on geology and surface constraints (land availability, access to roads, etc.), environment (protected zones), infrastructure (water, electricity, transport), machine performance
- Mid-term report of Feasibility Study end of 2023 ; very well received
 - End of feasibility study **advanced to March 2025**

FCC-ee physics programme

"Higgs Factory" Programme

- At two energies, 240 and 365 GeV, collect in total
 - 1.2M HZ events and 75k WW → H events
- Higgs couplings to fermions and bosons
- Higgs self-coupling (2-4 σ) via loop diagrams
- Unique possibility: measure electron coupling in s-channel production e⁺e⁻ → H @ √s = 125 GeV

Ultra Precise EW Programme

Measurement of EW parameters with factor ~300 improvement in *statistical* precision wrt current WA

• 5x10¹² Z and 10⁸ WW

•
$$m_Z$$
, Γ_Z , Γ_{inv} , $sin^2 \theta_W^{eff}$, R^Z_ℓ , R_b , α_s , m_W , Γ_W ,...

- 10⁶ tt
 - m_{top}, Γ_{top}, EW couplings

Indirect sensitivity to new phys. up to Λ =70 TeV scale

Very broad and compelling physics programme

G. (m)

G (IP)

Heavy Flavour Programme

- Enormous statistics: 10¹² bb, cc; 1.7x10¹¹ττ
- Extremely clean environment, favourable kinematic conditions (boost) from Z decays
- CKM matrix, CP measurements, "flavour anomaly" studies, e.g. b → sττ, rare decays, cLFV searches, lepton universality, PNMS matrix unitarity

Feebly Coupled Particles - LLPs

Intensity frontier: Opportunity to directly observe new feebly interacting particles with masses below m₇:

- Axion-like particles, dark photons, Heavy Neutral Leptons
- Signatures: long lifetimes LLPs

Higgs in the FCC-ee physics case

FCC-ee is designed to be a Higgs factory

- Higgs physics: cornerstone of the FCC-ee physics programme
 - Running plan could start with ZH instead of increasing center-of-mass energy
- Several important results in the Interim Report
 - Mass measurement
 - Hadronic couplings
 - Self-coupling
 - Invisible BR
- Further developments in the works
 - o Width
 - CP Properties

SM Lagrangian and Higgs interactions

 $\mathscr{L}_{\rm SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi -$

Gauge interactions, structurally like those in QED, QCD, EW, studied for many decades (but now with a scalar)

Yukawa interactions. Responsible for fermion masses, and induces "fifth force" between fermions. Direct study started only in 2018! Higgs potential → self-interaction ("sixth?" force between scalars). Holds the SM together. **Unobserved**

Higgs and unknowns

The FCC-ee Higgs dataset

- 1 million clean ZH events at 240 GeV
 - (for 2 experiments)

Vector boson scattering

- Decent statistics (50k
- events) at 365 GeV Very complementary for many of the measuréments

Higgs Physics Overview

Couplings

- Huge improvements wrt LHC in many places
 - Necessary to reach exclusion of some classic BSM models
 - In particular limits on total width and BR_{inv} very powerful

But also:

- Mass measurement
- CP properties (using e.g τ decays)

	HL-LHC (*)	FCC-ee
δΓ _Η / Γ _Η (%)	SM (**)	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δgнww / gнww (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74
δg _{нµµ} / g _{нµµ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δgнtt / gнtt (%)	3.4	—
δg _{HZγ} / g _{HZγ} (%)	9.8	
δдннн / дннн (%)	50	~40 (indirect)
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	<1%

Higgs recoil analysis

Very clean peak to fit !

- Either use it to tag the Higgs without looking at its decays
- Or "only" as an excellent S/B discriminant for numerous analyses (couplings, mass)

ZH total cross-section

Maybe the most important measurement of all?

 Unique to e⁺e⁻ colliders

 Gives absolute ZH coupling g₇
 Then can obtain Γ_H (ZH → ZZZ^{*})
 Then gives all other absolute couplings ! ZH → ZXX ⇒ g_X

In practice

- Challenge: analysis selection **must not bias** on the Higgs decays
- Easy to do for $Z \rightarrow II$
- Can use BDT on Z kinematics to improve the sensitivity
- Reach **0.8% uncertainty** on σ_{ZH} combining e and μ

Higgs mass measurement

Ultimate precision on Higgs mass is kinda important...

- Motivations
 - O(10 MeV) needed for per-mille precision on g_7 and g_w
 - O(4 MeV) needed for electron Yukawa search

• A source of important detector constraints

Need an ultimate tracker

- High field if possible
- Transparent
 - CLD worse performance from multiple scattering wrt drift chamber

using µµ	channel	
----------	---------	--

tracking system	∆m _⊢ (MeV) stat.only	∆m _H (MeV) stat + syst		
IDEA 2T	3.49	4.27		
Perfect	2.67	3.44		
IDEA 3T	2.89	3.97		
CLD 2T	4.56	5.32		

LHC: ~100 MeV

Study of H→hadrons

Much cleaner environment at FCC-ee vs LHC makes it a game changer !

• Two main ingredients

- Low backgrounds (esp. $Z \rightarrow II$, but $Z \rightarrow vv$ also good)
- Exquisite flavour tagging capabilities
 - Leveraging state-of-the-art ML 'ParticleNet' techniques
 - Including PID for s-tagging !

H→hadrons

δμ/μ (%)	bb	сс	SS	gg	нър - (0.98 0.	0016	0.015	2e-05	0.0045	
$\textbf{Z} \rightarrow \textbf{ee}, \textbf{\mu}\textbf{\mu}$	0.8	4.9	410	2.7	Нсс - 0.	0019 0).94	0.012	0.0054	0.043	- 0.8
Z ightarrow vv	0.35	2.6	137	1.1	Hgg - 0	.018 0	.021	0.82	0.055	0.089	- 0.6
$\mathbf{Z} ightarrow \mathbf{had}$	0.3	3.5	436	2.4	—	00027 0.	0063	0.076	0.88	0.033	- 0.4
Combination	0.22	1.9	125	0.95	Hnonhad - 0	.027 0	.053	0.098	0.034	0.79	- 0.2
			1	1		Hbb I	Hcc Pree	Hgg dicted la	Hss	Hnonhad	

- Excellent precision on couplings to b-, c-quarks, and gluons
 - Benefits a lot from combination of all Z decay channels
 - MVA techniques and multidimensional categorization are mandatory
- Precision on $H \rightarrow$ ss very encouraging (numbers here assume 2 experiments)
 - Still very new: not foreseen in FCC CDR
 - Can we squeeze sore more perf and get 3σ evidence for $H \rightarrow ss$ with 4 experiments?
 - Would complete the landscape of **second generation Yukawas** !

Higgs physics for detector requirements

Neutral hadron energy resolution

In particular ultimate performance crucial for $H \rightarrow ss$

Terascale Frascati, 17/04/2024

$H \rightarrow$ hadrons anomalous couplings

- Flavour tagging algorithm trained to separate all jet flavours
 - Limits on light Yukawa couplings
 - FCNC limits

Final state	upper limit BR(H→xx) 95% CL
$H \to dd$	1.7e-03
$H \rightarrow uu$	1.8e-03
$H \rightarrow bd$	3.3e-04
$H \rightarrow bs$	4.5e-04
$H \rightarrow cu$	3.0e-04
$H \rightarrow sd$	9.5e-04

Higgs total width measurement

Not been studied in details in the past few years

	HL-LHC (*)	FCC-ee
δΓ _Η / Γ _Η (%)	SM (**)	1.3
δg _{Hzz} / g _{Hzz} (%)	1.5	0.17
δg _{Hww} / g _{Hww} (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
δgнττ / gнττ (%)	1.9	0.74
δg _{нµµ} / g _{нµµ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δgнtt / gнtt (%)	3.4	-
δg _{HZγ} / g _{HZγ} (%)	9.8	
бдннн / дннн (%)	50	~40 (indirect)
BR _{exo} (95%CL)	BR _{inv} < 2.5%	<1%

$$\frac{\sigma(ZH \to bb)\sigma(ZH \to WW^*)}{\sigma(\nu\nu H \to bb)\sigma(ZH)^2} \propto \Gamma_H$$

How do we get this?

- Through $ZH \rightarrow ZZZ^*$
 - Most straightforward
 - Recoil analysis gives σ_{7H} hence g_7
 - Then ZZZ* gives BR(ZZ^{+}) hence $\overline{\Gamma_{H}}$
 - ~2-3% precision expected
 - Through VBF
 - A bit more convoluted
 - Combine ZH cross-section, BR(bb), BR(WW*) at
 - 240 GeV, and WW \rightarrow H \rightarrow bb at 365 GeV
 - 1-2% precision expected

Higgs width through $H \rightarrow ZZ^*$: first studies

3 Z in the final state: lots of fun !

- Many decay channels to study !
 - II, vv, gg decays for each Z
 - Not always high statistics
- The 3 Z are not interchangeable:
 - "Recoil" Z vs "Higgs" Zs
 - $H \rightarrow 77^{*}$ on-shell vs off-shell 7
- First studies with llvvqq channels
 - Good compromise of statistics and cleanliness
 - 4.6% including 3 sub-channels

δΓ/Γ (%)	llvvqq	llqqvv	vvllqq	combination
Cut-based	9.0	17	8.7	6.6
BDT	7.4	10.7	6.9	4.6

25

30

20

FCCAnalyses: FCC-ee Simulation (Delphes)

Degradation of precision on Γ_{μ} (while degrading neutral hadrons energy

15

Terascale Frascati, 17/04/2024

 Z^*

Higgs self-coupling

At FCC-ee: appears at higher-order corrections to ZH production !

- Need to use √s = 240 and 365 GeV to resolve degeneracy with g_v
- Expect ~20% precision with 4IPs from global fit
 - Maybe not "as nice as" direct HH evidence, but very compelling performance !

$H \rightarrow invisible$

Typical $H \rightarrow DM$ signature

- $H \rightarrow \text{invisible in SM: } H \rightarrow ZZ \rightarrow 4\nu, BR \sim 0.1\%$
- FCC-ee search: ZH, with on-shell Z and invisible mass ~ 125 GeV
 - Use all Z decay modes to improve sensitivity
 - Discovery of $H \rightarrow inv$ for BR of 0.2%

CP violation in Higgs sector

Anomalous CP couplings ?

- Implementation of Matrix Element Likelihood Approach (MELA)
 - Extension of what has been used at the LHC
- Application to Z(ee, $\mu\mu$)H(XX)
 - Construct CP even/odd templates and fit for CP-odd hypothesis
 - Resulting $\delta f_{CP}^{HZZ} \sim 5.4 \times 10^{-5}$ (68 % CL)

The unique case for $ee \rightarrow H$

- Electron mass determines size of all atoms
- It sets energy levels of all chemical reactions

Reaching $ee \rightarrow H$

 $1 + \sigma_{\delta}^2($ **Monochromatization factor** $\lambda = 1$ Very unique, but hard ! Laboratoire de Physique des 2 Infinis Monochromatization mode Standard mode $E_0 + \Delta E$ E.- AE $E_{o} + \Delta E$ E.+ AE +e e P E, E. е E₀ E₀ E0- AE E.- AE E.+ AE Eo - AE **CM energy** $w = 2(E_0 + \Delta E)$ **CM energy** $w = 2E_0 + O(\Delta E)^2$ Significance e+e-→H, √s=125GeV $\delta_{|S_{\rm ene}}^{3}$ spread (MeV) Born arXiv:1509.02406 (1): with ISR 1.6 20 (2): δ√s = 6 MeV 6σ 5 years 1.4 (3): δ√s = 10 MeV $e^+e^- \rightarrow H$ 4 IP 10 5σ 1.2 4. 6 σ(s) [fb] 40 5 0.8 0.6 (1) 2 **2**σ 0.4 (2) 20 30 100 200 $\mathscr{L}_{int} (ab^{-1})$ 2 3 4 5 6 7 10 (3) 0.2 0 Can hope for $\sim 2\sigma$ with 5 years and 4 IPs 125.08 125.085 125.09 125.095 125.1 √s (GeV)

1/2

• FCC-ee promises to be a fantastic tool to understand the Higgs boson in depth

- Extraordinary complementarity with HL-LHC
- Studies of expected sensitivity well advanced
 - But... a lot to cover !
 - Some important holes to fill for the conclusion of the FCC feasibility study
 - In a number of cases, performance even better than what was planned for latest European Strategy
- Driving challenging constraints for the accelerator and detectors
 - PID for $H \rightarrow ss$
 - Hadronic energy resolution
 - Center-of-mass resolution for $ee \rightarrow H$