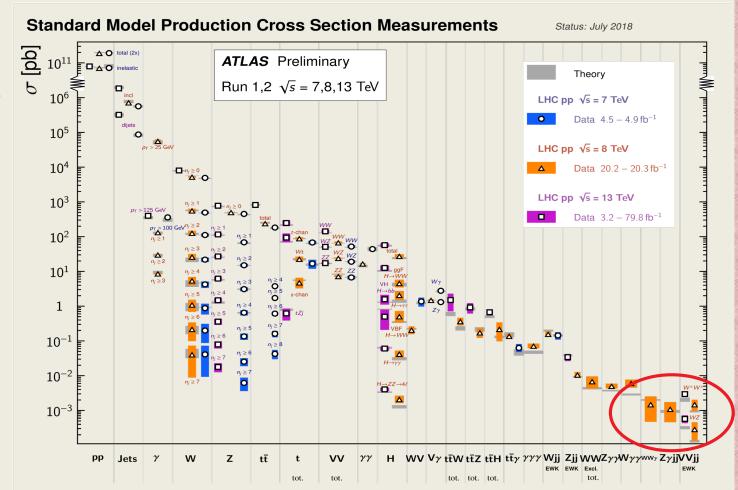

Electroweak $W^{\pm}Z$ production measurement at $\sqrt{s}=13~TeV$ with the ATLAS detector and an EFT interpretation

<u>Overview</u>

- Motivation and theoretical framework
- Analysis overview and cross section measurements
- Effective Field Theory Interpretation results
- Conclusion and prospects

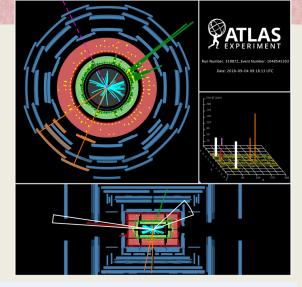
Paper link

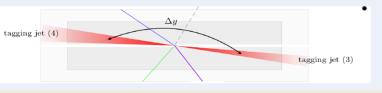

MOTIVATION AND THEORETICAL FRAMEWORK

Vector Boson Scattering(VBS): Motivation

Previous measurements

ATLAS CMS

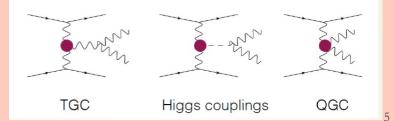

- Vector Boson Scattering (VBS) processes are very rare process — low cross sections
- VBS provides an alternative way to study the mechanism of electroweak symmetry breaking (EWSB)
- VBS probes information on vector boson self-couplings
 - Explore the existence of New Physics through deviations from SM
- Importance of WZ VBS process
 - Clean signature with only one neutrino
 - High cross section w.r.t. the other VBS processes



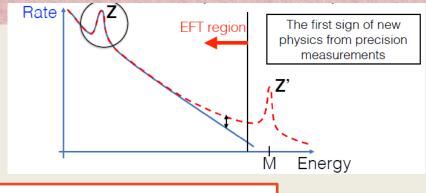
Electroweak and QCD WZjj production

- EWK WZjj production
 - Fully leptonic final state which contains three leptons and two jets
 - Characteristic kinematic signature:
 - the products of two bosons produced centrally and
 - two forward jets with large spatial separation in rapidity and a high invariant mass
 - Challenging separation between the signal and the backgrounds

EWK WZjj productions **VBS** QCD WZjj production Characteristic kinematic signature QCD VVii • Presence of gluons low rapidity separation low invariant mass of the two jets system Fit in SR 17/04/2024



Study of electroweak symmetry breaking through the vector boson selfcouplings


Explore the existence of New Physics through deviations from SM

WZjj probes:

Effective Field Theory: Overview

- Two methods to look for physics beyond the Standard Model (BSM)
 - Look for new particles (model-dependent)
 - Look for new interactions of SM particles (model-independent)

Try to notice deviations in the tails of the distributions of some kinematical variables

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda_{i}^{2}} O_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda_{i}^{4}} O_{i}^{(8)} + \dots$

- The Effective Field Theory (EFT) is the natural way to expand the SM such that the gauge symmetries are respected
- The EFT provides a way to search for effects of BSM
- Construction of an EFT Lagrangian:
 - SM: general theory of quark and lepton fields and their interactions with vector boson and the Higgs fields
 - Extend the theory: Add operators of higher dimension
- The EFT Lagrangian can be expressed as:
 - Λ is the scale of new physics
 - $O_i^{(6)}$, $O_i^{(8)}$ are the Lorentz and gauge invariant dimension-6 and dimension-8 operators
 - $c_i^{(6)}$, $c_i^{(8)}$ are the dimensionless Wilson coefficients of the dimension-6 and 8 effective operators
- Λ can be assumed as common to all the coefficients, the Wilson coefficients can be written as:

$$f_i^{(6)} = \frac{c_i^{(6)}}{\Lambda^2}, f_i^{(8)} = \frac{c_i^{(8)}}{\Lambda^4}, \dots$$

Energy scale of the interaction must be $E < \Lambda$

Effective Field Theory: dimension-8 operators

• The dimension-8 operators are dominant in aQGCs

They are divided into three categories: Longitudinal (L_S), transverse (L_T) and mixed (L_M)

$$\mathcal{L}_{S,0} = \frac{c_{S,0}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} (D_v \Phi) \right] \times \left[(D^{\mu} \Phi)^{\dagger} (D^v \Phi) \right]$$

$$\mathcal{L}_{S,1} = \frac{c_{S,1}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \right] \times \left[(D_v \Phi)^{\dagger} (D^v \Phi) \right]$$

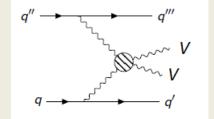
$$\mathcal{L}_{S,2} = \frac{c_{S,2}}{\Lambda^4} \left[(D_{\mu} \Phi)^{\dagger} (D_v \Phi) \right] \times \left[(D^v \Phi)^{\dagger} (D^{\mu} \Phi) \right]$$

Scalar operators: Pure Higgs field

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$


$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$
Tensor operators: field strength tensor

Mixed operators

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$

$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$

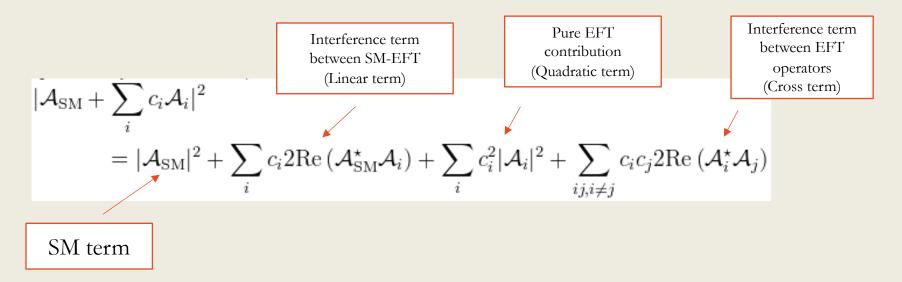
$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

Effective Field Theory: Unitarity bounds

- aQGC terms: disturb the cancellation between different contributions to the scattering amplitude of longitudinally polarized, massive electroweak gauge bosons
- Cross section for the scattering of massive electroweak gauge bosons is rising with increasing centre-ofmass energy but it cannot exceed the physical upper bound
- Range of validity of the specific EFT model: $E^2 < \Lambda \le s^U$, where $s^U \equiv s^U(f_i)$ is the unitarity bound

Wilson coefficient	Bound
$\left \frac{f_{M0}}{\Lambda^4}\right $	$\frac{32}{\sqrt{6}}\pi s^{-2}$
$\left \frac{\widetilde{f}_{M1}}{\Lambda^4} \right $	$\frac{128}{\sqrt{6}}\pi s^{-2}$
$\left \frac{f_{M2}}{\Lambda^4}\right $	$\frac{16}{16}\pi s^{-2}$
$\left \frac{\Lambda^4}{\Lambda^4} \right $	$\frac{\frac{128}{\sqrt{6}}\pi s^{-2}}{\frac{16}{\sqrt{2}}\pi s^{-2}}$ $\frac{\frac{64}{\sqrt{2}}\pi s^{-2}}{\frac{64}{\sqrt{2}}\pi s^{-2}}$
$\left \begin{array}{c} \Lambda^4 \\ \left rac{f_{M4}}{\Lambda^4} \right \end{array} \right $	$\frac{\sqrt{2}^{\pi 3}}{32\pi s^{-2}}$
$\left \frac{\overline{f_{M5}}}{\Lambda^4} \right $	$64\pi s^{-2}$
$\left \frac{\overline{\Lambda^4}}{\Lambda^4} \right $	$\frac{256}{\sqrt{6}}\pi s^{-2}$
$\left \frac{\Lambda^4}{\Lambda^4}\right $	$\sqrt{6}^{\pi S}$


Wilson coefficient	Bound
$\left \frac{f_{S0}}{\Lambda^4}\right $	$32\pi s^{-2}$
$\left \frac{f_{S1}^2}{\Lambda^4}\right $	$\frac{96}{7}\pi s^{-2}$
$\left rac{ ilde{f}_{S2}}{\Lambda^4} ight $	$\frac{96}{5}\pi s^{-2}$

Wilson coefficient	Bound
$\left rac{f_{T0}}{\Lambda^4} \right $	$\frac{\frac{12}{5}\pi s^{-2}}{\frac{24}{5}\pi s^{-2}}$
$\left rac{ ilde{\Lambda}^{4}}{ ilde{\Lambda}^{4}} ight $	$\frac{24}{5}\pi s^{-2}$
$\left \frac{f_{T2}}{\Lambda^4}\right $	$\frac{96}{13}\pi s^{-2}$
$\left \frac{f_{T5}^2}{\Lambda^4}\right $	$\frac{8}{\sqrt{3}}\pi s^{-2}$
$\left rac{f_{T6}}{\Lambda^4}\right $	$\frac{\frac{96}{13}\pi s^{-2}}{\frac{8}{\sqrt{3}}\pi s^{-2}}$ $\frac{\frac{48}{7}\pi s^{-2}}{\frac{48}{7}\pi s^{-2}}$
$\left \frac{f_{T7}}{\Lambda^4}\right $	$\frac{32}{\sqrt{2}}\pi s^{-2}$
$\left \frac{f_{T8}}{\Lambda^4}\right $	$\frac{\sqrt{3}}{\frac{3}{2}\pi s^{-2}}$
$\left \frac{\Lambda^4}{\frac{f_{T9}}{\Lambda^4}}\right $	$\frac{\frac{32}{\sqrt{3}}\pi s^{-2}}{\frac{3}{2}\pi s^{-2}}$ $\frac{\frac{24}{7}\pi s^{-2}}{\frac{24}{7}\pi s^{-2}}$
- A T	1

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.113003

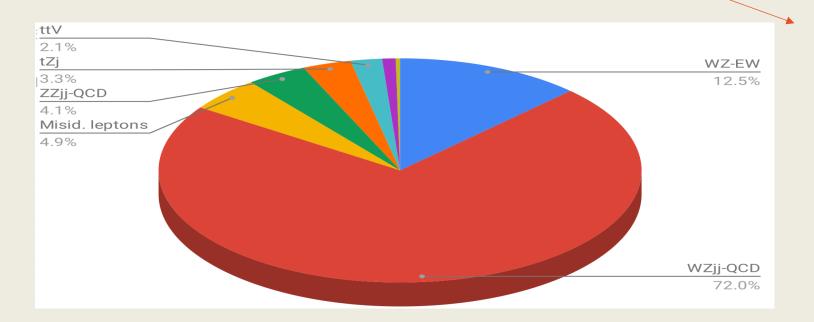
Effective Field Theory: Decomposition method

- MC samples for the effect of higher dimension operators in many values of the coefficients
- In order to avoid the production of large amounts of Monte Carlo samples, we will profit from the decomposition method

ANALYSIS OVERVIEW AND RESULTS

Phase space definition for the cross-section measurements

Variable	Fiducial WZjj-EW
Lepton $ \eta $	< 2.5
p_{T} of ℓ_{Z}, p_{T} of ℓ_{W} [GeV]	> 15, > 20
m_Z range [GeV]	$ m_Z - m_Z^{\text{PDG}} < 10$
m_{T}^{W} [GeV]	> 30
$\Delta R(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$	> 0.2, > 0.3
$p_{\rm T}$ two leading jets [GeV]	> 40
$ \eta_j $ two leading jets	< 4.5
Jet multiplicity	≥ 2
$\eta_{j1}\cdot\eta_{j1}$	< 0
m_{jj} [GeV]	> 500
$\Delta R(j,\ell)$	> 0.3
$N_{b-{ m quark}}$	= 0
_	


Concerning the three leptons

Concerning the two jets

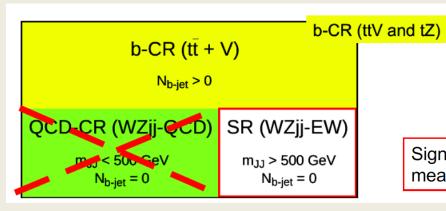
<u>Backgrounds</u>

- Backgrounds:
 - Reducible background: Z + jets, $Z\gamma$, $t\bar{t}$ and Wt
 - Irreducible background: $t\bar{t}V$, tZ, VVV, ZZjj QCD and ZZjj EW
- Matrix method technique

• At least one "fake" lepton

- At least three prompt leptons in the final state
- Simultaneous fit in dedicated CRs

WZjj Event selection and global WZjj strategy


Baseline event selection:

Inclusive event selection		
ZZ veto	Less than 4 baseline leptons	
N leptons	Exactly three leptons passing the Z lepton selection	
Leading lepton p_T	$p_{\rm T}^{\rm lead} > 25 \text{ GeV (in 2015) or } p_{\rm T}^{\rm lead} > 27 \text{ GeV (in 2016)}$	
Z leptons	Two same flavor oppositely charged leptons passing Z lepton selection	
Mass window	$ M_{\ell\ell} - M_Z < 10 \text{ GeV}$	
W lepton	W lepton passes W selection	
W transverse mass	$m_{\rm T}^W > 30~{\rm GeV}$	
	N leptons Leading lepton p_T Z leptons Mass window W lepton	

WZjj Event selection		
Jet multiplicity	≥ 2	
$p_{\rm T}$ of two tagging jets	> 40 GeV	
$ \eta $ of two tagging jets	< 4.5	
η of two tagging jets	opposite sign	
m_{jj}	> 150 GeV	

+ one ZZ CR defined by inverting the 4th lepton veto (67,8% expected purity)

QCD-VR Not used in the cross section measurement or any step of the analysis

ttV and tZ

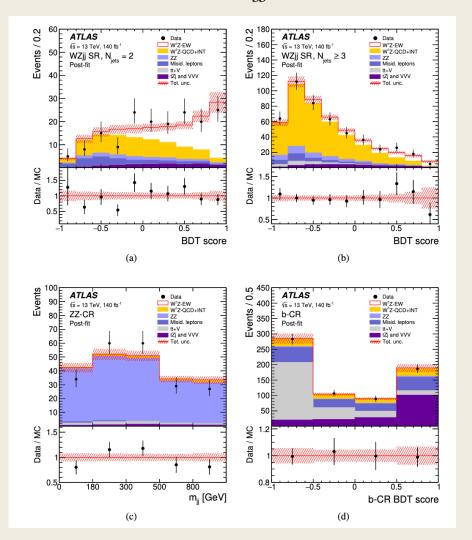
Using a dedicated BDT to constraint them in this region (43,8% expected purity on ttV) (20,3% expected purity on tZ)

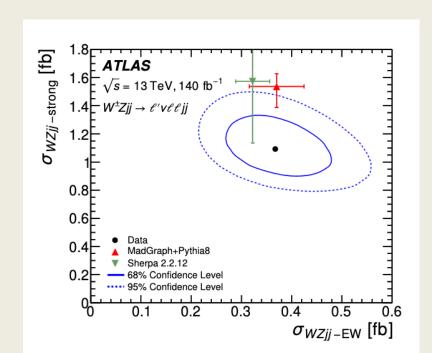
Signal region: where the measurement is done

OIE

IT BLANC

Strategy for inclusive $\sigma_{WZjj\text{-}EW}$ and $\sigma_{WZjj\text{-}strong}$ measurement


- Goal: simultaneous measurement of the integrated $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ cross sections in the SR
 - separate the signal region into two categories:
 - events with $N_{\text{jets}} = 2$ and $p_t > 25$ GeV
 - events with $N_{\rm jets} \ge 3$ and $p_t > 25$ GeV
- Signal fit free parameters


- Improve the sensitivity and the significance of the $\sigma_{WZjj-EW}$ measurement
- Increase the robustness of the measurement to a mismodelling of the jet multiplicity for *WZjj*-QCD events.

```
\begin{array}{lll} \sigma_{WZjj-\mathrm{EW}} &=& \mu_{WZjj-\mathrm{EW}} \cdot \sigma_{WZjj-\mathrm{EW}}^{\mathrm{th.\,MC}} \,, \\ \sigma_{WZjj-\mathrm{strong}} &=& \mu_{WZjj-\mathrm{QCD}} \cdot \sigma_{WZjj-\mathrm{QCD}}^{\mathrm{th.\,MC}} + \mu_{WZjj-\mathrm{INT}} \cdot \sigma_{WZjj-\mathrm{INT}}^{\mathrm{th.\,MC}} \,, \\ &=& \mu_{WZjj-\mathrm{QCD}} \cdot \sigma_{WZjj-\mathrm{QCD}}^{\mathrm{th.\,MC}} + \sqrt{\mu_{WZjj-\mathrm{EW}}} \cdot \sqrt{\mu_{WZjj-\mathrm{QCD}}} \cdot \sigma_{WZjj-\mathrm{INT}}^{\mathrm{th.\,MC}} \,, \end{array}
```

- Background normalization parameters
 - μ_{ttV} and μ_{tZ} : normalization parameters, defined in all three regions
 - μ_{ZZ-QCD} : normalization parameter, defined in the SR and the ZZ-CR
- Uncertainties parametrization
 - Detector related uncertainties: applied in every region in a correlated way
 - Theory uncertainties: parameters of interest only shape (and migration) effects considered

Inclusive $\sigma_{WZjj\text{-}EW}$ and $\sigma_{WZjj\text{-}strong}$ measurement: Results

EWK: Both generators consistent with data

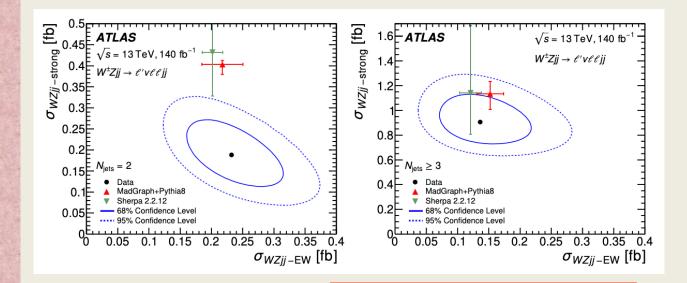
Strong: Both generators more than 2σ above data

```
\sigma_{WZjj-EW} = 0.368 \pm 0.037 \text{ (stat.)} \pm 0.059 \text{ (syst.)} \pm 0.003 \text{ (lumi.) fb}
= 0.37 \pm 0.07 \text{ fb},
\sigma_{WZjj-strong} = 1.093 \pm 0.066 \text{ (stat.)} \pm 0.131 \text{ (syst.)} \pm 0.009 \text{ (lumi.) fb}
= 1.09 \pm 0.14 \text{ fb},
```

Strategy for differential $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ measurement

- Goal: simultaneous measurement of $\sigma_{WZij-EW}$ and $\sigma_{WZij-strong}$ in the corresponding SR^i
- Free parameters in the fit
 - $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$: parameters of interest, measured in the SR^i
 - μ_{ttV} and μ_{tZ} : normalization parameters, defined in all the regions
 - μ_{ZZ-QCD} : normalization parameter, defined in the SR and the ZZ-CR
 - Theory uncertainties decorrelated between bins (or SRi)

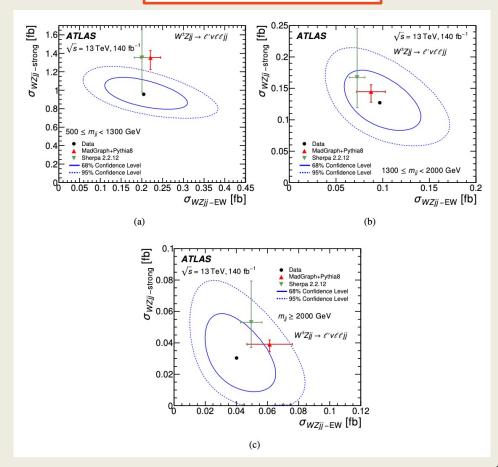
Signal sub-regions for M_{ii}:


- 500-1300 GeV
- 1300-2000 GeV
- >2000 GeV

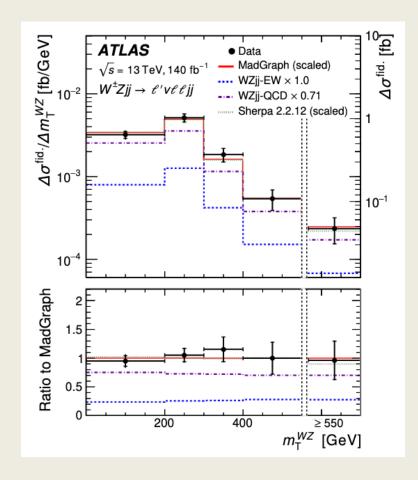
Signal sub-regions for N_{jets}:

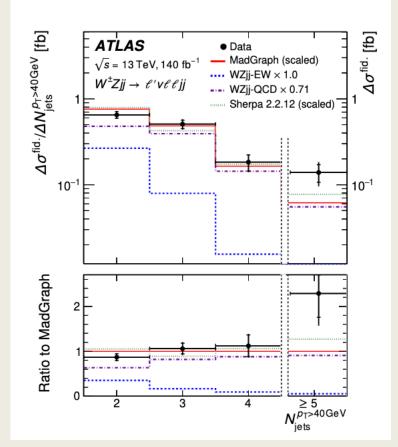
- Exactly 2 jets
- >2 jets

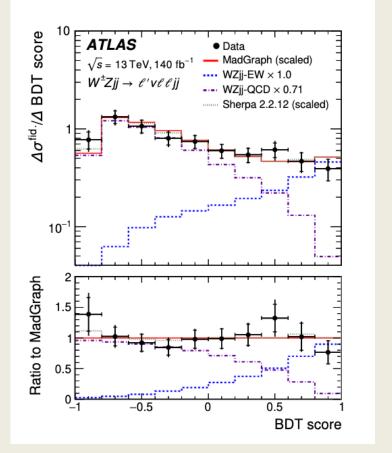
<u>Differential</u> $\sigma_{WZjj\text{-}EW}$ <u>and</u> $\sigma_{WZjj\text{-}strong}$ <u>measurement</u>


N_{iets} categorization

EWK: Both generators consistent with data

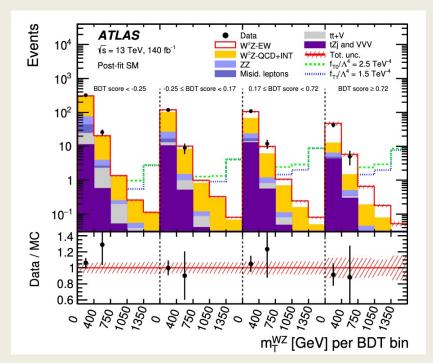

Strong: Both generators more than 2σ above data


M_{ij} categorization



Differential WZjj measurements

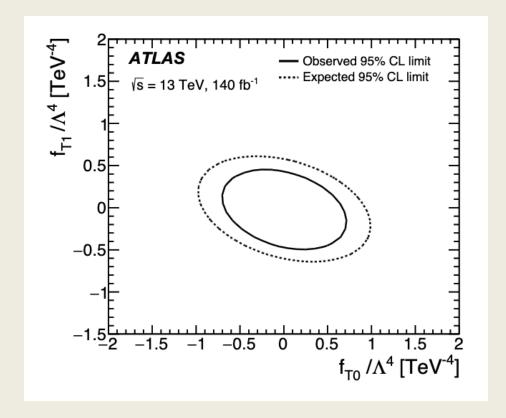
- Kinematical variables:
 - WZ: M_T^{WZ} , $\Delta\Phi(W,Z)$
 - Jets: N_{jets} , m_{jj} , Δy_{jj} , $\Delta \phi_{jj}$, N_{jets} (gap), Z_{j3}
 - BDT score



EFT INTERPRETATION RESULTS

Extraction of reconstructed level limits

- Extraction of the limits using
 - two-dimensional distribution M_T^{WZ} BDT score in the fit
 - Create two-dimensional templates by binning two kinematic variables simultaneously
 - Create one dimension by 'unrolling' the bin contents

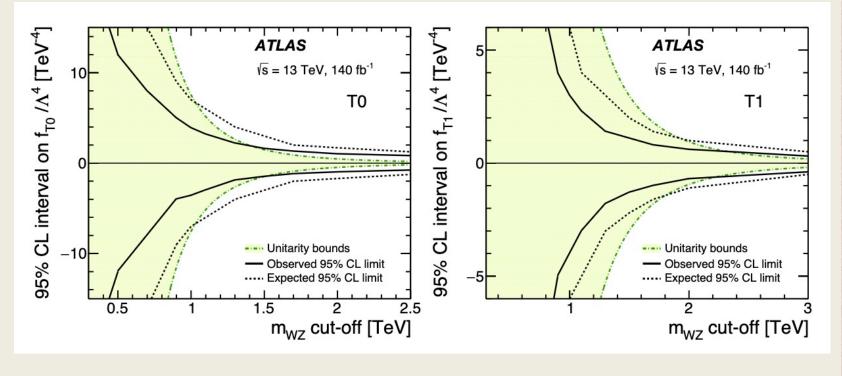


Expected and observed lower and upper 95% CL limits on the Wilson coefficients

	Expected	Observed
	(TeV^{-4})	(TeV^{-4})
f_{T1}/Λ^4	[-0.52, 0.49]	[-0.39, 0.35]
f_{T0}/Λ^4	[-0.80, 0.80]	[-0.57, 0.56]
f_{T2}/Λ^4	[-1.6, 1.4]	[-1.2, 1.0]
f_{M0}/Λ^4	[-8.3, 8.3]	[-5.8, 5.6]
f_{M1}/Λ^4	[-12.3, 12.2]	[-8.6, 8.5]
f_{S02}/Λ^4	[-14.2, 14.2]	[-10.4, 10.4]
f_{M7}/Λ^4	[-16.2, 16.2]	[-11.3, 11.3]
f_{S1}/Λ^4	[-42, 41]	[-30, 30]

2-D reconstructed level limits

• Limits on aQGC Wilson coefficients are also derived fitting two Wilson coefficients simultaneously



Unitarity limits

- Introduction of EFT operators can violate unitarity
 - for each operator there is an energy scale above which unitarity maybe violated
 - its absolute value is a function of the (arbitrary) cut-off scale

	Expected	Observed
	$[\text{TeV}^{-4}]$	$[\text{TeV}^{-4}]$
$f_{ m T0}/\Lambda^4$	[-7.0, 7.0]	[-1.5, 1.6]
$f_{ m T1}/\Lambda^4$	[-1.1, 1.0]	[-0.7, 0.6]
$f_{\mathrm{T2}}/\Lambda^4$	[-12, 6]	[-2.4, 1.8]
$f_{ m M0}/\Lambda^4$	[-60, 60]	[-12, 12]
$f_{ m M1}/\Lambda^4$	[-32, 32]	[-15, 15]
$f_{ m M7}/\Lambda^4$	[-30, 30]	[-15, 15]
$f_{ m S02}/\Lambda^4$	[-41, 41]	[-18, 18]
$f_{\rm S1}/\Lambda^4$	_	

Evolution of the individual 95%C.L. expected limits of the dimension-8 operators as a function of the cut-off scale

CONCLUSION AND PROSPECTS

Conclusion and Prospects

- Run2 WZ VBS analysis
 - Combination of aQGC EFT results combination among many VBS analyses (ssWWjj, ZZjj, Zγjj etc)
- Run3 WZ VBS measurements and combination with Run2
 - SM measurements:
 - Improve QCD modeling
 - Introduce EWK NLO corrections
 - Polarization measurements with one gauge boson (W or Z) longitudinally polarized
 - EFT interpretation:
 - perform a simultaneous study of both dimension-6 and dimension-8 operators
 - Study of effect of dim-6 operators in EWK and QCD production and how to incorporate it in the EFT interpretation
 - machine learning approach to the EFT re-interpretation of the WZ VBS production ——— results appear very promising from preliminary studies at generator level
- HL-LHC (luminosity 3000 fb⁻¹)
 - WZ VBS polarization analysis:
 - First observation of V_LV_L polarized state

BACKUP SLIDES

Experimental and theoretical uncertainties

Experimental uncertainties

- Dominant experimental uncertainty sources:
 - reconstruction uncertainties related to
 - o jet reconstruction
 - electrons reconstruction
 - muons reconstruction
 - \circ E_t^{miss} reconstruction
 - Luminosity uncertainty
 - o uncertainties on the pile-up reweighting procedure
- Systematic uncertainties on background contributions
 - Uncertainties on the amount of reducible background events arising from mis-identified leptons and determined using the data-driven matrix method
 to 25%
 - Irreducible backgrounds: propagate PDF and scale uncertainties in their generated cross sections
 - VVV: 20%
 - ZZ-EW: 25%

Theoretical uncertainties

- **PDF** and αS uncertainties: 100 NNPDF3.0 MC replicas and alternatives as variations (PDF4LHC recommendations)
- QCD-scale uncertainties:
 - Vary the renormalization and factorization scales separately by a factor x=1/2 or x=2 from the nominal
 - For WZjj-EW process
 - o alternative definitions for the renormalization and factorizations scales

available at reco level
$$\mu_0 = \sum_{i=1}^N \sqrt{m_i^2 + p_{\mathrm{T},i}^2} = HT$$
 available at truth level
$$\mu_0 = \sqrt{p_{\mathrm{T}}^{j_1} \ p_{\mathrm{T}}^{j_1}}$$

- Parton shower uncertainties on the WZjj-EW process:
 Estimated using Herwig as an alternative parton shower generator
- Model uncertainties for the WZjj-QCD process: Evaluated comparing Madgraph and Sherpa 2.2.12 predictions.

Impact of systematic uncertainties

Source	$\frac{\Delta \sigma_{WZjj-EW}}{\sigma_{WZjj-EW}}$ [%]	$rac{\Delta \sigma_{WZjj ext{-strong}}}{\sigma_{WZjj ext{-strong}}}$ [%
WZjj-EW theory modelling	7	1.8
WZjj-QCD theory modelling	2.8	8
WZjj-EW and $WZjj$ -QCD interference	0.35	0.6
PDFs	1.0	0.06
Jets	2.3	5
Pile-up	1.1	0.6
Electrons	0.8	0.8
Muons	0.9	0.9
b-tagging	0.10	0.11
MC statistics	1.9	1.2
Misid. lepton background	2.3	2.3
Other backgrounds	0.9	0.23
Luminosity	0.7	0.9
All systematics	16	12
Statistics	10	6
Total	19	13