

Istituto Nazionale di Fisica Nucleare

Exploring Higgs Boson Properties Insights from the ATLAS group @ LNF

Chiara Arcangeletti on behalf of the ATLAS-LNF group

IRN Terascale @ LNF, 17th April 2024

Introduction

It was a long journey until the Higgs boson discovery happened...

...In Spring 2012 the group that was working on the Higgs search in to ZZ decay channel were all depressed about no Higgs signal present in the 4 leptonic final state. Around March-April there was already some exciting about a Higgs signal at ~125 GeV.

A small team of Italian people (of which several LNF people) where performing the analysis...and finally in 18 June 2012 they got 2 candidates in the same run!

Crossing fingers the Data Quality for muons of this RUN was immediately checked: quoting a mail subject "**So BONI**"! (They are good"!)

event 64671324	run 204763 204763	Z1 93.9475 92.1897	Z2 61.554 85.5061	M4mu 220.332 261.782	M4muConst 218.564 262.080
71902630 82599793	204769 204769	86.3396 84.0118	31.5661 34.2066	124.088 123.252	125.09 123.471
04002029	204709	91.3930	09.2100	422.703	424.703

Introduction

It was a long journey until the discovery happened...

event 64671324	run 204763	Z1 93.9475	Z2 61.554	M4mu 220.332	M4muConst 218.564 262.080
71902630 82599793	204769 204769	86.3396 84.0118	31.5661 34.2066	124.088 123.252	125.09 123.471
04002027	204709	71.0700	07.2100	442.100	424./02

Decay Channels

H→ZZ*→4I (I=e, μ) very good S/B ratio, high mass resolution → **visible BR = 0.012 %**

The Golden channel $H \rightarrow ZZ^* \rightarrow 4I$

Final States: 4µ, 2µ 2e, 2e2µ, 4e

Example of $H \rightarrow ZZ^* \rightarrow 4\mu$ event with hit on the NSW

- Fully leptonic final state lead to a very clear signature of the event
- Very good mass resolution thanks to the excellent lepton reconstruction performance
- Very good Signal/Background ratio: S/B ~ 2
 - despite the low Branching Ratio, it makes this channel clearly identifiable

Optimal final state to measure Higgs boson properties

- **Differential Cross sections**
- Production Cross sections
- Couplings
- Spin/CP
- Mass

$H \rightarrow ZZ^* \rightarrow 4I$ decay channel

Event Selection

- Quadruplet selection
 - Same flavour and opposite sign lepton pairs
 - Lepton separation: $\Delta R(I,I') > 0.10$.
 - p_{τ} (electron)>7 GeV, p_{τ} (muons)> 5 GeV
 - 3 leading leptons: $p_T > 20$, 15, 10 GeV
 - Mass requirements: •
 - 50<m₁₂<106 GeV; m_{thr}*<m₃₄< 115 GeV; J/ψ veto: m_{II}>5 GeV

 m_{thr} = 12 GeV if m_{al} < 140 GeV and rises linearly to 50 GeV for m_{al} = 190 GeV.

Background processes

- **ZZ* non-resonant production** (irreducible component)
 - Previoulsy estimated from MC. Full Run2 estimated from data defining m_{41} sidebands: [105,115] GeV + [130,160] GeV
- tt and Z+jets (reducible component) ullet
 - Estimated from data-driven technique
- tXX, VVV (very small component)

Event selection and background estimation techniques used for Full Run 2 analyses as results of several years of studies and optimization work

- Common vertex
- Lepton isolation
- Impact parameter d_0 cut

estimation for $II\mu\mu$ and Ilee

m_{AI} sidebands for ZZ* bkg estimation

Primary Vertex

Fiducial Cross Sections measurement

The idea is to provide cross section measurements in the most model independent way

Fiducial phase space definition based on detector and analysis selection acceptance to minimize the extrapolation effects. The fiducial cross section $\sigma_{fid} \cdot BR$ is defined as:

$$\sigma_{fid} \cdot BR = \sigma_{tot} \cdot BR \cdot A \qquad A = \frac{N_{fiducial}}{N_{total}}$$

where:

BR = Branching ratio

A = acceptance

Fiducial Cross Sections measurement

The idea is to provide cross section measurements in the most model independent way

Fiducial phase space definition based on detector and analysis selection acceptance to minimize the extrapolation effects. The fiducial cross section $\sigma_{fid} \cdot BR$ is defined as:

$$\sigma_{fid} \cdot BR = \sigma_{tot} \cdot BR \cdot A \qquad A = \frac{N_{fiducial}}{N_{total}}$$

 $C_F = \frac{N_{reconstructed}}{N_{reconstructed}}$

where:

BR = Branching ratio

A = acceptance

• **Correct for detector level effects**, efficiencies and resolution, defining the correction factor entering in the fiducial cross section extraction:

$$\sigma_{fid} \cdot BR = \frac{N_{signal}}{C_F \cdot L_{int}}$$

where:

L_{int} = integrated luminosity

 C_F = correction factor

N_{signal} = number of signal events extracted fitting the observable able to discriminate signal vs background.

It is possible to *unfold* the reconstructed distribution of a given observable to estimate the truth-level spectrum

The Higgs boson Differential Cross Sections

The Higgs boson Differential Cross Sections

Interpretation of Differential Cross Sections

к-framework: constraints on Yukawa couplings

 Higgs coupling to light quarks (e.g. charm) may be possible to constrain without direct measurement

 p_T^H is sensitive to the Yukawa coupling of the charm, bottom quark \rightarrow constrain the charm coupling from the bottom

- non–SM values of the **coupling modifiers** $\kappa_{\rm c}$ and $\kappa_{\rm b}$ are investigated
- This interpretation has been performed also on combined differential cross section measurements of the Higgs p_T between $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ decay channels

JHEP 05 (2023) 028

Including direct measurements VH(bb) and VH(cc)

Interpretation of Differential Cross Sections Pseudo-Observables

- Study the effective coupling of the Higgs boson to the SM gauge bosons using the invariant masses of the two Z m_{12} vs. m_{34} distribution
- From amplitude decomposition the most interesting terms (assuming CP-invariance) are:

$$F_1^{ff'}(q_1^2, q_2^2) = \kappa_{ZZ} \frac{g_Z^f g_Z^{f'}}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Zf}}{m_Z^2} \frac{g_Z^{f'}}{P_Z(q_2^2)} + \frac{\epsilon_{Zf'}}{m_Z^2} \frac{g_Z^f}{P_Z(q_1^2)}$$

• 5 parameters can be studied: κ_{ZZ} , ϵ_{ZeL} , $\epsilon_{Z\mu L}$, ϵ_{ZeR} , $\epsilon_{Z\mu R}$

 $P_Z(q_2^2)$

 k_{77} is the coupling

to the *hZZ* vertex

 $P_Z(q_1^2)$

 $P_Z(q_2^2)$

Eur. Phys. J. C 80 (2020) 942

Higgs (125 Ge

ATLAS

77*

Interpretation of Differential Cross Sections Pseudo-Observables

- Study the effective coupling of the Higgs boson to the SM gauge bosons using the invariant masses of the two Z m_{12} vs. m_{34} distribution
- From amplitude decomposition the most interesting terms (assuming CP-invariance) are:

$$F_1^{ff'}(q_1^2, q_2^2) = \kappa_{ZZ} \frac{g_Z^f g_Z^{f'}}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Zf}}{m_Z^2} \frac{g_Z^{f'}}{P_Z(q_2^2)} + \frac{\epsilon_{Zf'}}{m_Z^2} \frac{g_Z^f}{P_Z(q_1^2)}$$

• 5 parameters can be studied: κ_{ZZ} , ϵ_{ZeL} , $\epsilon_{Z\mu L}$, ϵ_{ZeR} , $\epsilon_{Z\mu R}$

Projections @ 100 fb⁻¹

Eur. Phys. J. C 80 (2020) 942

Interpretation of Differential Cross Sections

Pseudo-Observables Run 2 Results

- Scenarios that assume lepton flavour universality already studied with early Run 2 statistics: with full Run 2 limits improved ~ 20–30 %
- Lepton Flavour Non Universal scenarios investigated for the first time with full Run 2 statistics → limits O(5–10 %)
- Good compatibility with projections!

Eur. Phys. J. C 80 (2020) 942 **Vector Contact Terms Axial Contact Terms Contact Terms** Linear EFT – inspired $-\epsilon_{Ze_R})$ $\epsilon_{\rm B}$ ₹ 2.5 ¥ Best Fit Best Fit Best Fit ATLAS ATLAS Best Fit ATLAS ATLAS 0.8 0.08 ----- 68% CI --- 68% CI 68% CL $H \rightarrow ZZ^* \rightarrow 4I$ $H \rightarrow 77^* \rightarrow 4I$ $\rightarrow 77^* \rightarrow 41$ $\underbrace{\underset{\boldsymbol{\omega}}{\overset{\boldsymbol{\sigma}}{=}} 0.06}_{\boldsymbol{\omega}} = \underbrace{\underset{\boldsymbol{\nabla}}{\overset{\boldsymbol{\sigma}}{=}} 2 \mathcal{L}^* \rightarrow 4I}_{\boldsymbol{\nabla} = 13 \text{ TeV}, 139 \text{ fb}^{-1}}$ — 95% CL. 95% CL Ξ⁹² 0.15 SM ★ SM √s = 13 TeV, 139 fb⁻¹ √s = 13 TeV. 139 fb⁻¹ $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹ 1.5 Best Fit p-value: 0.64 0.6 Best Fit p-value: 0.66 Best Fit p-value: 0.73 0.04 0.1 0.02 0.4 0.05 0.5 0.2 0 -0.02 -0.04 -0.05 -0.5 -0.06 -0.1 -0.08 -0.2-0.15^L--0.2 -0.15 -0.1 -0.05 0 0.0 0.05 -0.04-0.03-0.02-0.01 0 0.01 0.02 0.03 0.04 0.05 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.15 0 0.2 $= \varepsilon_{Z\mu_{z}}$ = -ε_{Zμ} (ε_{Ζμ.}

JHEP 10 (2017) 132

Interpretation of Differential Cross Sections **Pseudo-Observables Prospects**

Constrain PO using also EW production modes \rightarrow probe new PO κ_{ZZ} , κ_{WW} , ϵ_{ZuL} , ϵ_{ZuR} , ϵ_{ZdR} , ϵ_{WuL}

arXiv:2304.09612 • VBF: double-differential distribution on p_T^{j1} vs p_T^{j2} to access the $F(q_1^2, q_2^2)$ $\left| \Delta \eta \right|_{\vec{n}}$ VBF Signa • ZH (or WH): differential distribution of p_T^Z or $m_{7h} \sim q^2$ $H \rightarrow 77 \rightarrow 4I$ ggF Signal Other Background $s = 13 \text{ TeV} \ 139 \text{ fb}^{1}$ 10 VBF –fiducial \rightarrow Define fiducial volume targeting specific production modes can improve sensitivity 1000 1500 2000 2500 500 *m_{ii}* [GeV]

"Axial Contact terms" SM valu 95% C I .8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

• Already done in $H \rightarrow ZZ^* \rightarrow 4I$ with Run 2 data to perform a fiducial VBF measurement applying a selection on 2-jet events on $m_{\rm ii}$ and $\varDelta\eta_{\rm ii}.$

Projections with decay only PO @ 300 fb⁻¹

• At the moment statistically limited (~40% of uncertainty)

arXiv:1512.06135

Prospects for Higgs PO in EW production @ the HL- LHC

The Higgs boson @ 13.6 TeV

LHC collisions re-started in 2022 at 13.6 TeV

First measurement of the Higgs boson production cross section @ 13.6 TeV performed in the $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ decay channels with about 30 fb⁻¹

<u>Eur. Phys. J. C 84 (2024) 78</u>

The Higgs boson production cross section

Production Cross sections are a way to probe the strength of the Higgs boson coupling with SM particles and possible BSM effects

Simplified Template Cross Section (STXS) framework define exclusive regions in the Higgs phase space of the Higgs production processes, based on the kinematics of the Higgs and of the particles/jets produced in association: p_T^{Higgs} , N_{jets} , m_{jj} , p_T^{V}

- Criteria:
 - Minimizing the dependence on theoretical uncertainties
 - Maximizing experimental sensitivity also to possible BSM effects
- Different STXS Stages definition, corresponding to increasingly fine granularity
- Not all the analyses are sensitive to all the STXS bins

Reco-level categorization in each analysis, in which the measurement is performed, as close as possible to the Particle-level categorization →minimize model-dependent extrapolation

The Higgs boson Couplings *k*-framework

Production cross sections can be used to put constraint on the Higgs boson couplings modifiers.

tΗ

ttH

ggF+bbH

 Parametrizing the cross section as function of the κ we can extract constraints on the relative modifiers, based on the assumptions behind

VBF $\sqrt{\kappa_V} \frac{m_V}{\text{vev}}$ ATLAS Run 2 WH 6 ATLAS 6 ZΗ $\mathbf{\bar{\Phi}}$ $\kappa_c = \kappa_t$ ZZ-1j ç $H \rightarrow ZZ^* \rightarrow 4I$ ZZ-2j 0 1 2 3 4 $\kappa_{\rm c}$ is a free parameter 2 3 4 2 0 1 2 0 1 2 0 1 2 $K_F \frac{m_F}{\text{vev}}$ √s = 13 TeV, 139 fb ΖZ tYY bb WW ττ YΥ μμ SM prediction Production Mode - $|y_{..}| < 2.5$ $\sigma \times B$ normalized to SM prediction SM Prediction p-value = 91% Observed: Stat-Only 10 σ·B [fb] (σ·*B*) [fb] Leptons Quarks Rest Fi ATLAS 2.2 ggF 1120 ± 130 1170 ± 80 --- Observed 68% Cl Ve и $H \rightarrow 77^* \rightarrow 4I$ Observed 95% Cl 10d S $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ VBF 92.0 ± 2.0 110 ± 40 1.8 Best fit p-value = 0.75 Force carriers Higgs bosor 75⁺⁶¹ -49 52.4^{+2.7} VH 10 1.6 15.4 + 1.0 26 + 26 ttH $\kappa_{_V}$ 1.4 1.4 κ_F or Inclusive 1340 ± 120 1330 ± 80 1.2 1.2 2 4 5 $\sigma \cdot B / (\sigma \cdot B)_{SM}$ Eur. Phys. J. C 80 (2020) 957 0.8 0.8 10² 10^{-1} 0.6 10 Universal coupling strength modifiers $\kappa_{\rm V}$ 0.4 Particle mass [GeV] Nature 607, 52 (2022) ¹0 7 0.8 1.2 0.9 1.3 1.1 17 (vector bosons) and $\kappa_{\rm E}$ (fermions) $\kappa_{\rm V}$

After 10 years from the discovery ATLAS provided the combined measurements of Higgs boson couplings with other SM particles

Generic parametrization with coupling

strength modifiers for W, Z, t, b, c^* , τ and

μ treated independently

SM prediction

The Simplified Template Cross Section

Tensor structure of the Higgs boson Couplings Effective Field Theory (EFT)

Eur. Phys. J. C 80 (2020) 957

STXS measurements give enough sensitivity to probe anomalous Higgs boson couplings in EFT framework

- Run 1 and early Run 2 results started from Higgs Characterization (HC) model to put constraint on anomalous couplings with vector boson k_{Hzz} (CP-even) and k_{Azz} (CP-odd)
- Full Run 2 moved to SMEFT to put constraints on Wilson coefficient in Warsaw basis C_i**

 $H \rightarrow ZZ^* \rightarrow 4l$ sensitive to just a sub-set of those coefficients

	CP-even		CP-odd			
Operator	Structure	Coeff.	Operator	Structure	Coeff.	
O_{uH}	$HH^{\dagger}\bar{q}_{p}u_{r}\tilde{H}$	c_{uH}	O_{uH}	$HH^{\dagger}\bar{q}_{p}u_{r}\tilde{H}$	$c_{\widetilde{u}H}$	
O_{HG}	$HH^{\dagger}G^{A}_{\mu\nu}G^{\mu\nu A}$	c_{HG}	$O_{H\tilde{G}}$	$H H^{\dagger} \widetilde{G}^{A}_{\mu\nu} G^{\mu\nu A}$	$c_{H\tilde{G}}$	
O_{HW}	$HH^{\dagger}W^{l}_{\mu u}W^{\mu u l}$	c_{HW}	$O_{H\widetilde{W}}$	$HH^{\dagger}\widetilde{W}^{l}_{\mu u}W^{\mu u l}$	$c_{H\widetilde{W}}$	
O_{HB}	$HH^{\dagger}B_{\mu u}B^{\mu u}$	c_{HB}	$O_{H\widetilde{B}}$	$HH^{\dagger}\widetilde{B}_{\mu u}B^{\mu u}$	$c_{H\tilde{B}}$	
O_{HWB}	$HH^{\dagger}\tau^{l}W^{l}_{\mu\nu}B^{\mu\nu}$	c_{HWB}	$O_{H\widetilde{W}B}$	$HH^{\dagger}\tau^{l}\widetilde{W}^{l}_{\mu u}B^{\mu u}$	$c_{H\widetilde{W}B}$	

Acceptance parametrization needed due to the selection cuts

Tensor structure of the Higgs boson CouplingsEffective Field Theory (EFT)Decay STXS

Eur. Phys. J. C 80 (2020) 957

The Higgs boson CP structure

In Run 1 analyses aimed to assert that the Higgs boson is CP-even

Eur. Phys. J. C 75 (2015) 476

• Test of fixed spin and parity hypotheses

- Using kinematic 4-lepton information
- J^P MELA or BDT to discriminate different hypotheses
- J^P = 0⁺ compared with alternative spin models → non-SM hypothesis excluded with at least 99.9% CL in favor of SM Higgs boson with Spin/Parity 0⁺⁺
- Investigation of mixing CP-even and CP-odd state looking at HVV tensor structure
 - First use of the Optimal Observables...
 - EFT model based on Higgs Characterization
- In Run 2 the focus is mainly on production modes rather than decay only.

The Higgs boson CP structure

Looking for signs of CP-violation in the Higgs sector arXiv:2304.09612

 Study the coupling with vector bosons (*HVV*) both at production level with Vector Boson Fusion (VBF) production and at decay level in the H→ZZ*→4l decay

VBF → high Q² process BSM effects expected to be higher

- Use of observables optimized to discriminate different CP hypothesis
 - Rate cannot disentangle anomalous CP-even or CP-odd effects, observable <u>shapes</u> does
 - → Matrix Element based variable called Optimal Observable (OO)

$$\mathcal{OO}_1(oldsymbol{c}) = rac{|\mathcal{M}_{ ext{Mix}}(oldsymbol{c})|^2 - |\mathcal{M}_{ ext{SM}}|^2 - |\mathcal{M}_{ ext{BSM}}(oldsymbol{c})|^2}{|\mathcal{M}_{ ext{SM}}|^2}$$

Categorization to maximize the sensitivity to VBF production and estimate the main backgrounds

Constraint on EFT CP-odd couplings

The Higgs boson Mass

 $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma \gamma$ are the most sensitive channels

- Clear signature final states
- High mass resolution 1-2 %
- Main uncertainties: Electron/Photon energy scale and Muon momentum scale
- Combination of the two channels and of the two runs lead to the **most precise measurement of the Higgs boson mass!**

m_H = 125.11 ± 0.11 GeV

0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics.

Conclusions

The ATLAS LNF group has been involved in the Higgs boson analyses since the very first searches aiming for its discovery and then to study its properties focusing on the $H \rightarrow ZZ^* \rightarrow 4I$ decay channel

- Besides the many results that has been provided in this years, we aim to extend the comprehension of the Nature looking for New Physics effects and the most recent discovered particle is a good starting point to do so
- The enhancement of the statistics expected in the future LHC runs will be fundamental to improve the precision of the Higgs boson measurements and be more sensitive to any kind of BSM effect

