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Outline of the talk

• Neutrino masses: who ordered that?


• The Weinberg operator with higher 
SU(2) representations


• List of genuine models


• Bounds from the custodial symmetry


• Tree level vs 1-loop neutrino masses


• Phenomenology
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Neutrino masses: who ordered that?

Neutrinos change flavor (=oscillate) 

during their propagation

Illustration by Sandbox Studio, Chicago
Neutrinos must have 

non-zero masses!
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de Gouvea, Andre. (2004). 2004 TASI Lectures on Neutrino Physics. 
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Neutrino masses
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ℒeft = ℒSM + ∑
d>4,i

ci

Λd−4
𝒪(d)

Adding to the Standard Model (SM) the most general higher-
dimensional Lagrangian respecting the gauge symmetries of the SM is

Each operator is suppressed by inverse powers of , i.e. the New 
Physics (NP) energy scale. 


Notice that we are "agnostic" about NP sources in a purely Effective Field 
Theory approach. Then, one can question how these higher dimensional


operators can be obtained from the full theory.

Λ

Effective Lagrangian
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ℒ5 =
c
Λ

LLHH

Only one   operator (Weinberg operator) can be written and it is 
related to the neutrino Majorana mass term:

d = 5

Just to have an idea of the NP scale we can assume 
,   GeV and   eV, obtaining: c ∼ 1 v ∼ 100 mν ∼ 1

It generates a Majorana mass: 

. mν ≃ c
v2

Λ

 GeVΛ ≃
v2

mν
≃ 1013

This is the typical 
scale of NP

(unless )c ≪ 1

The Weinberg operator
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We can obtain the effective dimension-5 operator by integrating out the 
heavy degrees of freedom. Usually, the UV completions that lead to the 

Weinberg operator go by the name of seesaw models (Type-I, -II and -III)

Type- I Type- II Type- III

Minkowski, Yanagida, 

Mohapatra, Senjanovic,


Gell-Mann, Ramond, Slansky,

Schechter, Valle

Schechter, Valle,

Mohapatra, Senjanovic

Foot, Lew, He, Joshi

What if new Higgs-like 
particles come into play?

The Weinberg operator - UV completions
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Higher SU(2) representations

ϕi = (Ni, Yi) i = 1,2
ρ(Ni, Yi, vϕi

) ≃ 1
vϕi

≪ vϕ

BSM Higgs-like scalars

NP degrees of freedom 
up to representations 5
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ℒ5
eft =

c0i

Λ
ϕϕiLL +

cii

Λ
ϕiϕiLL +

cij

Λ
ϕiϕjLL
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Higher SU(2) representations

ϕi = (Ni, Yi) i = 1,2
ρ(Ni, Yi, vϕi

) ≃ 1
vϕi

≪ vϕ

BSM Higgs-like scalars

The choice for the new Higgs-like scalars and for the heavy mediators 
will be done in order to avoid the 2HDM (widely studied in literature) 


and the usual Type-I, -II, -III seesaws (=the BSM contribution would be 
just a sub-leading correction)
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ℒ5
eft =

c0i

Λ
ϕϕiLL +

cii

Λ
ϕiϕiLL +

cij

Λ
ϕiϕjLL
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Higher SU(2) representations

The singlet can be obtained only if the new scalar transforms as a quadruplet under SU(2), 
 seen that . Also .


• . In this case, the UV completion must contain a scalar singlet or triplet.  
However, the case with the scalar singlet does not provide any contribution to the neutrino masses. 
 

• . Only the fermion triplets can mediate this process.

2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2′￼ Yi = ± (1/2, 3/2)

(ϕϕi)1,3,5(LL)1,3

(ϕL)1,3(ϕiL)3,5

ϕi = (Ni, Yi) i = 1,2
ρ(Ni, Yi, vϕi

) ≃ 1
vϕi

≪ vϕ

BSM Higgs-like scalars
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Higher SU(2) representations

In this case . Again, the interesting case is the quadruplet.


• . In this case, either a scalar singlet (which does not provide neutrino masses), 
 or a scalar triplet (leading to sub-leading BSM contributions) is needed. 
 

• . The possible fermion mediators are triplets or pentuplets.

ϕi = (2N, ± |1/2 | ) with N > 1

(ϕiϕi)1,3,5,7(LL)1,3

(ϕiL)3,5(ϕiL)3,5

ϕi = (Ni, Yi) i = 1,2
ρ(Ni, Yi, vϕi

) ≃ 1
vϕi

≪ vϕ

BSM Higgs-like scalars
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ℒ5
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Λ
ϕϕiLL +

cii

Λ
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Λ
ϕiϕjLL
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Higher SU(2) representations

Let's consider  with . Also . 
 

• . As already discussed, this case is not interesting. 

• . Notice that , therefore either  

or  is needed in order to build a singlet from such a contraction.

ϕi = (Ni, Yi) and ϕj = (Nj, Yj) Ni,j > 2 |Yi + Yj | = 1

(ϕiϕi)Ni⊗Nj
(LL)1,3

(ϕiL)Ni⊗2(ϕjL)Nj⊗2 N ⊗ 2 = (N − 1) ⊕ (N + 1) Ni = Nj + 2
Ni = Nj

ϕi = (Ni, Yi) i = 1,2
ρ(Ni, Yi, vϕi

) ≃ 1
vϕi

≪ vϕ

BSM Higgs-like scalars
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Viable models 

EFT Models New Scalars Mediator Op. Wilson Coe�ents vbsm π vsm
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2.1 The standard seesaw models

Let us review the case of just the SM Higgs doublet, H. In the SM, up to SU(2) contractions
there is a unique dimension-5 operator, i.e., the Weinberg operator LLHH [38]. In order
to get a SU(2) singlet for the dimension-5 Weinberg operator, the possible contractions of
the fields are

O
(0)
5,a = (HL)1(HL)1 , O

(0)
5,b = (HL)3(HL)3 ,

O
(0)
5,c = (HH)3(LL)3 , O

(0)
5,d = (HH)1(LL)1 .

(2.1)

Since the singlet (HH)1 = 0, the last operator vanishes identically. For the other three
cases in Eq. (2.1), one can obtain the operator from a UV completion of the SM in which
some heavy degrees of freedom are integrated out at tree level. The properties of such
mediators are determined by the SU(2) group theory decomposition 2⌦ 2 = 1� 3, while
their nature depends on the particles entering the vertex, which can be of the form fermion-
fermion-scalar or scalar-scalar-scalar. As for the hypercharge Y , they are fixed as follows.
For heavy fermion mediators  , the Yukawa interactions of the full theory are of the form

y H̃
†
L +H.c. , (2.2)

while for a heavy scalar mediator S, the relevant vertex is

fLcSL +H.c. . (2.3)

In Table 1, we outline the nature and transformation properties of the mediators involved

Mediator SU(2) Y Seesaw
O

(0)
5,a fermion N 1 0 Type-I

O
(0)
5,b fermion ⌃ 3 0 Type-III

O
(0)
5,c scalar � 3 1 Type-II

Table 1. Summary of relevant properties of the mediators of tree-level UV completions of the SM
Weinberg operator (i.e., the seesaws), with their possible SU(2) contractions O

(0)
5,a, O(0)

5,b and O
(0)
5,c .

in the UV completion of the SM Weinberg operator. As it is well known, the UV com-
pletions include a hypercharge-less fermion singlet, NR, a Y = 1 scalar triplet, �, and a
hypercharge-less fermion triplet, ⌃. These three cases are the well-known Type-I, -II and
-III seesaw models, respectively.

2.2 Ultraviolet completions with new scalar multiplets

The possible Weinberg-like operators with up to two new scalars �1,�2 are:

�L5 =
1

2

X

i

C
(i)
5 O

(i)
5 +H.c.

where
O

(0)
5 = (LH)1(LH)1 , O

(1)
5 = (LH)N(L�1)N ,

O
(2)
5 = (L�1)N(L�1)N , O

(3)
5 = (L�1)N(L�2)N ,

(2.4)

– 3 –
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Bounds on the vbsm

ϕ1 = (N1, Y1) ρ = m2
W /(c2

wm2
Z)ϕ2 = (N2, Y2)

ρ − 1 = Δρ (Ni, Yi, vi) =
[( N2

1 − 1
4 ) − 3Y2

1] v2
1 + [( N2

2 − 1
4 ) − 3Y2

2] v2
2

( 2GF)
−1

− [( N2
1 − 1
4 ) − 3Y2

1] v2
1 − [( N2

2 − 1
4 ) − 3Y2

2] v2
2
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Bounds on the vbsm

ϕ1 = (N1, Y1) ρ = m2
W /(c2

wm2
Z)ϕ2 = (N2, Y2)

C.L. 95%

PDG 2022: T = 0.04 ± 0.06ρ = 1 + αT

From the global fit of electroweak precision data

ρ − 1 = Δρ (Ni, Yi, vi) =
[( N2

1 − 1
4 ) − 3Y2

1] v2
1 + [( N2

2 − 1
4 ) − 3Y2

2] v2
2

( 2GF)
−1

− [( N2
1 − 1
4 ) − 3Y2

1] v2
1 − [( N2

2 − 1
4 ) − 3Y2

2] v2
2

3.3 The VEVs of new scalars and the ⇢ parameter

The ⇢ parameter is defined as ⇢ = m2
W
/(c2

W
m2

Z
), where mW and mZ are the mass of

the W and the Z bosons, respectively, and cW is the cosine of the Weinberg’s angle. In
the SM, ⇢ = 1 due to custodial symmetry [43, 44]; this is in agreement with the current
experimental data, ⇢ = 1.00017 ± 0.00025 [45].4 When a new scalar multiplet that takes
a VEV, as in our scenarios, is added to the SM, custodial symmetry may be broken and
therefore there may be a modification of the ⇢ parameter. Thus, the allowed parameter
space of such scalar extensions is highly restricted, see for example Ref. [26]. Each scalar
multiplet with weak isospin Ij , hypercharge Yj and VEV vj contributes at tree level as [47]

⇢ =

P
j
[(Ij(Ij + 1)� Y 2

j
]v2

j
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j
Y 2
j
v2
j

. (3.20)

In order to not spoil the electroweak precision measurements, we need �⇢ = ⇢ � 1 ⌧ 1.
In addition, from the extraction of Fermi’s constant, GF , we have that 2

P
j
[Ij(Ij + 1) �

Y 2
j
]v2

j
= (2

p
2GF )

�1
= (174 GeV)

2. Therefore, it is clear that the VEV of any new scalar
multiplet added to the SM must be rather small because the top mass and perturbativity
require that the SM Higgs VEV is not much smaller than 174 GeV.5 In the following, we
quantify the constraints on the VEVs from the experimental value of the ⇢ parameter,
working in the regime v � vi. First, let us consider the scenarios belonging to class-A,

scenario vmax
1 (GeV) Induced VEVs

AI 3.3 4

AII 2.6 4

Table 4. 95% CL upper limits on the VEVs of the new scalar multiplets from the ⇢ parameter and
the possibility of inducing small VEVs in class-A scenarios.

namely the ones in which we add a single scalar multiplet: �1 = 4�1/2 for AI and �1 =

4�3/2 for AII. Recalling the general formula, Eq. (3.20), we get

�⇢AI =
3v21

(4
p
2GF )

�1 � 3v21
for AI , (3.21)

�⇢AII =
�3v21

(4
p
2GF )

�1 + 3v21
for AII . (3.22)

Using the experimental bound, we obtain the limits on the new VEVs, which are listed in
Table 4. As expected, the BSM VEVs are always much smaller than the SM Higgs one.
Using this result for which v1 ⇠ O(1GeV), it is also possible to estimate the energy scale
of the UV complete theory, since from the Weinberg-like operators the neutrino mass can
be written as m⌫ ⇠ vv1/⇤ and m⌫ ⇠ v21/⇤ (if the dimension-5 operators O

(1)
5 and O

(2)
5 are

4
We do not take into account here the recent measurement of the W -boson mass from CDF [46], which

will be discussed later.
5
Note that there are representations which maintain ⇢ = 1 and have a neutral component, i.e. those

that satisfy 3Y 2
j = Ij(Ij + 1), for example, a 21/2 (a 2HDM) and a 72.
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Scenario Region a1(GeV) a2(GeV) Induced VEVs

BI Hyperbola 3.3 2.6 4

BII Ellipse 4.0 3.3 ⇠
BIII Hyperbola 1.9 3.3 8

BIV Ellipse 3.3 2.3 8

BV Hyperbola 4.0 4.0 4

BVI Hyperbola 4.0 2.3 ⇠
Table 5. Parameters of the 95% CL allowed regions for the VEVs of the new scalar multiplets
and the possibility for inducing a small VEV for the Bi scenarios. Scenarios marked with a 4, ⇠
and 8 correspond to both, only one and no VEVs induced by linear terms in the scalar potential,
respectively. For discussion, see Section 3.4.

When the allowed region is an ellipse (scenarios BII and BIV), the values of the two
semi-axes a1,2 correspond to the maximum values that the VEVs can assume. On the other
hand, when the allowed region is the space between two hyperbolae (scenarios BI, BIII,
BV and BVI), the BSM VEVs can in principle also have large values if there is some partial
cancellation among the contributions. However, they cannot exceed the limit imposed by
the Fermi constant, namely 174 GeV. Moreover, given that the mass of the top quark is
proportional to the SM Higgs VEV v, by perturbativity the latter is not allowed to be
too small. Thus, the new VEVs v1 and v2 in the BI,III,V,VI scenarios also cannot exceed
roughly O(10GeV).

Analogous to the case of class-A scenarios, we can deduce the energy scale of the
new physics by imposing that neutrino masses are m⌫ & O(0.05 eV) and that the Wilson
coe�cients are of O(1). Since for class-B scenarios we can have the dimension-5 operator
O

(3)
5 from which m⌫ ⇠ v1v2/⇤, we obtain for all the scenarios, an energy scale ⇤ . O(10

10
)

GeV. The semi-axes of the conics which represent the allowed region for the new scalar
VEVs obtained from EWPT for the class-B scenarios are listed in Table 5. Notice that in
scenario BI, the Wilson coe�cients for O

(1)
5 and O

(2)
5 related to neutrino masses are not

zero; given that the particle content of scenario BI is the same as the class-A scenarios,
the new physics energy scale related to O

(1)
5 and O

(2)
5 for BI can be read in the discussion

above. In this scenario, if all the operators are generated with O(1) Wilson coe�cients, ⇤
should be the largest, i.e., 1012 GeV.

3.4 Naturally-induced small VEVs

As studied above, EWPT constrain the VEVs of the new scalar multiplets to be much
smaller than the Higgs doublet one. A natural way to have suppressed VEVs for the new
multiplets is that they are induced by the Higgs doublet one through linear terms of the
new fields in the potential. For the scenarios in which a linear term µ�iH2 (with µ a
trilinear dimensionful coupling) or ��iH3 (with � a dimensionless quartic coupling) is
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Table 5. Parameters of the 95% CL allowed regions for the VEVs of the new scalar multiplets
and the possibility for inducing a small VEV for the Bi scenarios. Scenarios marked with a 4, ⇠
and 8 correspond to both, only one and no VEVs induced by linear terms in the scalar potential,
respectively. For discussion, see Section 3.4.
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cancellation among the contributions. However, they cannot exceed the limit imposed by
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proportional to the SM Higgs VEV v, by perturbativity the latter is not allowed to be
too small. Thus, the new VEVs v1 and v2 in the BI,III,V,VI scenarios also cannot exceed
roughly O(10GeV).

Analogous to the case of class-A scenarios, we can deduce the energy scale of the
new physics by imposing that neutrino masses are m⌫ & O(0.05 eV) and that the Wilson
coe�cients are of O(1). Since for class-B scenarios we can have the dimension-5 operator
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GeV. The semi-axes of the conics which represent the allowed region for the new scalar
VEVs obtained from EWPT for the class-B scenarios are listed in Table 5. Notice that in
scenario BI, the Wilson coe�cients for O
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5 and O
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5 related to neutrino masses are not

zero; given that the particle content of scenario BI is the same as the class-A scenarios,
the new physics energy scale related to O
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5 and O
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5 for BI can be read in the discussion

above. In this scenario, if all the operators are generated with O(1) Wilson coe�cients, ⇤
should be the largest, i.e., 1012 GeV.

3.4 Naturally-induced small VEVs

As studied above, EWPT constrain the VEVs of the new scalar multiplets to be much
smaller than the Higgs doublet one. A natural way to have suppressed VEVs for the new
multiplets is that they are induced by the Higgs doublet one through linear terms of the
new fields in the potential. For the scenarios in which a linear term µ�iH2 (with µ a
trilinear dimensionful coupling) or ��iH3 (with � a dimensionless quartic coupling) is
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the W and the Z bosons, respectively, and cW is the cosine of the Weinberg’s angle. In
the SM, ⇢ = 1 due to custodial symmetry [43, 44]; this is in agreement with the current
experimental data, ⇢ = 1.00017 ± 0.00025 [45].4 When a new scalar multiplet that takes
a VEV, as in our scenarios, is added to the SM, custodial symmetry may be broken and
therefore there may be a modification of the ⇢ parameter. Thus, the allowed parameter
space of such scalar extensions is highly restricted, see for example Ref. [26]. Each scalar
multiplet with weak isospin Ij , hypercharge Yj and VEV vj contributes at tree level as [47]
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2. Therefore, it is clear that the VEV of any new scalar
multiplet added to the SM must be rather small because the top mass and perturbativity
require that the SM Higgs VEV is not much smaller than 174 GeV.5 In the following, we
quantify the constraints on the VEVs from the experimental value of the ⇢ parameter,
working in the regime v � vi. First, let us consider the scenarios belonging to class-A,

scenario vmax
1 (GeV) Induced VEVs

AI 3.3 4

AII 2.6 4

Table 4. 95% CL upper limits on the VEVs of the new scalar multiplets from the ⇢ parameter and
the possibility of inducing small VEVs in class-A scenarios.

namely the ones in which we add a single scalar multiplet: �1 = 4�1/2 for AI and �1 =

4�3/2 for AII. Recalling the general formula, Eq. (3.20), we get

�⇢AI =
3v21
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�1 � 3v21
for AI , (3.21)

�⇢AII =
�3v21
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�1 + 3v21
for AII . (3.22)

Using the experimental bound, we obtain the limits on the new VEVs, which are listed in
Table 4. As expected, the BSM VEVs are always much smaller than the SM Higgs one.
Using this result for which v1 ⇠ O(1GeV), it is also possible to estimate the energy scale
of the UV complete theory, since from the Weinberg-like operators the neutrino mass can
be written as m⌫ ⇠ vv1/⇤ and m⌫ ⇠ v21/⇤ (if the dimension-5 operators O

(1)
5 and O

(2)
5 are

4
We do not take into account here the recent measurement of the W -boson mass from CDF [46], which

will be discussed later.
5
Note that there are representations which maintain ⇢ = 1 and have a neutral component, i.e. those

that satisfy 3Y 2
j = Ij(Ij + 1), for example, a 21/2 (a 2HDM) and a 72.
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should be the largest, i.e., 1012 GeV.

3.4 Naturally-induced small VEVs

As studied above, EWPT constrain the VEVs of the new scalar multiplets to be much
smaller than the Higgs doublet one. A natural way to have suppressed VEVs for the new
multiplets is that they are induced by the Higgs doublet one through linear terms of the
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multiplet added to the SM must be rather small because the top mass and perturbativity
require that the SM Higgs VEV is not much smaller than 174 GeV.5 In the following, we
quantify the constraints on the VEVs from the experimental value of the ⇢ parameter,
working in the regime v � vi. First, let us consider the scenarios belonging to class-A,
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Using the experimental bound, we obtain the limits on the new VEVs, which are listed in
Table 4. As expected, the BSM VEVs are always much smaller than the SM Higgs one.
Using this result for which v1 ⇠ O(1GeV), it is also possible to estimate the energy scale
of the UV complete theory, since from the Weinberg-like operators the neutrino mass can
be written as m⌫ ⇠ vv1/⇤ and m⌫ ⇠ v21/⇤ (if the dimension-5 operators O
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5 and O
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We do not take into account here the recent measurement of the W -boson mass from CDF [46], which

will be discussed later.
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Note that there are representations which maintain ⇢ = 1 and have a neutral component, i.e. those
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j = Ij(Ij + 1), for example, a 21/2 (a 2HDM) and a 72.

– 14 –

Are these models "genuine"?
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Road to "genuineness": induced vevs

V(ϕ, ϕi, ϕj) ⊃ λi ϕi ϕ2 + μi ϕi ϕ3 + κ ϕi ϕj ϕ2
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Road to "genuineness": induced vevs

V(ϕ, ϕi, ϕj) ⊃ λi ϕi ϕ2 + μi ϕi ϕ3 + κ ϕi ϕj ϕ2

 as a dimensionful parameterλi

ϕ2 ∼ 2 ⊗ 2 = 3 ⊕ 1
TRIPLET / SINGLETUnder the assumption  a small


 induced vev is produced:
mϕi

≫ vsm

vϕi
≃ λi

v2
sm

m2
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Road to "genuineness": induced vevs

V(ϕ, ϕi, ϕj) ⊃ λi ϕi ϕ2 + μi ϕi ϕ3 + κ ϕi ϕj ϕ2

 as a dimensionless parameterμi

ϕ3 ∼ 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 + 2′￼

QUADRUPLET / DOUBLETUnder the assumption  a small

 induced vev is produced:

mϕi
≫ vsm

vϕi
≃ μi

v3
sm

m2
ϕi
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Road to "genuineness": induced vevs

V(ϕ, ϕi, ϕj) ⊃ λi ϕi ϕ2 + μi ϕi ϕ3 + κ ϕi ϕj ϕ2

 as a dimensionless 
parameter

κ

ϕ2 ∼ 2 ⊗ 2 = 3 ⊕ 1

Under the assumption  a 

relation among the vevs is implied:

mϕi
≫ vsm

vϕi
≃ κ vϕj

v2
sm

m2
ϕi

, 
ϕi ∼ 2n, ϕj ∼ 2(n + 1)
2n ⊗ 2(n + 1) = 3 ⊕ 5 ⊕ . . . ⊕ 4n + 1

 , ϕi ∼ n, ϕj ∼ n n ⊗ n ⊃ 1

, 
ϕi ∼ 2n + 1, ϕj ∼ 2n + 3
2n + 1 ⊗ 2n + 3 = 3 ⊕ 5 ⊕ . . . ⊕ 4n + 3
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Road to "genuineness": induced vevs

V(ϕ, ϕi, ϕj) ⊃ λi ϕi ϕ2 + μi ϕi ϕ3 + κ ϕi ϕj ϕ2

Models New Scalars Mediator Op. Wilson Coe�ents vbsm π vsm

AI �1 = 4
S

≠1/2 � = 5
F

0 O
(2)
5 C(2)

5 = y1M
≠1
� yT

1 4

AII �1 = 4
S

≠3/2 F = 3
F

≠1 O
(1)
5 C(1)

5 = y1M
≠1
F yT

H
+ yHM≠1

F yT

1 4

BI �1 = 4
S

1/2 �2 = 4
S

≠3/2 F = 5
F

≠1 O
(3)
5 C(3)

5 = y1M
≠1
F yT

2 + y2M
≠1
F yT

1 4

BII �1 = 3
S

0 �2 = 5
S

≠1 F = 4
F

≠1/2 O
(3)
5 C(3)

5 = y1M
≠1
F yT

2 + y2M
≠1
F yT

1 4

BIII �1 = 5
S

1 �2 = 5
S

≠2 F = 4
F

3/2 O
(3)
5 C(3)

5 = y1M
≠1
F yT

2 + y2M
≠1
F yT

1 8

BIV �1 = 5
S

0 �2 = 5
S

≠1 F = 4
F

1/2 O
(3)
5 C(3)

5 = y1M
≠1
F yT

2 + y2M
≠1
F yT

1 8

BV �1 = 3
S

0 �2 = 3
S

≠1 ≥ ≥ ≥ ≥

BVI �1 = 3
S

≠1 �2 = 5
S

0 ≥ ≥ ≥ ≥

1 Introduction

1
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Effective operators leading to neutrino masses

Tree level Tree level with induced VEVs Loop level

Model ! ⇠ n ⌘

A1 1/2 1/2
p
3 9 �5/6

A2 �1 1 7 2

B1 �
p
3/4

1/4 9

5/6

�1/12 (�1/4) 11

B2 �1/
p
2 1/4 9 5/3

B3 2 �1 7
⇤

�5

B4 �
p
6 �3/2 7

⇤
�5

Table 3. We show the numerical factors ! (⇠) [⌘] appearing from the SU(2) contractions in the
expression for neutrino masses at tree level (after inducing small VEVs) [at one loop] in the second
(third) [fifth] column. We also show in the fourth column the mass dimension n of the generated
operator O

(0)
n = (LH)1(LH)1(H

†
H)

n�5
2 , responsible for the generation of neutrino masses after

small VEVs are induced. In model B1, if neutrino masses come from an n = 11 operator, the
SM Higgs can induce a small VEV for either �1 or �2 (shown in parentheses). The ⇤ for models
B3,4 indicates that the n = 7 operator cannot be built using only the SM Higgs and it reads
O7 = (L�i)

2
(H

†
H).

the scalar potential. The quantum numbers of the multiplets allow writing potential terms
which are linear in �1 and/or �2, namely �iH

3
�i, µiH

2
�i and �12H

2
�1�2. These terms

might be responsible of a mechanism for which the VEVs of the two new scalar fields can be
induced and naturally suppressed with respect to the SM Higgs one after the Electroweak
Spontaneous Symmetry Breaking. There are three possibilities:

• �HHH�i: in the case in which the potential include this term, after SSB we obtain

vi = �
v
3

2m
2
�i

, (2.13)

where v is the SM Higgs and m�i
is the mass of the new scalar multiplet �i. Such a

potential term exists for our models A1,2 and B1.

• µHH�i with µ being a dimensionful coupling: in this case we have

vi = µ
v
2

2m
2
�i

. (2.14)

This potential term only exists for the hypercharge-less triplet in B2.
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d 5=

Model Scalar Multiplets Mediators Op. Wilson Coe�cients Refs.

A1 �1 = 4S�1/2 ⌃ = 5F0 O
(2)
5 C

(2)
5 = y1M

�1
⌃ y

T

1 [19, 20]
A2 �1 = 4S�3/2 F = 3F�1 O

(1)
5 C

(1)
5 = y1M

�1
F y

T

H
+ yHM

�1
F y

T

1 [21–27]
B1 �1 = 4S1/2, �2 = 4S�3/2 F = 5F�1 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [28, 29]
B2 �1 = 3S0 , �2 = 5S�1 F = 4F�1/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [30, 41]
B3 �1 = 5S�2, �2 = 5S1 F = 4F3/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 �

B4 �1 = 5S�1, �2 = 5S0 F = 4F1/2 O
(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 �

Table 2. List of genuine seesaw models which generate neutrino masses at tree level once the
new scalars take VEVs. We show the transformation of the new scalar and fermion particles as
NS,F

Y
, where N = 2I + 1 is the dimension of the SU(2) representation of weak isospin I and Y

is the hypercharge. Models Ai (Bi) include one (two) new scalar multiplets. The heavy fermion
mediator  = ⌃ (F) is Majorana (vector-like). The fourth column shows the Weinberg-like operator
generated, and the fifth one its Wilson Coe�cient. References where these models have been studied
are listed in the last column.

note that given the representation cuto� at 5 for the scalars, the only model in which a
Majorana mediator is allowed is the model A1, which only includes one quadruplet. Notice
that the models A1,2 and B1�4 correspond in the scalar sector to the scenarios AI,II and
BI�IV of Ref. [18], respectively.

After the new scalars take VEVs, neutrino masses will be generated at tree level and
they can be written as

(m⌫)↵� = !v
2
1

�
y1M

�1
⌃ y

T

1

�
↵�

for A1 , (2.10)

(m⌫)↵� = !v1v
�
yHM

�1
F y

T

1 + y1M
�1
F y

T

H

�
↵�

for A2 , (2.11)

(m⌫)↵� = !v1v2
�
y1M

�1
F y

T

2 + y2M
�1
F y

T

1

�
↵�

for Bi , (2.12)

where v, v1 and v2 are the VEVs of the SM Higgs doublet, �1 and �2, respectively, while
we denote by ! the numerical factor that arises from the contraction of the fields in the
three possible dimension-5 operators, O(1)

5 , O(2)
5 and O

(3)
5 , respectively. We summarize the

values of these factors in Table 3.
Finally, let us comment on an important distinction between the Majorana and the

vector-like type of models. For the case of Majorana fermions (Model A1), the Yukawa
structure of the mass matrix in Eq. (2.10) implies that, in order to have at least two
non-zero neutrino masses at tree level, we need at least two copies of the fermion ⌃. On
the other hand, for models with vector-like fermions (Models A2,Bi), given the Yukawa
structure of the mass matrices in Eqs. (2.11) and (2.12), having only a single heavy fermion
is su�cient to generate two non-zero neutrino masses at tree level. Though in presence
of significant loop-corrections to the neutrino mass matrix (see Section 3), a single heavy
fermion is enough to generate two non-zero neutrino masses even in the Majorana case [42].

2.4 Neutrino masses and small induced VEVs

In Section 3 of Ref. [18] the scalar potentials for class-A and B models have been studied
in details and we refer the reader to that reference for the definition of the couplings in the
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d 5≥

26

Effective operators leading to neutrino masses

Tree level Tree level with induced VEVs Loop level

Model ! ⇠ n ⌘

A1 1/2 1/2
p
3 9 �5/6

A2 �1 1 7 2

B1 �
p
3/4

1/4 9

5/6

�1/12 (�1/4) 11

B2 �1/
p
2 1/4 9 5/3

B3 2 �1 7
⇤

�5

B4 �
p
6 �3/2 7

⇤
�5

Table 3. We show the numerical factors ! (⇠) [⌘] appearing from the SU(2) contractions in the
expression for neutrino masses at tree level (after inducing small VEVs) [at one loop] in the second
(third) [fifth] column. We also show in the fourth column the mass dimension n of the generated
operator O

(0)
n = (LH)1(LH)1(H

†
H)

n�5
2 , responsible for the generation of neutrino masses after

small VEVs are induced. In model B1, if neutrino masses come from an n = 11 operator, the
SM Higgs can induce a small VEV for either �1 or �2 (shown in parentheses). The ⇤ for models
B3,4 indicates that the n = 7 operator cannot be built using only the SM Higgs and it reads
O7 = (L�i)

2
(H

†
H).

the scalar potential. The quantum numbers of the multiplets allow writing potential terms
which are linear in �1 and/or �2, namely �iH

3
�i, µiH

2
�i and �12H

2
�1�2. These terms

might be responsible of a mechanism for which the VEVs of the two new scalar fields can be
induced and naturally suppressed with respect to the SM Higgs one after the Electroweak
Spontaneous Symmetry Breaking. There are three possibilities:

• �HHH�i: in the case in which the potential include this term, after SSB we obtain

vi = �
v
3

2m
2
�i

, (2.13)

where v is the SM Higgs and m�i
is the mass of the new scalar multiplet �i. Such a

potential term exists for our models A1,2 and B1.

• µHH�i with µ being a dimensionful coupling: in this case we have

vi = µ
v
2

2m
2
�i

. (2.14)

This potential term only exists for the hypercharge-less triplet in B2.
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Figure 2. On the left (right) the tree-level operator with mass dimension d = 9 (d = 11) involving
the vector-like fermion F ⇠ (5,�1), the scalar quadruplet �1 ⇠ (4, 1/2), the scalar quadruplet
�2 ⇠ (4,�3/2) and the usual Higgs doublet � ⇠ (2, 1/2).

leading to operators with mass dimension d > 5. Let us consider for example the model
B1. In this model, there exist couplings as ��1�1H

3
� �2�2H

3, which provide induced
vevs for the BSM scalar fields �1,2, such as:

h�ii ' �i

hHi
3

m
2
�i

. (4.7)

The suppressed seesaw neutrino mass reads:

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
6

M⌃m
2
�1
m

2
�2

. (4.8)

Therefore, the neutrino masses are produced with a low-energy operator with a mass
dimension d = 9, namely O⌫ = L

2
H

6
/M

5, where M is a common mass scale denoting
all the dimensionful parameters M⌃,m�1,2 .
But that’s not all. Indeed, the scalar potential includes another term: �1�2H

2. Thus,
after the SSB, the induced vev of �1 acquire a contribution as

h�2i ' 
h�1i hHi

2

m
2
�2

. (4.9)

Then the low energy operator contributing to the neutrino masses is

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
8

M⌃m
4
�1
m

2
�2

. (4.10)

Neutrino masses get contributions from an operator of dimension d = 11, namely m⌫ ⇠

L
2
H

8
/M

7. The result is that the neutrino masses are obtained by two e�ective operators
with mass dimension d = 9, 11, the diagrams of which are shown in fig. (2).
The same reasoning and similar computation applies for all the other models, as pointed
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Example: Model B1

d=9 d=11

Model Scalar Multiplets Mediators Op. Wilson Coe�cients Refs.

A1 �1 = 4S�1/2 ⌃ = 5F0 O
(2)
5 C

(2)
5 = y1M

�1
⌃ y

T

1 [19, 20]
A2 �1 = 4S�3/2 F = 3F�1 O

(1)
5 C

(1)
5 = y1M

�1
F y

T

H
+ yHM

�1
F y

T

1 [21–27]
B1 �1 = 4S1/2, �2 = 4S�3/2 F = 5F�1 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [28, 29]
B2 �1 = 3S0 , �2 = 5S�1 F = 4F�1/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [30, 41]
B3 �1 = 5S�2, �2 = 5S1 F = 4F3/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 �

B4 �1 = 5S�1, �2 = 5S0 F = 4F1/2 O
(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 �

Table 2. List of genuine seesaw models which generate neutrino masses at tree level once the
new scalars take VEVs. We show the transformation of the new scalar and fermion particles as
NS,F

Y
, where N = 2I + 1 is the dimension of the SU(2) representation of weak isospin I and Y

is the hypercharge. Models Ai (Bi) include one (two) new scalar multiplets. The heavy fermion
mediator  = ⌃ (F) is Majorana (vector-like). The fourth column shows the Weinberg-like operator
generated, and the fifth one its Wilson Coe�cient. References where these models have been studied
are listed in the last column.

note that given the representation cuto� at 5 for the scalars, the only model in which a
Majorana mediator is allowed is the model A1, which only includes one quadruplet. Notice
that the models A1,2 and B1�4 correspond in the scalar sector to the scenarios AI,II and
BI�IV of Ref. [18], respectively.

After the new scalars take VEVs, neutrino masses will be generated at tree level and
they can be written as

(m⌫)↵� = !v
2
1

�
y1M

�1
⌃ y

T

1

�
↵�

for A1 , (2.10)

(m⌫)↵� = !v1v
�
yHM

�1
F y

T

1 + y1M
�1
F y

T

H

�
↵�

for A2 , (2.11)

(m⌫)↵� = !v1v2
�
y1M

�1
F y

T

2 + y2M
�1
F y

T

1

�
↵�

for Bi , (2.12)

where v, v1 and v2 are the VEVs of the SM Higgs doublet, �1 and �2, respectively, while
we denote by ! the numerical factor that arises from the contraction of the fields in the
three possible dimension-5 operators, O(1)

5 , O(2)
5 and O

(3)
5 , respectively. We summarize the

values of these factors in Table 3.
Finally, let us comment on an important distinction between the Majorana and the

vector-like type of models. For the case of Majorana fermions (Model A1), the Yukawa
structure of the mass matrix in Eq. (2.10) implies that, in order to have at least two
non-zero neutrino masses at tree level, we need at least two copies of the fermion ⌃. On
the other hand, for models with vector-like fermions (Models A2,Bi), given the Yukawa
structure of the mass matrices in Eqs. (2.11) and (2.12), having only a single heavy fermion
is su�cient to generate two non-zero neutrino masses at tree level. Though in presence
of significant loop-corrections to the neutrino mass matrix (see Section 3), a single heavy
fermion is enough to generate two non-zero neutrino masses even in the Majorana case [42].

2.4 Neutrino masses and small induced VEVs

In Section 3 of Ref. [18] the scalar potentials for class-A and B models have been studied
in details and we refer the reader to that reference for the definition of the couplings in the
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d 5≥

27

Effective operators leading to neutrino masses

Tree level Tree level with induced VEVs Loop level

Model ! ⇠ n ⌘

A1 1/2 1/2
p
3 9 �5/6

A2 �1 1 7 2

B1 �
p
3/4

1/4 9

5/6

�1/12 (�1/4) 11

B2 �1/
p
2 1/4 9 5/3

B3 2 �1 7
⇤

�5

B4 �
p
6 �3/2 7

⇤
�5

Table 3. We show the numerical factors ! (⇠) [⌘] appearing from the SU(2) contractions in the
expression for neutrino masses at tree level (after inducing small VEVs) [at one loop] in the second
(third) [fifth] column. We also show in the fourth column the mass dimension n of the generated
operator O

(0)
n = (LH)1(LH)1(H

†
H)

n�5
2 , responsible for the generation of neutrino masses after

small VEVs are induced. In model B1, if neutrino masses come from an n = 11 operator, the
SM Higgs can induce a small VEV for either �1 or �2 (shown in parentheses). The ⇤ for models
B3,4 indicates that the n = 7 operator cannot be built using only the SM Higgs and it reads
O7 = (L�i)

2
(H

†
H).

the scalar potential. The quantum numbers of the multiplets allow writing potential terms
which are linear in �1 and/or �2, namely �iH

3
�i, µiH

2
�i and �12H

2
�1�2. These terms

might be responsible of a mechanism for which the VEVs of the two new scalar fields can be
induced and naturally suppressed with respect to the SM Higgs one after the Electroweak
Spontaneous Symmetry Breaking. There are three possibilities:

• �HHH�i: in the case in which the potential include this term, after SSB we obtain

vi = �
v
3

2m
2
�i

, (2.13)

where v is the SM Higgs and m�i
is the mass of the new scalar multiplet �i. Such a

potential term exists for our models A1,2 and B1.

• µHH�i with µ being a dimensionful coupling: in this case we have

vi = µ
v
2

2m
2
�i

. (2.14)

This potential term only exists for the hypercharge-less triplet in B2.
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Figure 2. On the left (right) the tree-level operator with mass dimension d = 9 (d = 11) involving
the vector-like fermion F ⇠ (5,�1), the scalar quadruplet �1 ⇠ (4, 1/2), the scalar quadruplet
�2 ⇠ (4,�3/2) and the usual Higgs doublet � ⇠ (2, 1/2).

leading to operators with mass dimension d > 5. Let us consider for example the model
B1. In this model, there exist couplings as ��1�1H

3
� �2�2H

3, which provide induced
vevs for the BSM scalar fields �1,2, such as:

h�ii ' �i

hHi
3

m
2
�i

. (4.7)

The suppressed seesaw neutrino mass reads:

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
6

M⌃m
2
�1
m

2
�2

. (4.8)

Therefore, the neutrino masses are produced with a low-energy operator with a mass
dimension d = 9, namely O⌫ = L

2
H

6
/M

5, where M is a common mass scale denoting
all the dimensionful parameters M⌃,m�1,2 .
But that’s not all. Indeed, the scalar potential includes another term: �1�2H

2. Thus,
after the SSB, the induced vev of �1 acquire a contribution as

h�2i ' 
h�1i hHi

2

m
2
�2

. (4.9)

Then the low energy operator contributing to the neutrino masses is

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
8

M⌃m
4
�1
m

2
�2

. (4.10)

Neutrino masses get contributions from an operator of dimension d = 11, namely m⌫ ⇠

L
2
H

8
/M

7. The result is that the neutrino masses are obtained by two e�ective operators
with mass dimension d = 9, 11, the diagrams of which are shown in fig. (2).
The same reasoning and similar computation applies for all the other models, as pointed
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Example: Model B1

d=9 d=11

Model Scalar Multiplets Mediators Op. Wilson Coe�cients Refs.

A1 �1 = 4S�1/2 ⌃ = 5F0 O
(2)
5 C

(2)
5 = y1M

�1
⌃ y

T

1 [19, 20]
A2 �1 = 4S�3/2 F = 3F�1 O

(1)
5 C

(1)
5 = y1M

�1
F y

T

H
+ yHM

�1
F y

T

1 [21–27]
B1 �1 = 4S1/2, �2 = 4S�3/2 F = 5F�1 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [28, 29]
B2 �1 = 3S0 , �2 = 5S�1 F = 4F�1/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [30, 41]
B3 �1 = 5S�2, �2 = 5S1 F = 4F3/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y
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1 �

B4 �1 = 5S�1, �2 = 5S0 F = 4F1/2 O
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Table 2. List of genuine seesaw models which generate neutrino masses at tree level once the
new scalars take VEVs. We show the transformation of the new scalar and fermion particles as
NS,F

Y
, where N = 2I + 1 is the dimension of the SU(2) representation of weak isospin I and Y

is the hypercharge. Models Ai (Bi) include one (two) new scalar multiplets. The heavy fermion
mediator  = ⌃ (F) is Majorana (vector-like). The fourth column shows the Weinberg-like operator
generated, and the fifth one its Wilson Coe�cient. References where these models have been studied
are listed in the last column.

note that given the representation cuto� at 5 for the scalars, the only model in which a
Majorana mediator is allowed is the model A1, which only includes one quadruplet. Notice
that the models A1,2 and B1�4 correspond in the scalar sector to the scenarios AI,II and
BI�IV of Ref. [18], respectively.

After the new scalars take VEVs, neutrino masses will be generated at tree level and
they can be written as

(m⌫)↵� = !v
2
1

�
y1M

�1
⌃ y

T

1

�
↵�

for A1 , (2.10)

(m⌫)↵� = !v1v
�
yHM

�1
F y

T

1 + y1M
�1
F y

T

H

�
↵�

for A2 , (2.11)

(m⌫)↵� = !v1v2
�
y1M

�1
F y

T

2 + y2M
�1
F y

T

1

�
↵�

for Bi , (2.12)

where v, v1 and v2 are the VEVs of the SM Higgs doublet, �1 and �2, respectively, while
we denote by ! the numerical factor that arises from the contraction of the fields in the
three possible dimension-5 operators, O(1)

5 , O(2)
5 and O

(3)
5 , respectively. We summarize the

values of these factors in Table 3.
Finally, let us comment on an important distinction between the Majorana and the

vector-like type of models. For the case of Majorana fermions (Model A1), the Yukawa
structure of the mass matrix in Eq. (2.10) implies that, in order to have at least two
non-zero neutrino masses at tree level, we need at least two copies of the fermion ⌃. On
the other hand, for models with vector-like fermions (Models A2,Bi), given the Yukawa
structure of the mass matrices in Eqs. (2.11) and (2.12), having only a single heavy fermion
is su�cient to generate two non-zero neutrino masses at tree level. Though in presence
of significant loop-corrections to the neutrino mass matrix (see Section 3), a single heavy
fermion is enough to generate two non-zero neutrino masses even in the Majorana case [42].

2.4 Neutrino masses and small induced VEVs

In Section 3 of Ref. [18] the scalar potentials for class-A and B models have been studied
in details and we refer the reader to that reference for the definition of the couplings in the
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Table
3. We show the numerica

l factors !
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(2
) contractions in the

expressi
on for neutrino masses

at tree
level (after
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(third) [fifth] column. We also show in the fourth
column the mass dimension n

of the generated

operator O
(0)
n
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H
)1(

LH
)1(

H
†H)

n�5

2
, resp

onsible for the generation of neutrino masses
after

small VEVs are induced. In model B1, if neutrino masses
come from an n

=
11

operator, the

SM Higgs can induce a small VEV for either �1
or �2

(shown in parentheses)
. The ⇤

for models

B3,4
indicates

that the n
=

7
operator cannot be built using only the SM Higgs and it reads

O7
=
(L
�i
)
2 (H

†H).

scalar potential. and it was shown that the quantum numbers of the multiplets
allow writin

g

potential term
s which are linear in �1

and/or �2, namely �
i
H
3�i

, µ
i
H
2�i

and �12
H
2�1�

2.

The first two term
s, for m�i

�
v, might be resp

onsible of a mechanism
for which

the

VEVs of the two new scalar fields can be induced
by the SM Higgs VEV and naturally

suppresse
d with resp

ect to it after
the elect

roweak Spontaneous Symmetry
Breaking (SSB),

with vi
/

�i
v
3 /m

2
�i

or vi
/

µi
v
2 /m

2
�i

. On the other hand, the third mixed term
can

suppress
one of the two new scalar VEVs with resp

ect to the other: v2
(1)

/
v1(2

)v
2 /m

2
�2(1

)
.

There are three possibilitie
s:

• �H
H
H
�i

: in the case in which the potential include this term
, after

SSB we obtain

vi
=
�

v
3

2m
2
�i

,

(2.13)

where v
is the SM Higgs and m�i

is the mass of the new scalar multiplet �
i
. Such a

potential term
exists

for our models A
1,2

and B1.

• µH
H
�i

with µ
being a dimensionful coupling: in this case we have

vi
=
µ

v
2

2m
2
�i

.

(2.14)
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28

Effective operators leading to neutrino masses

Tree level Tree level with induced VEVs Loop level

Model ! ⇠ n ⌘

A1 1/2 1/2
p
3 9 �5/6

A2 �1 1 7 2

B1 �
p
3/4

1/4 9

5/6

�1/12 (�1/4) 11

B2 �1/
p
2 1/4 9 5/3

B3 2 �1 7
⇤

�5

B4 �
p
6 �3/2 7

⇤
�5

Table 3. We show the numerical factors ! (⇠) [⌘] appearing from the SU(2) contractions in the
expression for neutrino masses at tree level (after inducing small VEVs) [at one loop] in the second
(third) [fifth] column. We also show in the fourth column the mass dimension n of the generated
operator O

(0)
n = (LH)1(LH)1(H

†
H)

n�5
2 , responsible for the generation of neutrino masses after

small VEVs are induced. In model B1, if neutrino masses come from an n = 11 operator, the
SM Higgs can induce a small VEV for either �1 or �2 (shown in parentheses). The ⇤ for models
B3,4 indicates that the n = 7 operator cannot be built using only the SM Higgs and it reads
O7 = (L�i)

2
(H

†
H).

the scalar potential. The quantum numbers of the multiplets allow writing potential terms
which are linear in �1 and/or �2, namely �iH

3
�i, µiH

2
�i and �12H

2
�1�2. These terms

might be responsible of a mechanism for which the VEVs of the two new scalar fields can be
induced and naturally suppressed with respect to the SM Higgs one after the Electroweak
Spontaneous Symmetry Breaking. There are three possibilities:

• �HHH�i: in the case in which the potential include this term, after SSB we obtain

vi = �
v
3

2m
2
�i

, (2.13)

where v is the SM Higgs and m�i
is the mass of the new scalar multiplet �i. Such a

potential term exists for our models A1,2 and B1.

• µHH�i with µ being a dimensionful coupling: in this case we have

vi = µ
v
2

2m
2
�i

. (2.14)

This potential term only exists for the hypercharge-less triplet in B2.
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Figure 2. On the left (right) the tree-level operator with mass dimension d = 9 (d = 11) involving
the vector-like fermion F ⇠ (5,�1), the scalar quadruplet �1 ⇠ (4, 1/2), the scalar quadruplet
�2 ⇠ (4,�3/2) and the usual Higgs doublet � ⇠ (2, 1/2).

leading to operators with mass dimension d > 5. Let us consider for example the model
B1. In this model, there exist couplings as ��1�1H

3
� �2�2H

3, which provide induced
vevs for the BSM scalar fields �1,2, such as:

h�ii ' �i

hHi
3

m
2
�i

. (4.7)

The suppressed seesaw neutrino mass reads:

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
6

M⌃m
2
�1
m

2
�2

. (4.8)

Therefore, the neutrino masses are produced with a low-energy operator with a mass
dimension d = 9, namely O⌫ = L

2
H

6
/M

5, where M is a common mass scale denoting
all the dimensionful parameters M⌃,m�1,2 .
But that’s not all. Indeed, the scalar potential includes another term: �1�2H

2. Thus,
after the SSB, the induced vev of �1 acquire a contribution as

h�2i ' 
h�1i hHi

2

m
2
�2

. (4.9)

Then the low energy operator contributing to the neutrino masses is

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
8

M⌃m
4
�1
m

2
�2

. (4.10)

Neutrino masses get contributions from an operator of dimension d = 11, namely m⌫ ⇠

L
2
H

8
/M

7. The result is that the neutrino masses are obtained by two e�ective operators
with mass dimension d = 9, 11, the diagrams of which are shown in fig. (2).
The same reasoning and similar computation applies for all the other models, as pointed
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Example: Model B1

d=9 d=11

𝒪ν ≃
L L < ϕ >6

Mℱ m2
ϕ1

m2
ϕ2

𝒪ν ≃
L L < ϕ >8

Mℱ m4
ϕ1

m2
ϕ2

In some cases, one can assume  so that the 

 low energy effective operators read:





Mℱ ∼ mϕi
→ ℳ

𝒪(d)
ν ∼

L L < ϕ >d−3

ℳd−4 ℳ ∼ 𝒪(TeV)

Model Scalar Multiplets Mediators Op. Wilson Coe�cients Refs.

A1 �1 = 4S�1/2 ⌃ = 5F0 O
(2)
5 C

(2)
5 = y1M

�1
⌃ y

T

1 [19, 20]
A2 �1 = 4S�3/2 F = 3F�1 O

(1)
5 C

(1)
5 = y1M

�1
F y

T

H
+ yHM

�1
F y

T

1 [21–27]
B1 �1 = 4S1/2, �2 = 4S�3/2 F = 5F�1 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [28, 29]
B2 �1 = 3S0 , �2 = 5S�1 F = 4F�1/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 [30, 41]
B3 �1 = 5S�2, �2 = 5S1 F = 4F3/2 O

(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 �

B4 �1 = 5S�1, �2 = 5S0 F = 4F1/2 O
(3)
5 C

(3)
5 = y1M

�1
F y

T

2 + y2M
�1
F y

T

1 �

Table 2. List of genuine seesaw models which generate neutrino masses at tree level once the
new scalars take VEVs. We show the transformation of the new scalar and fermion particles as
NS,F

Y
, where N = 2I + 1 is the dimension of the SU(2) representation of weak isospin I and Y

is the hypercharge. Models Ai (Bi) include one (two) new scalar multiplets. The heavy fermion
mediator  = ⌃ (F) is Majorana (vector-like). The fourth column shows the Weinberg-like operator
generated, and the fifth one its Wilson Coe�cient. References where these models have been studied
are listed in the last column.

note that given the representation cuto� at 5 for the scalars, the only model in which a
Majorana mediator is allowed is the model A1, which only includes one quadruplet. Notice
that the models A1,2 and B1�4 correspond in the scalar sector to the scenarios AI,II and
BI�IV of Ref. [18], respectively.

After the new scalars take VEVs, neutrino masses will be generated at tree level and
they can be written as

(m⌫)↵� = !v
2
1

�
y1M

�1
⌃ y

T

1

�
↵�

for A1 , (2.10)

(m⌫)↵� = !v1v
�
yHM

�1
F y

T

1 + y1M
�1
F y

T

H

�
↵�

for A2 , (2.11)

(m⌫)↵� = !v1v2
�
y1M

�1
F y

T

2 + y2M
�1
F y

T

1

�
↵�

for Bi , (2.12)

where v, v1 and v2 are the VEVs of the SM Higgs doublet, �1 and �2, respectively, while
we denote by ! the numerical factor that arises from the contraction of the fields in the
three possible dimension-5 operators, O(1)

5 , O(2)
5 and O

(3)
5 , respectively. We summarize the

values of these factors in Table 3.
Finally, let us comment on an important distinction between the Majorana and the

vector-like type of models. For the case of Majorana fermions (Model A1), the Yukawa
structure of the mass matrix in Eq. (2.10) implies that, in order to have at least two
non-zero neutrino masses at tree level, we need at least two copies of the fermion ⌃. On
the other hand, for models with vector-like fermions (Models A2,Bi), given the Yukawa
structure of the mass matrices in Eqs. (2.11) and (2.12), having only a single heavy fermion
is su�cient to generate two non-zero neutrino masses at tree level. Though in presence
of significant loop-corrections to the neutrino mass matrix (see Section 3), a single heavy
fermion is enough to generate two non-zero neutrino masses even in the Majorana case [42].

2.4 Neutrino masses and small induced VEVs

In Section 3 of Ref. [18] the scalar potentials for class-A and B models have been studied
in details and we refer the reader to that reference for the definition of the couplings in the
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d 5≥

29

Effective operators leading to neutrino masses

Tree level Tree level with induced VEVs Loop level

Model ! ⇠ n ⌘
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p
3 9 �5/6

A2 �1 1 7 2

B1 �
p
3/4

1/4 9

5/6

�1/12 (�1/4) 11

B2 �1/
p
2 1/4 9 5/3

B3 2 �1 7
⇤

�5

B4 �
p
6 �3/2 7

⇤
�5

Table 3. We show the numerical factors ! (⇠) [⌘] appearing from the SU(2) contractions in the
expression for neutrino masses at tree level (after inducing small VEVs) [at one loop] in the second
(third) [fifth] column. We also show in the fourth column the mass dimension n of the generated
operator O

(0)
n = (LH)1(LH)1(H

†
H)

n�5
2 , responsible for the generation of neutrino masses after

small VEVs are induced. In model B1, if neutrino masses come from an n = 11 operator, the
SM Higgs can induce a small VEV for either �1 or �2 (shown in parentheses). The ⇤ for models
B3,4 indicates that the n = 7 operator cannot be built using only the SM Higgs and it reads
O7 = (L�i)

2
(H

†
H).

the scalar potential. The quantum numbers of the multiplets allow writing potential terms
which are linear in �1 and/or �2, namely �iH

3
�i, µiH

2
�i and �12H

2
�1�2. These terms

might be responsible of a mechanism for which the VEVs of the two new scalar fields can be
induced and naturally suppressed with respect to the SM Higgs one after the Electroweak
Spontaneous Symmetry Breaking. There are three possibilities:

• �HHH�i: in the case in which the potential include this term, after SSB we obtain

vi = �
v
3

2m
2
�i

, (2.13)

where v is the SM Higgs and m�i
is the mass of the new scalar multiplet �i. Such a

potential term exists for our models A1,2 and B1.

• µHH�i with µ being a dimensionful coupling: in this case we have

vi = µ
v
2
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. (2.14)

This potential term only exists for the hypercharge-less triplet in B2.
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Table 2. List of genuine seesaw models which generate neutrino masses at tree level once the
new scalars take VEVs. We show the transformation of the new scalar and fermion particles as
NS,F

Y
, where N = 2I + 1 is the dimension of the SU(2) representation of weak isospin I and Y

is the hypercharge. Models Ai (Bi) include one (two) new scalar multiplets. The heavy fermion
mediator  = ⌃ (F) is Majorana (vector-like). The fourth column shows the Weinberg-like operator
generated, and the fifth one its Wilson Coe�cient. References where these models have been studied
are listed in the last column.

note that given the representation cuto� at 5 for the scalars, the only model in which a
Majorana mediator is allowed is the model A1, which only includes one quadruplet. Notice
that the models A1,2 and B1�4 correspond in the scalar sector to the scenarios AI,II and
BI�IV of Ref. [18], respectively.

After the new scalars take VEVs, neutrino masses will be generated at tree level and
they can be written as
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where v, v1 and v2 are the VEVs of the SM Higgs doublet, �1 and �2, respectively, while
we denote by ! the numerical factor that arises from the contraction of the fields in the
three possible dimension-5 operators, O(1)

5 , O(2)
5 and O

(3)
5 , respectively. We summarize the

values of these factors in Table 3.
Finally, let us comment on an important distinction between the Majorana and the

vector-like type of models. For the case of Majorana fermions (Model A1), the Yukawa
structure of the mass matrix in Eq. (2.10) implies that, in order to have at least two
non-zero neutrino masses at tree level, we need at least two copies of the fermion ⌃. On
the other hand, for models with vector-like fermions (Models A2,Bi), given the Yukawa
structure of the mass matrices in Eqs. (2.11) and (2.12), having only a single heavy fermion
is su�cient to generate two non-zero neutrino masses at tree level. Though in presence
of significant loop-corrections to the neutrino mass matrix (see Section 3), a single heavy
fermion is enough to generate two non-zero neutrino masses even in the Majorana case [42].

2.4 Neutrino masses and small induced VEVs

In Section 3 of Ref. [18] the scalar potentials for class-A and B models have been studied
in details and we refer the reader to that reference for the definition of the couplings in the
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Figure 3. One-loop diagram contributing to Majorana neutrino masses in Model A1 with heavy
Majorana mediator (left) and models A2,Bi with heavy vector-like fermions (right).

Given the transformation properties of the new scalar multiplets, the latter always have
potential terms which lead to a one-loop diagram proportional to v

2. These are �̄�
2
1H

2

for model A1, �1�1H
3 for model A2 and �12�1�2H

2 for the Bi models (see Ref. [18] for
the list of relevant potential terms in our models). An example of one-loop diagram for
A1 (left) and A2,Bi models (right) is depicted in Fig. 3. This diagram is not the only
one contributing to the one-loop neutrino mass correction for our models; however, all the
other diagrams give subleading contributions being proportional to one of the small new
VEVs.

We want now to evaluate the one-loop contribution to neutrino masses in order to
compare them to the tree-level one. We will assume no mixing with SM leptons (there-
fore no contributions of H,Z,W , only heavy particles in the loop, see also Ref. [44]) and
degenerate components within the scalars. These one-loop corrections read

(m⌫)
loop
↵�

= ⌘ �̄
v
2

8⇡2

X

k

y1,↵k y1,�k mk F2(m(�1)R0
,m(�1)I0

,mk) for A1 ,

(m⌫)
loop
↵�

= ⌘ �1
v
2

8⇡2

�
yHy

T

1 + y1y
T

H

�
↵�

MF F2(m�1 ,mH ,MF ) for A2 ,

(m⌫)
loop
↵�

= ⌘ �12
v
2

8⇡2

�
y1y

T

2 + y2y
T

1

�
↵�

MF F2(m�1 ,m�2 ,MF ) for Bi , (3.1)

where ⌘ are numerical factors (summarised in Table 3) coming from the field contractions,
mk, the masses of the heavy Majorana ⌃, MF is the heavy vector-like fermion mass,
m(�1)R0

and m(�1)I0
are the masses of the neutral CP-even and CP-odd components of �1,

respectively, in the Model A1, and F2 is the loop function

F2(x, y, z) =
x
2

x2 � z2
ln

x
2

z2
�

y
2

y2 � z2
ln

y
2

z2
.

It is important to mention that both the neutral and the singly-charged scalars can run in
the loop.

Let us now compare the contributions to neutrino masses at tree level after the small
VEVs induction, Eqs. (2.16)-(2.21), and at one loop, Eq. (3.1). We will consider the case
where the fermions are much heavier than the rest of the scalars, i.e., mk,mF � m�i

.
Neglecting logarithms in Eq. (3.1), and assuming just one copy of the heavy fermion, we
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Figure 3. One-loop diagram contributing to Majorana neutrino masses in Model A1 with heavy
Majorana mediator (left) and models A2,Bi with heavy vector-like fermions (right).
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Figure 2. On the left (right) the tree-level operator with mass dimension d = 9 (d = 11) involving
the vector-like fermion F ⇠ (5,�1), the scalar quadruplet �1 ⇠ (4, 1/2), the scalar quadruplet
�2 ⇠ (4,�3/2) and the usual Higgs doublet � ⇠ (2, 1/2).

leading to operators with mass dimension d > 5. Let us consider for example the model
B1. In this model, there exist couplings as ��1�1H

3
� �2�2H

3, which provide induced
vevs for the BSM scalar fields �1,2, such as:

h�ii ' �i

hHi
3

m
2
�i

. (4.7)

The suppressed seesaw neutrino mass reads:

m⌫ '
h�1i h�2i
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⇠

hHi
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2
�1
m

2
�2

. (4.8)

Therefore, the neutrino masses are produced with a low-energy operator with a mass
dimension d = 9, namely O⌫ = L

2
H

6
/M

5, where M is a common mass scale denoting
all the dimensionful parameters M⌃,m�1,2 .
But that’s not all. Indeed, the scalar potential includes another term: �1�2H

2. Thus,
after the SSB, the induced vev of �1 acquire a contribution as
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Then the low energy operator contributing to the neutrino masses is
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Neutrino masses get contributions from an operator of dimension d = 11, namely m⌫ ⇠
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7. The result is that the neutrino masses are obtained by two e�ective operators
with mass dimension d = 9, 11, the diagrams of which are shown in fig. (2).
The same reasoning and similar computation applies for all the other models, as pointed
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where ⌘ are numerical factors (summarised in Table 3) coming from the field contractions,
mk, the masses of the heavy Majorana ⌃, MF is the heavy vector-like fermion mass,
m(�1)R0
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F2(x, y, z) =
x
2

x2 � z2
ln

x
2

z2
�

y
2

y2 � z2
ln

y
2

z2
.

It is important to mention that both the neutral and the singly-charged scalars can run in
the loop.

Let us now compare the contributions to neutrino masses at tree level after the small
VEVs induction, Eqs. (2.16)-(2.21), and at one loop, Eq. (3.1). We will consider the case
where the fermions are much heavier than the rest of the scalars, i.e., mk,mF � m�i

.
Neglecting logarithms in Eq. (3.1), and assuming just one copy of the heavy fermion, we
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Neglecting logarithms in Eq. (3.1), and assuming just one copy of the heavy fermion, we
obtain

m
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⌫ '
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4
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v4
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2
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v2
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m

tree
⌫ for A2 , (3.3)
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⌫ '
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8⇡2

✓
⌘ �12

⇠�1�2

◆  
4m

2
�1
m

2
�2

v4

!
m

tree
⌫ for B1 (n = 9) , (3.4)

m
loop
⌫ '

1

8⇡2

 
⌘

⇠�
2
1(2)

!  
8m

4
�1(2)

m
2
�2(1)

v6

!
m

tree
⌫ for B1 (n = 11) , (3.5)

m
loop
⌫ '

1

8⇡2

✓
⌘

⇠

◆  
8m

4
�1
m

2
�2

v4µ2
1

!
m

tree
⌫ for B2 , (3.6)

m
loop
⌫ '

1

8⇡2

✓
⌘

⇠

◆  
2m

2
�2(1)

v
2
1(2)

!
m

tree
⌫ for B3 (4) . (3.7)

Some observations are in order. The mass of the new scalar must be larger than the SM
Higgs VEV in order to induce the small VEVs for the new multiplets; this always enhances
the loop contribution with respect to the tree level one. Assuming in Eq. (3.6) µ1 ' m�1 ,
which is the upper limit for the dimensionful parameter µ1,4, there are no couplings in the
potential of the models A2, B2, B3 and B4 able to suppress the loop contribution.

In the remaining models, there are some couplings in the potential that control the
contributions to neutrino masses. In particular, for Models A1 and B1 (n = 9), �̄ and �12

contribute at the loop level, and even if they vanish, the scalars still take small induced
VEVs. In the remaining case, namely in B1 (n = 11), the coupling responsible for the loop
level diagram �12 is also involved in the generation of the induced VEVs and gets cancelled
in the m

loop
⌫ /m

tree
⌫ ratio. However, in this case, the couplings �1(2) (depending on which of

the two VEVs is directly induced by the Higgs VEV) survives in the denominator and can
lead to the enhancement of the loop mass with respect to the tree level mass. In Fig. 4,
we show how the ratio m

loop
⌫ /m

tree
⌫ depends on the scalar masses, taking all the quartic

couplings in the range [0.1, 1], considering Eqs. (3.2)-(3.7). It is interesting to notice how
for the class-A models, the tree-level contribution may dominate considering the most
favorable choice of the couplings if M� < 780 GeV for A2 and M� < 500 GeV for A1. In
the class-B models the scalar masses for which the tree level can overcome the loop-level
one are smaller in all the cases except for B1 (n = 9), where we obtain M� < 640 GeV. In
particular, we have M� < 210 , 250 GeV for B1 (n = 11) and B2, respectively. For Models
B3,4, the tree level contribution is always sub-leading because the scalar potential does
not allow to induce small VEVs for �1 and �2 and the tree-level contribution is always
proportional to either v1 or v2.

4Notice that naturality and charge-breaking constraints imply that µ1 . m�1 , so none of the trilinear
couplings can be made arbitrarily large. See for instance, Refs [45–47].
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Figure 4. Ratio of the contribution to neutrino masses at one loop and at tree level versus the
scalars mass in the limit M � M� for class-A (left) and class-B (right) models. The colored
bands are obtained taking the couplings �i 2 [0.1; 1]. Notice that the dependence on �i drops in
models A1 and B2. For B3 and B4 the behaviour is very similar therefore we report only B3. See
main text for further details.

In the following, we analyse how the quartic couplings modify the ratio m
loop
⌫ /m

tree
⌫ in

the A1 and B1 models. Note that the couplings associated with lepton number violation
(LNV) generate also a mass for pseudo-Nambu-Goldstone bosons, which should be larger
than m

min
J

= 45 GeV from Z�boson decays [48], see also Ref. [18]. In Model A1, there
exists a single massive pseudo-Nambu-Goldstone boson, the pseudo-Majoron J ; expanding
its mass to first order in O(v1/v), we obtain the lower limit

|�̄| �
(m

min
J

)
2
v1

3
p
3 v3

. (3.8)

In Model B1, on the other hand, the presence of an explicitly broken additional U(1)

symmetry in the scalar potential allows for two massive pseudo-Nambu-Goldstone bosons
(J and ⌦). Therefore, we obtain the following lower limits5

|�1| �
2
p
3 (m

min
J

)
2
v1

v3
, (3.9)

|�2| �
2 (m

min
⌦ ) v2

v3
. (3.10)

Considering v1,2 ' O(1) GeV, these bounds read:

|�̄| & 7 · 10
�5 for A1 , (3.11)

|�1| & 10
�3

, |�2| & 8 · 10
�4 for B1 . (3.12)

In Figs. 5 and 6 we show, for Models A1 and B1, respectively, how the � couplings
modify the m

loop
⌫ /m

tree
⌫ ratio, reporting in shaded gray the excluded region due to the lower

limits on pseudo-Nambu-Goldstone boson mass.
5Notice that the coupling �12 may give subleading contributions to pseudo-Nambu-Goldstone bosons

masses proportional to v2, as reported in Ref. [18]. Therefore, �1 and �2 bounds could be relaxed if
�12/�1,2 ⇠ O(v/v�).
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Figure 2. On the left (right) the tree-level operator with mass dimension d = 9 (d = 11) involving
the vector-like fermion F ⇠ (5,�1), the scalar quadruplet �1 ⇠ (4, 1/2), the scalar quadruplet
�2 ⇠ (4,�3/2) and the usual Higgs doublet � ⇠ (2, 1/2).

leading to operators with mass dimension d > 5. Let us consider for example the model
B1. In this model, there exist couplings as ��1�1H

3
� �2�2H

3, which provide induced
vevs for the BSM scalar fields �1,2, such as:

h�ii ' �i

hHi
3

m
2
�i

. (4.7)

The suppressed seesaw neutrino mass reads:

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
6

M⌃m
2
�1
m

2
�2

. (4.8)

Therefore, the neutrino masses are produced with a low-energy operator with a mass
dimension d = 9, namely O⌫ = L

2
H

6
/M

5, where M is a common mass scale denoting
all the dimensionful parameters M⌃,m�1,2 .
But that’s not all. Indeed, the scalar potential includes another term: �1�2H

2. Thus,
after the SSB, the induced vev of �1 acquire a contribution as

h�2i ' 
h�1i hHi

2

m
2
�2

. (4.9)

Then the low energy operator contributing to the neutrino masses is

m⌫ '
h�1i h�2i

M⌃
⇠

hHi
8

M⌃m
4
�1
m

2
�2

. (4.10)

Neutrino masses get contributions from an operator of dimension d = 11, namely m⌫ ⇠

L
2
H

8
/M

7. The result is that the neutrino masses are obtained by two e�ective operators
with mass dimension d = 9, 11, the diagrams of which are shown in fig. (2).
The same reasoning and similar computation applies for all the other models, as pointed
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Figure 3. One-loop diagram contributing to Majorana neutrino masses in Model A1 with heavy
Majorana mediator (left) and models A2,Bi with heavy vector-like fermions (right).

Given the transformation properties of the new scalar multiplets, the latter always have
potential terms which lead to a one-loop diagram proportional to v

2. These are �̄�
2
1H

2

for model A1, �1�1H
3 for model A2 and �12�1�2H

2 for the Bi models (see Ref. [18] for
the list of relevant potential terms in our models). An example of one-loop diagram for
A1 (left) and A2,Bi models (right) is depicted in Fig. 3. This diagram is not the only
one contributing to the one-loop neutrino mass correction for our models; however, all the
other diagrams give subleading contributions being proportional to one of the small new
VEVs.

We want now to evaluate the one-loop contribution to neutrino masses in order to
compare them to the tree-level one. We will assume no mixing with SM leptons (there-
fore no contributions of H,Z,W , only heavy particles in the loop, see also Ref. [44]) and
degenerate components within the scalars. These one-loop corrections read

(m⌫)
loop
↵�

= ⌘ �̄
v
2

8⇡2

X

k

y1,↵k y1,�k mk F2(m(�1)R0
,m(�1)I0

,mk) for A1 ,

(m⌫)
loop
↵�

= ⌘ �1
v
2

8⇡2

�
yHy

T

1 + y1y
T

H

�
↵�

MF F2(m�1 ,mH ,MF ) for A2 ,

(m⌫)
loop
↵�

= ⌘ �12
v
2

8⇡2

�
y1y

T

2 + y2y
T

1

�
↵�

MF F2(m�1 ,m�2 ,MF ) for Bi , (3.1)

where ⌘ are numerical factors (summarised in Table 3) coming from the field contractions,
mk, the masses of the heavy Majorana ⌃, MF is the heavy vector-like fermion mass,
m(�1)R0

and m(�1)I0
are the masses of the neutral CP-even and CP-odd components of �1,

respectively, in the Model A1, and F2 is the loop function

F2(x, y, z) =
x
2

x2 � z2
ln

x
2

z2
�

y
2

y2 � z2
ln

y
2

z2
.

It is important to mention that both the neutral and the singly-charged scalars can run in
the loop.

Let us now compare the contributions to neutrino masses at tree level after the small
VEVs induction, Eqs. (2.16)-(2.21), and at one loop, Eq. (3.1). We will consider the case
where the fermions are much heavier than the rest of the scalars, i.e., mk,mF � m�i

.
Neglecting logarithms in Eq. (3.1), and assuming just one copy of the heavy fermion, we
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Pair productionThese cross sections depend mainly on the mass and quantum numbers of the scalars
(hypercharge and isospin of the multiplet), and due to being s-channel they are suppressed
for heavier masses. We implement the models in SARAH [55] and numerically compute the

Figure 5. Associated (dashed curves) and pair production (solid curves) of multi-charged scalars
present in our scenarios at the

p
13 TeV LHC.

cross-sections in MadGraph5_amC@NLO [56] using the NNPDF23_nlo_as_0119 PDF set [57].
The production cross sections for the charged scalars belonging to di�erent multiplets at the
LHC (for

p
s = 13 TeV), as a function of the scalar mass, are shown in Fig. 5. It can be seen

that the pair production cross section for the scalars is directly proportional to the charge
of the scalars, therefore, in all cases, we see that �(pp ! �n±�n⌥

) > �(pp ! �m±�m⌥
)

for n > m � 2, where n,m indicate the scalar charges. However, this is not true for the
associated production that takes place via W± exchange. From Table 6, one can see that
the numerical factors associated with �±±�⌥W⌥ couplings for di�erent scalar multiplets
are greater or equal to those of �±±±�⌥⌥W⌥, therefore we obtain �(pp ! �n±�(n�1)⌥

) �

�(pp ! �m±�(m�1)⌥
) for n < m with n,m � 2.

4.1.2 Decays

In this section, we discuss the decay modes of doubly, triply and quadruply-charged scalars.
For scenarios belonging to class-B which contain two new scalars, we take their masses to
be similar so that one does not decay into the other. First, we focus solely on the decays
of doubly-charged scalars, which can lead to interesting signals such as same-sign dilepton
events, which are free of SM background. The e�ective interaction h�i

↵�
between a doubly-
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terms proportional to µ2 and µ3. Another possibility is to induce the VEV for one
of the scalars via the linear term first and the second one using the mixed term.
Typically, in the latter case the second VEV is smaller than the first.

We point out the presence of small induced VEVs in the last column of the Tables 4 and
5. We use the symbols 4, ⇠ and 8 to signal that both, only one and no VEVs are induced
by the linear terms in the scalar potential, respectively. In Appendix A we report for each
scenario the exact expressions for neutrino masses from the small induced VEVs.

4 Phenomenology

In this section we study the phenomenological signatures associated to the di�erent scalars
present in the new operators. Given that perturbative unitarity constraints and some
signals like h ! �� depend on couplings of the scalar potential are mostly independent
of neutrino masses and have been studied elsewhere for similar scenarios [48–51], we will
mainly focus on the signals of the new scalar multiplets at colliders and in EWPTs at loop
level, which are directly related to neutrino masses.

4.1 Collider searches of multiply-charged scalars

The presence of multiple charged scalars belonging to di�erent multiplets can lead to
interesting phenomenological signatures at colliders. All the scenarios contain doubly-
charged scalars, and except for AI,BV and BVI, all the scenarios also contain a triply-
charged scalar. Furthermore, BIII contains a quadruply-charged scalar. We are mainly
interested in the phenomenology of scalars with charges 2 and above (Q > 2), the decays
of which can lead to multi-lepton events. Therefore, we do not consider the triplet 30 in
the analysis below. The other triplet in our scenarios, 3�1, has been widely studied in the
literature in the context of Type-II seesaw (see Refs. [52–54]), and is also not discussed in
the analysis below. Also, we will assume that the scalars do not mix among themselves
or with any other scalars in the scenario, which is justified given that the new VEVs are
much smaller than the SM Higgs one.

4.1.1 Production

The multiply-charged scalars can be pair-produced at the LHC via the Drell-Yann (DY)
mechanism with an s-channel �/Z exchange, whereas the associated production of the
scalars involves an s-channel W± boson exchange.6 It can take place from a quark-
antiquark initial state as

qq̄ ! �, Z ! �
±±±±

�
⌥⌥⌥⌥ ,�±±±

�
⌥⌥⌥ ,�±±

�
⌥⌥ ,�±

�
⌥ ,

qq̄0 ! W±
! �

±±±±
�
⌥⌥⌥ ,�±±±

�
⌥⌥ ,�±±

�
⌥ . (4.1)

6
The scalars can also be photo-produced by photon fusion, e.g. via �� ! �±±±�⌥⌥⌥

,�±±�⌥⌥
. The

squared matrix element for these processes is proportional to the fourth power of the charge and thus the

cross-section is enhanced for scalars with large charges. These processes can be dominant for large masses

and enhance the cross section by an order of magnitude for multiply charged scalars. However, given the

small parton density of photon and the large uncertainty associated with these processes, we do not consider

them in the following.
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σ(pp → Φn±Φn±) > σ(pp → Φm±Φm±) for n > m ≥ 2

σ(pp → Φn±Φ(n−1)∓) > σ(pp → Φm±Φ(m−1)∓) for n < m

with (n, m) ≥ 2
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charged scalar (�±±
i

) belonging to the multiplet �i and a pair of leptons of the same charge
(l±↵ l±� ) can be obtained from the operator LL�i�j by choosing a particular contraction.
This coupling can be expressed in terms of the neutrino mass matrix elements which are
proportional to vivj/⇤ and would also depend on the mass ordering (normal or inverted).
It can be written as

h�i
↵�

= i
(m⌫)↵�

vi
, (4.2)

where  is a scenario-dependent numerical factor given in Table 6 and vi is the VEV taken
by the neutral component of the multiplet �i. Similarly, if the other multiplet �j also
contains a doubly-charged component and the tensor expansion in terms of the multiplet
components contains the term l⌥l⌥�±±

j
�
0
i
, we can simply make the substitution i ! j in

the above formula to obtain the respective e�ective coupling. Note the inverse dependence
on the VEV of the scalar. A large scalar VEV would highly suppress these decays, and the
dominant decay channel for the doubly-charged scalars would be into a pair of W bosons,
which is directly proportional to the square of the VEV.

Furthermore, depending on the mass splitting between the scalar components, cascade
decays (�±±

! �
±
+ X) can become important, for example, decays into pions. As we

show below in Section 4.2, the mass splittings between the scalars need to be small (< 20

GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.

The decay rates of doubly-charged scalars belonging to quadruplet and quintuplet
representations into the di�erent channels can be scaled by comparing to the decays of a
doubly-charged scalar belonging to a scalar triplet (31) as [51]

�(�
±±

! W±W±
) = S2

2W±
g4v2�M

3
�±±

16⇡M4
W

✓
3M4

W

M4
�±±

�
M2

W

M2
�±±

+
1

4

◆
�

✓
M2

W

M2
�±±

◆
,

�(�
±±

! l±↵ l
±
�
) =

|h↵� |
2M�±±

4⇡ (1 + �↵�)
,

X

↵,�

�(�
±±

! l±↵ l
±
�
) = 2

M�±±

8⇡ v2�

3X

k=1

m2
k
,

�(�
±±

! �
±⇡±

) = S2
�±W±

g4|Vud|
2
�M3f2

⇡

16⇡M4
W

,

�(�
±±

! �
±l±⌫l) = S2

�±W±
g4�M5

240⇡3M4
W

,

�(�
±±

! �
±qq̄0) = 3�(�

±±
! �

±l±⌫l) , (4.3)

where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
related to the couplings �

±±W⌥W⌥ and �
±±

�
⌥W⌥, respectively (see Table 6), f⇡ = 131

MeV is the pion decay constant and �(x) ⌘
p
1� 4x. We have also dropped the index i

and use v� to denote the VEV of the scalar under consideration. In the left (right) panel
of Fig. 6 we show the branching ratio into di�erent modes (proper decay length) of the
doubly-charged scalar belonging to the multiplet 4�1/2 of AI (for all scenarios) as a function
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The value of VEV at which this crossover takes place also corresponds to the point where
the decay length of doubly-charged scalar is maximized. Thus, one can obtain an upper
limit on the decay length of scalars. In the right panel of Fig. 6 it can be seen that the
maximum proper decay length (c⌧) that the doubly-charged scalars can achieve is less than
10 µm for M�±± = 500 GeV, corresponding to degenerate components of the multiplet.
The decay length reduces for heavier masses as well as for larger mass splittings, as the
cascade decays become dominant as shown by the dashed curves. It should be noted that
CMS initiates the search for displaced vertices for a proper decay length of O(100µm) [58],
and thus these scalars may not give any signals in those searches. However, prompt-lepton
searches could be sensitive to them for M�±± & 200 GeV.

Next, we focus on the decays of the triply-charged scalars. Depending on the mass
splitting among the components, the dominant channels for their decays would be three-
body states such as llW or WWW , and two-body decays into �

±±W±⇤ and �
±±⇡± for

M�±±± > M�±± , which are similar to the decays of doubly-charged scalars into �
+⇡±

(one can obtain the expressions using appropriate scaling factors). The decay widths of
the triply-charged scalar present in 4�3/2 of AII for M�±±± � MW are [59, 60]

�(�
±±±

! W±W±W±
) =

3g6

2048⇡3

v2�M
5
�±±±

M6
W

,

�(�
±±±

! W±l±l±) =
g2

3072⇡3

M3
�±±±

P
i
m2

i

v2�M2
W

. (4.5)

Note that for large scalar masses, M�±±± � mW , the decay should be present in the gauge-
less limit (Goldstone Boson Equivalence Theorem).7 The expressions for triply-charged
scalars belonging to other multiplets can be obtained by rescaling the above expressions
using the factors for couplings �

±±±
�
⌥⌥W⌥, �

±±W⌥W⌥ and �
±±l⌥l⌥, see Table 6.

Similar to the case of doubly-charged scalars, the decay length is maximized at the VEV
corresponding to the crossover where decays to WWW start dominating over decays to
llW , which is given by

vc
�±±± ' 55.4 KeV

✓


S2W±

◆1/2 ✓ P
i
m2

i

0.052 eV
2

◆1/4 ✓
500 GeV

M�±±

◆1/2

. (4.6)

In the left (right) panel of Fig. 7 we show the branching ratio into di�erent modes (proper
decay length) of the triply-charged scalar of scenario AII (AII,BI,II,III,IV) as a function of
the VEV of the multiplet. Being three-body decays, these decay lengths ⇠ O(0.01�1 mm)

are much larger than those of doubly-charged scalars, and may lead to displaced vertices.
Finally, we move our attention to the quadruply-charged scalar belonging to the mul-

tiplet 52. The decay width of these scalars are much smaller compared to other scalars in
the scenarios due to phase-space suppression. Analogous to the cases discussed above, the
dominant decay modes are the four body decays to WWWW and llWW which take place
via a decay into a triply-charged scalar in association with a W and the subsequent decays

7
The expression for �(�±±± ! W

±
l
±
l
±) in Eq. (4.5) di�ers by a factor of 2(M2

�±±±/M
2
W ) from that

in Refs. [61, 62], where the decay rate vanishes in the gauge-less limit.
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charged scalar (�±±
i

) belonging to the multiplet �i and a pair of leptons of the same charge
(l±↵ l±� ) can be obtained from the operator LL�i�j by choosing a particular contraction.
This coupling can be expressed in terms of the neutrino mass matrix elements which are
proportional to vivj/⇤ and would also depend on the mass ordering (normal or inverted).
It can be written as

h�i
↵�

= i
(m⌫)↵�

vi
, (4.2)

where  is a scenario-dependent numerical factor given in Table 6 and vi is the VEV taken
by the neutral component of the multiplet �i. Similarly, if the other multiplet �j also
contains a doubly-charged component and the tensor expansion in terms of the multiplet
components contains the term l⌥l⌥�±±

j
�
0
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the above formula to obtain the respective e�ective coupling. Note the inverse dependence
on the VEV of the scalar. A large scalar VEV would highly suppress these decays, and the
dominant decay channel for the doubly-charged scalars would be into a pair of W bosons,
which is directly proportional to the square of the VEV.

Furthermore, depending on the mass splitting between the scalar components, cascade
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show below in Section 4.2, the mass splittings between the scalars need to be small (< 20

GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.
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representations into the di�erent channels can be scaled by comparing to the decays of a
doubly-charged scalar belonging to a scalar triplet (31) as [51]
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where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
related to the couplings �

±±W⌥W⌥ and �
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⌥W⌥, respectively (see Table 6), f⇡ = 131

MeV is the pion decay constant and �(x) ⌘
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1� 4x. We have also dropped the index i

and use v� to denote the VEV of the scalar under consideration. In the left (right) panel
of Fig. 6 we show the branching ratio into di�erent modes (proper decay length) of the
doubly-charged scalar belonging to the multiplet 4�1/2 of AI (for all scenarios) as a function
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The value of VEV at which this crossover takes place also corresponds to the point where
the decay length of doubly-charged scalar is maximized. Thus, one can obtain an upper
limit on the decay length of scalars. In the right panel of Fig. 6 it can be seen that the
maximum proper decay length (c⌧) that the doubly-charged scalars can achieve is less than
10 µm for M�±± = 500 GeV, corresponding to degenerate components of the multiplet.
The decay length reduces for heavier masses as well as for larger mass splittings, as the
cascade decays become dominant as shown by the dashed curves. It should be noted that
CMS initiates the search for displaced vertices for a proper decay length of O(100µm) [58],
and thus these scalars may not give any signals in those searches. However, prompt-lepton
searches could be sensitive to them for M�±± & 200 GeV.
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Note that for large scalar masses, M�±±± � mW , the decay should be present in the gauge-
less limit (Goldstone Boson Equivalence Theorem).7 The expressions for triply-charged
scalars belonging to other multiplets can be obtained by rescaling the above expressions
using the factors for couplings �
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⌥⌥W⌥, �

±±W⌥W⌥ and �
±±l⌥l⌥, see Table 6.

Similar to the case of doubly-charged scalars, the decay length is maximized at the VEV
corresponding to the crossover where decays to WWW start dominating over decays to
llW , which is given by
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In the left (right) panel of Fig. 7 we show the branching ratio into di�erent modes (proper
decay length) of the triply-charged scalar of scenario AII (AII,BI,II,III,IV) as a function of
the VEV of the multiplet. Being three-body decays, these decay lengths ⇠ O(0.01�1 mm)

are much larger than those of doubly-charged scalars, and may lead to displaced vertices.
Finally, we move our attention to the quadruply-charged scalar belonging to the mul-

tiplet 52. The decay width of these scalars are much smaller compared to other scalars in
the scenarios due to phase-space suppression. Analogous to the cases discussed above, the
dominant decay modes are the four body decays to WWWW and llWW which take place
via a decay into a triply-charged scalar in association with a W and the subsequent decays

7
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±
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±
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±) in Eq. (4.5) di�ers by a factor of 2(M2
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2
W ) from that

in Refs. [61, 62], where the decay rate vanishes in the gauge-less limit.
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(l±↵ l±� ) can be obtained from the operator LL�i�j by choosing a particular contraction.
This coupling can be expressed in terms of the neutrino mass matrix elements which are
proportional to vivj/⇤ and would also depend on the mass ordering (normal or inverted).
It can be written as
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where  is a scenario-dependent numerical factor given in Table 6 and vi is the VEV taken
by the neutral component of the multiplet �i. Similarly, if the other multiplet �j also
contains a doubly-charged component and the tensor expansion in terms of the multiplet
components contains the term l⌥l⌥�±±
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, we can simply make the substitution i ! j in

the above formula to obtain the respective e�ective coupling. Note the inverse dependence
on the VEV of the scalar. A large scalar VEV would highly suppress these decays, and the
dominant decay channel for the doubly-charged scalars would be into a pair of W bosons,
which is directly proportional to the square of the VEV.

Furthermore, depending on the mass splitting between the scalar components, cascade
decays (�±±
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+ X) can become important, for example, decays into pions. As we

show below in Section 4.2, the mass splittings between the scalars need to be small (< 20

GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.

The decay rates of doubly-charged scalars belonging to quadruplet and quintuplet
representations into the di�erent channels can be scaled by comparing to the decays of a
doubly-charged scalar belonging to a scalar triplet (31) as [51]
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where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
related to the couplings �

±±W⌥W⌥ and �
±±

�
⌥W⌥, respectively (see Table 6), f⇡ = 131

MeV is the pion decay constant and �(x) ⌘
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1� 4x. We have also dropped the index i

and use v� to denote the VEV of the scalar under consideration. In the left (right) panel
of Fig. 6 we show the branching ratio into di�erent modes (proper decay length) of the
doubly-charged scalar belonging to the multiplet 4�1/2 of AI (for all scenarios) as a function
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where  is a scenario-dependent numerical factor given in Table 6 and vi is the VEV taken
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the above formula to obtain the respective e�ective coupling. Note the inverse dependence
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which is directly proportional to the square of the VEV.
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GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.
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where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
related to the couplings �

±±W⌥W⌥ and �
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⌥W⌥, respectively (see Table 6), f⇡ = 131

MeV is the pion decay constant and �(x) ⌘
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and use v� to denote the VEV of the scalar under consideration. In the left (right) panel
of Fig. 6 we show the branching ratio into di�erent modes (proper decay length) of the
doubly-charged scalar belonging to the multiplet 4�1/2 of AI (for all scenarios) as a function
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where  is a scenario-dependent numerical factor given in Table 6 and vi is the VEV taken
by the neutral component of the multiplet �i. Similarly, if the other multiplet �j also
contains a doubly-charged component and the tensor expansion in terms of the multiplet
components contains the term l⌥l⌥�±±
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the above formula to obtain the respective e�ective coupling. Note the inverse dependence
on the VEV of the scalar. A large scalar VEV would highly suppress these decays, and the
dominant decay channel for the doubly-charged scalars would be into a pair of W bosons,
which is directly proportional to the square of the VEV.
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show below in Section 4.2, the mass splittings between the scalars need to be small (< 20

GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.

The decay rates of doubly-charged scalars belonging to quadruplet and quintuplet
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where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
related to the couplings �
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and use v� to denote the VEV of the scalar under consideration. In the left (right) panel
of Fig. 6 we show the branching ratio into di�erent modes (proper decay length) of the
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where  is a scenario-dependent numerical factor given in Table 6 and vi is the VEV taken
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contains a doubly-charged component and the tensor expansion in terms of the multiplet
components contains the term l⌥l⌥�±±
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the above formula to obtain the respective e�ective coupling. Note the inverse dependence
on the VEV of the scalar. A large scalar VEV would highly suppress these decays, and the
dominant decay channel for the doubly-charged scalars would be into a pair of W bosons,
which is directly proportional to the square of the VEV.

Furthermore, depending on the mass splitting between the scalar components, cascade
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+ X) can become important, for example, decays into pions. As we

show below in Section 4.2, the mass splittings between the scalars need to be small (< 20

GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.

The decay rates of doubly-charged scalars belonging to quadruplet and quintuplet
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where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
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It can be written as
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where  is a scenario-dependent numerical factor given in Table 6 and vi is the VEV taken
by the neutral component of the multiplet �i. Similarly, if the other multiplet �j also
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components contains the term l⌥l⌥�±±
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the above formula to obtain the respective e�ective coupling. Note the inverse dependence
on the VEV of the scalar. A large scalar VEV would highly suppress these decays, and the
dominant decay channel for the doubly-charged scalars would be into a pair of W bosons,
which is directly proportional to the square of the VEV.

Furthermore, depending on the mass splitting between the scalar components, cascade
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show below in Section 4.2, the mass splittings between the scalars need to be small (< 20

GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.
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by the neutral component of the multiplet �i. Similarly, if the other multiplet �j also
contains a doubly-charged component and the tensor expansion in terms of the multiplet
components contains the term l⌥l⌥�±±

j
�
0
i
, we can simply make the substitution i ! j in

the above formula to obtain the respective e�ective coupling. Note the inverse dependence
on the VEV of the scalar. A large scalar VEV would highly suppress these decays, and the
dominant decay channel for the doubly-charged scalars would be into a pair of W bosons,
which is directly proportional to the square of the VEV.

Furthermore, depending on the mass splitting between the scalar components, cascade
decays (�±±

! �
±
+ X) can become important, for example, decays into pions. As we

show below in Section 4.2, the mass splittings between the scalars need to be small (< 20

GeV) in order to satisfy the SM data, whereas, in the case of CDF data [46], the splittings
are constrained to be between 10�40 GeV. Therefore, in the latter case, the cascade decays
might be important for a range of VEVs. However, in both cases, we take the scalar masses
to be much greater than the splittings, so the decay into solely scalar states are suppressed.

The decay rates of doubly-charged scalars belonging to quadruplet and quintuplet
representations into the di�erent channels can be scaled by comparing to the decays of a
doubly-charged scalar belonging to a scalar triplet (31) as [51]

�(�
±±

! W±W±
) = S2

2W±
g4v2�M

3
�±±

16⇡M4
W

✓
3M4

W

M4
�±±

�
M2

W

M2
�±±

+
1

4

◆
�

✓
M2

W

M2
�±±

◆
,

�(�
±±

! l±↵ l
±
�
) =

|h↵� |
2M�±±

4⇡ (1 + �↵�)
,

X

↵,�

�(�
±±

! l±↵ l
±
�
) = 2

M�±±

8⇡ v2�

3X

k=1

m2
k
,

�(�
±±

! �
±⇡±

) = S2
�±W±

g4|Vud|
2
�M3f2

⇡

16⇡M4
W

,

�(�
±±

! �
±l±⌫l) = S2

�±W±
g4�M5

240⇡3M4
W

,

�(�
±±

! �
±qq̄0) = 3�(�

±±
! �

±l±⌫l) , (4.3)

where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
related to the couplings �

±±W⌥W⌥ and �
±±

�
⌥W⌥, respectively (see Table 6), f⇡ = 131

MeV is the pion decay constant and �(x) ⌘
p
1� 4x. We have also dropped the index i

and use v� to denote the VEV of the scalar under consideration. In the left (right) panel
of Fig. 6 we show the branching ratio into di�erent modes (proper decay length) of the
doubly-charged scalar belonging to the multiplet 4�1/2 of AI (for all scenarios) as a function
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scalars, and except for AI,BV and BVI, all the scenarios also contain a triply-charged
scalar. Furthermore, BIII contains a quadruply-charged scalar. We are mainly interested
in the phenomenology of scalars with charges 2 and above (Q > 2), the decays of which
can lead to multi-lepton events. Therefore, we do not consider the triplet 30 in the analysis
below. The other triplet in our scenarios, 3�1, has been widely studied in the literature in
the context of Type-II seesaw (see Refs. [52–54]), and is also not discussed in the analysis
below. Also, we will assume that the scalars do not mix among themselves or with any
other scalars in the scenario, which is justified given that the new VEVs are much smaller
than the SM Higgs one.

4.1.1 Production

The multiply-charged scalars can be pair-produced at the LHC via the Drell-Yann (DY)
mechanism with an s-channel �/Z exchange, whereas the associated production of the
scalars involves an s-channel W± boson exchange.5 It can take place from a quark-antiquark
initial state as

qq̄ ! �, Z ! �
±±±±

�
⌥⌥⌥⌥ ,�±±±

�
⌥⌥⌥ ,�±±

�
⌥⌥ ,�±

�
⌥ ,

qq̄0 ! W±
! �

±±±±
�
⌥⌥⌥ ,�±±±

�
⌥⌥ ,�±±

�
⌥ . (4.1)

These cross sections depend mainly on the mass and quantum numbers of the scalars
(hypercharge and isospin of the multiplet), and due to being s-channel they are suppressed
for heavier masses. We implement the models in SARAH [55] and numerically compute the
cross-sections in MadGraph5_amC@NLO [56] using the NNPDF23_nlo_as_0119 PDF set [57].
The production cross sections for the charged scalars belonging to different multiplets at
the LHC (for

p
s = 13 TeV), as a function of the scalar mass, are shown in Fig. 5.

4.1.2 Decays

In this section, we discuss the decay modes of doubly, triply and quadruply-charged scalars.
For scenarios belonging to class-B which contain two new scalars, we take their masses to
be similar so that one does not decay into the other. First, we focus solely on the decays
of doubly-charged scalars, which can lead to interesting signals such as same-sign dilepton
events, which are free of SM background. The effective interaction h�i

↵�
between a doubly-

charged scalar (�±±
i

) belonging to the multiplet �i and a pair of leptons of the same charge
(l±↵ l

±
�

) can be obtained from the operator LL�i�j by choosing a particular contraction.
This coupling can be expressed in terms of the neutrino mass matrix elements which are
proportional to vivj/⇤ and would also depend on the mass ordering (normal or inverted).
It can be written as

h�i
↵�

= i
(m⌫)↵�

vi
, (4.2)

5
The scalars can also be photo-produced by photon fusion, e.g. via �� ! �±±±�⌥⌥⌥ ,�±±�⌥⌥

. The

squared matrix element for these processes is proportional to the fourth power of the charge and thus the

cross-section is enhanced for scalars with large charges. These processes can be dominant for large masses

and enhance the cross section by an order of magnitude for multiply charged scalars. However, given the

small parton density of photon and the large uncertainty associated with these processes, we do not consider

them in the following.
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doubly-charged scalar belonging to a scalar triplet (31) as [51]
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where mk is the individual mass of active neutrinos, g is the SU(2) coupling, �M is the
mass splitting among the components and S2W±,�±W± is the scenario dependent factor
related to the couplings �±±W⌥W⌥ and �

±±
�
⌥W⌥, respectively (see Table 6), f⇡ = 131

MeV is the pion decay constant and �(x) ⌘
p
1� 4x. We have also dropped the index i

and use v� to denote the VEV of the scalar under consideration. In the left (right) panel of

Couplings and scale factors
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Table 6. Numerical factors associated with the respective couplings that enter in the decay widths
of the various charged scalars. The couplings with gauge bosons are computed with SARAH [55]
and then scaled with that of the scalar triplet 31 for doubly-charged scalars in the fourth and fifth
columns corresponding to �

±±W⌥W⌥ and �
±±

�
⌥W⌥, respectively.

Fig. 6 we show the branching ratio into different modes (proper decay length) of the doubly-
charged scalar belonging to the multiplet 4�1/2 of AI (for all scenarios) as a function of the
VEV of the multiplet. We take M� = 500 and mass splitting �M = 1 (0, 2.5) GeV in the
left (right) panels. The grey curves on the left panel denote the cascade decays into pions,
leptons and quarks. It can be seen that, for small mass splitting, the cascade decays are
suppressed, and the dominant decay modes are into gauge bosons and same-sign leptons.
Neglecting cascade decays, the crossover from dominant decays into leptons and into gauge
bosons takes place at a value of the VEV around

vc�±± ' 65 KeV

✓

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i
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Table 6. Numerical factors associated with the respective couplings that enter in the decay widths
of the various charged scalars. The couplings with gauge bosons are computed with SARAH [55]
and then scaled with that of the scalar triplet 31 for doubly-charged scalars in the fourth and fifth
columns corresponding to �

±±W⌥W⌥ and �
±±

�
⌥W⌥, respectively.

of the VEV of the multiplet. We take M� = 500 GeV and mass splitting �M = 1 (0, 2.5)

GeV in the left (right) panels. The grey curves on the left panel denote the cascade decays
into pions, leptons and quarks. It can be seen that, for small mass splitting, the cascade

Figure 6. Left: Branching ratio of the doubly-charged scalar belonging to 4�1/2 in AI, with
M� = 500 GeV and �M = 1 GeV. The solid and dashed curves represent the normal and inverted
orderings of neutrino masses. The grey curves denote the cascade decays into pions, leptons and
quarks. Right: Dependence of the proper decay length of doubly-charged scalars on the scalar VEV
for di�erent scenarios. We take M� = 500 GeV, �M = 0, 2.5 GeV and consider normal ordering
for neutrino masses.

decays are suppressed, and the dominant decay modes are into gauge bosons and same-sign
leptons. Neglecting cascade decays, the crossover from dominant decays into leptons and
into gauge bosons takes place at a value of the VEV around

vc�±± ' 65 KeV
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Figure 7. Left: Same as the left panel of Fig. 6 for triply-charged scalar decays in scenario AII

with M� = 500 GeV. Right: Dependence of the proper decay length of triply charged scalars on the
scalar VEV in our scenarios for M� = 500, 1000 GeV, and normal ordering for neutrino masses.

of the triply-charged scalar. The total decay width can be approximated by comparing to
the three-body decays of triply-charged scalars as [59]

�tot(�
±±±±

) ⇠ �tot(�
±±±

)
f(3)

f(4)

g2M2
�±±±±

M2
W

' 0.017
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�tot(�
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) , (4.7)

where f(n) = 4 (4⇡)2n�3
(n�1)!(n�2)! accounts for the phase-space suppression for decays

to n body states. Hence, the decay length of quadruply-charged scalars is roughly 60 (15)
times larger than that of �

±±± for masses of the order 500 (1000) GeV, thus leading to
O(1) cm (O(1) mm) proper decay length. Therefore, scalars with masses < 1 TeV can
give rise to displaced vertices and can be searched for at the CMS detctor, whereas heavier
quadruply-charged scalars may be looked for at prompt-lepton searches. We discuss the
constraints from these searches below.

4.1.3 Signatures

The production and subsequent decays of multiply-charged scalars can lead to interesting
signatures of new physics at the LHC. In Table 7, we collect the decay modes of various
charged scalars and the signatures that can be obtained from pair and associated produc-
tion of these scalars. As discussed above, the decay modes depend on the VEV of the
corresponding scalar with leptonic decays dominating over the bosonic ones for low VEVs
v� < vc� (see Eq. 4.4) and vice versa. If events like l±l±W⌥W⌥ are observed at the LHC,
they can confirm LNV experimentally [63]. Further leptonic decays of W± can lead to
multi-lepton events with multiple same-sign leptons in the final state, which have a very
small SM background. For example, the pair and associated production of quadruply-
charged scalars can lead to final states with 0-8 leptons including same-sign dileptons
(SS2l), tri-lepton (SS3l) and tetra-lepton events (SS4l). Moreover, the final states from
the pair production of these multi-charged scalars can all lead to lepton flavor violating
4-lepton events of the form l±

i
l±
i
l⌥
j
l⌥
j

and l±
i
l±
j
l⌥
j
l⌥
j

(i 6= j) from the on-shell/o�-shell lep-
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Table 6. Numerical factors associated with the respective couplings that enter in the decay widths
of the various charged scalars. The couplings with gauge bosons are computed with SARAH [55]
and then scaled with that of the scalar triplet 31 for doubly-charged scalars in the fourth and fifth
columns corresponding to �
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of the VEV of the multiplet. We take M� = 500 GeV and mass splitting �M = 1 (0, 2.5)

GeV in the left (right) panels. The grey curves on the left panel denote the cascade decays
into pions, leptons and quarks. It can be seen that, for small mass splitting, the cascade

Figure 6. Left: Branching ratio of the doubly-charged scalar belonging to 4�1/2 in AI, with
M� = 500 GeV and �M = 1 GeV. The solid and dashed curves represent the normal and inverted
orderings of neutrino masses. The grey curves denote the cascade decays into pions, leptons and
quarks. Right: Dependence of the proper decay length of doubly-charged scalars on the scalar VEV
for di�erent scenarios. We take M� = 500 GeV, �M = 0, 2.5 GeV and consider normal ordering
for neutrino masses.

decays are suppressed, and the dominant decay modes are into gauge bosons and same-sign
leptons. Neglecting cascade decays, the crossover from dominant decays into leptons and
into gauge bosons takes place at a value of the VEV around
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Figure 7. Left: Same as the left panel of Fig. 6 for triply-charged scalar decays in scenario AII

with M� = 500 GeV. Right: Dependence of the proper decay length of triply charged scalars on the
scalar VEV in our scenarios for M� = 500, 1000 GeV, and normal ordering for neutrino masses.

of the triply-charged scalar. The total decay width can be approximated by comparing to
the three-body decays of triply-charged scalars as [59]
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where f(n) = 4 (4⇡)2n�3
(n�1)!(n�2)! accounts for the phase-space suppression for decays

to n body states. Hence, the decay length of quadruply-charged scalars is roughly 60 (15)
times larger than that of �

±±± for masses of the order 500 (1000) GeV, thus leading to
O(1) cm (O(1) mm) proper decay length. Therefore, scalars with masses < 1 TeV can
give rise to displaced vertices and can be searched for at the CMS detctor, whereas heavier
quadruply-charged scalars may be looked for at prompt-lepton searches. We discuss the
constraints from these searches below.

4.1.3 Signatures

The production and subsequent decays of multiply-charged scalars can lead to interesting
signatures of new physics at the LHC. In Table 7, we collect the decay modes of various
charged scalars and the signatures that can be obtained from pair and associated produc-
tion of these scalars. As discussed above, the decay modes depend on the VEV of the
corresponding scalar with leptonic decays dominating over the bosonic ones for low VEVs
v� < vc� (see Eq. 4.4) and vice versa. If events like l±l±W⌥W⌥ are observed at the LHC,
they can confirm LNV experimentally [63]. Further leptonic decays of W± can lead to
multi-lepton events with multiple same-sign leptons in the final state, which have a very
small SM background. For example, the pair and associated production of quadruply-
charged scalars can lead to final states with 0-8 leptons including same-sign dileptons
(SS2l), tri-lepton (SS3l) and tetra-lepton events (SS4l). Moreover, the final states from
the pair production of these multi-charged scalars can all lead to lepton flavor violating
4-lepton events of the form l±

i
l±
i
l⌥
j
l⌥
j

and l±
i
l±
j
l⌥
j
l⌥
j

(i 6= j) from the on-shell/o�-shell lep-

– 23 –

no signals at CMS


proper lenght decay 𝒪(10μm)

may give signals


proper lenght decay 𝒪(0.1 − 1 mm)

MΦ±± = 500 GeV



IRN@LNF, 15/04/24 Simone Marciano 38

Final Remarks

• Neutrino masses from higher SU(2) representations: 
Tree level vs 1-loop 

• Effective d=6 operators: 
deviation from unitarity and corrections to gauge bosons couplings


• Lepton Number Violation:  
Majorons


• Phenomenology:  
Production and Decays 

• Decoupling pattern for the dim=5 and dim=6 Wilson coefficients: 
Inverse seesaws?


• Leptogenesis
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Collider signatures

Decays �
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Table 7. Signatures of new physics from the pair and associated production of charged scalars and
their subsequent decays to leptonic or bosonic modes.

tonic decays of the doubly-charged scalars, corresponding to the diagonal and o�-diagonal
matrix elements of the light neutrino mass matrix m⌫ .

The ATLAS and CMS collaborations search for doubly-charged scalars in multi-lepton
finals states at

p
s = 13 TeV, corresponding to an integrated luminosity of 139 fb

�1 [64]
and 12.9 fb

�1 [65], respectively. The ATLAS search focuses on the pair production of
doubly-charged scalars and their same-sign leptonic decays �

±±
! l±l0± with l, l0 = e, µ, ⌧

in two-, three-, four-lepton channels, considering only e, µ in the final state and assuming
a 100% branching ratio to leptons, with equal branching ratio to each possible leptonic
channel. In the absence of any positive signal, limits can thus be imposed on the doubly-
charged scalar pair production times the branching ratio to leptons to derive a lower bound
on the doubly-charged scalar mass, which in the context of left-right symmetric Type-
II models comes out to 1080 GeV [64]. Given that the doubly-charged scalars of our

Figure 8. The observed and expected 95% CL upper limits on the production cross-section of
doubly-charged scalars times their branching ratio into same-sign dileptons (left) and to a pair
of W bosons (right) for di�erent multiplets. The region above the observed limit is excluded.
The green and yellow band represent the expected exclusion curve within one and two standard
deviations [64, 66].

scenarios exhibit similar decays, we can extend the ATLAS analysis to derive a limit on
�(pp ! �

±±
�
⌥⌥

)⇥BR(�
±±

! l±l±) and thus on M�±± belonging to di�erent multiplets,8

8
Since the mass splittings among the various components of the multiplets is expected to be small from

EWPTs, obtaining a bound on the doubly-charged scalar mass also gives an idea about the mass ranges of

– 24 –

assuming that their induced VEV is extremely small so that BR(�
±±

! l±l±) = 100%.
In the left plot of Fig. 8, we compare the theoretical pair production of doubly-charged
scalars belonging to di�erent multiplets (see Fig. 5) with the ATLAS results. The solid
(dashed) lines represent the observed (expected) 95% CL upper limits on the �

±± pair
production as a function of M�±± , and the green and yellow bands correspond to ±1�

and ±2� uncertainty around the expected limit. It can be seen that M�±± < 1090 GeV is
excluded for the doubly-charged scalars belonging to the multiplet 41/2.

The ATLAS collaboration also searched for doubly- and singly-charged Higgs decaying
into vector bosons in multi-lepton final states at

p
s = 13 TeV with an integrated lumi-

nosity of 139 fb
�1, considering pair production of doubly-charged Higgs and its associated

production with a singly-charged scalar in the context of the Type-II seesaw model [66].
Similarly, in the absence of any deviation from SM prediction, we can extend the anal-
ysis to the doubly-charged scalars of the di�erent multiplets to obtain naive bounds on
their masses, assuming that BR(�

±±
! W±W±

) = 100%, i.e., in the region of higher
scalar VEVs. We compare the theoretical pair production cross-sections of the doubly-
charged scalars with their results and show it in the right plot of Fig. 8, where the lines
and bands have the same meaning as discussed above. The lower bound on M�±± can be

Limits on M�±± [GeV]

Multiplet BR(�
±±

! l±l±) = 100% BR(�
±±

! W±W±
) = 100%

41/2 1090 400
43/2 860 260
50 1180 440
51 980 340
52 940 320

Table 8. 95% CL exclusion limits on the mass of doubly-charged scalars using the ATLAS results
at

p
s = 13 TeV with 139 fb

�1 of integrated luminosity for di�erent SU(2)L multiplets, under
the assumption that the branching ratio to same-sign leptons or a pair of gauge bosons is 100%.
Therefore, the actual limit is expected to lie between these extreme cases.

obtained similarly to the case above and are found to be much less stringent, for example,
M�±± < 400 GeV is excluded for the doubly-charged scalars belonging to the multiplet
41/2. The exclusion limits on M�±± belonging to di�erent multiplets from both these AT-
LAS searches are summarized in Table 8. These exclusion limits su�ce to provide a rough
estimate of the mass scales of the new scalars. These searches may help in distinguishing
the doubly-charged scalars from di�erent multiplets, since, depending on the presence of
other highly-charged components in the multiplets and the mass hierarchy among them,
the reconstruction of M�±± from the same-sign dilepton invariant mass may not always be
possible. A study to discriminate lepton number violating scalars at the LHC, assuming
that there are no excitations with Q > 2 was done in Ref. [63].

The search for higher-charged (Q > 2) scalars in the scenarios and the potential reach
of the LHC in discovering them requires a more dedicated collider study in the context of a
the other components of the multiplet.
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specific model and is beyond the scope of current work. We refer the reader to Refs. [51, 67]
for the LHC phenomenology of scenario AII.

4.2 Electroweak Precision Tests at loop level

The addition of heavy SU(2) scalar multiplets a�ect the oblique parameters (namely S, T

and U) that parameterize the e�ect of new physics on EW parameters. The new scenarios
can be constrained by demanding these corrections to be small so that they do not distort
the EW predictions of the SM. The oblique parameters are given by [68]

↵S ⌘ 4e2
d

dp2
l [⇧33(0)�⇧3Q(0)]p2=0 ,

↵T ⌘
e2

s2
W
c2
W
M2

Z

[⇧11(0)�⇧33(0)] ,

↵U ⌘ 4e2
d

dp2
[⇧11(0)�⇧33(0)]p2=0 ,

where ↵ is the fine structure constant, sW = sin ✓W , cW = cos ✓W , and ⇧IJ(I, J = 1, 3, Q)

are the vacuum polarisation amplitudes.
The ⇢ parameter, which can be written in terms of T as ⇢ ⌘ 1 + ↵T , is equal to 1

at tree level in the SM, but can receive further corrections at the one-loop level. In our
case, the leading contribution to T at tree level due to addition of new scalar multiplets
with isospin Ni and hypercharge Yi is given by Eq. (3.23). It can be seen that, except for
scenarios containing just scalar doublets, �⇢ 6= 1 at tree level for larger scalar multiplets
obtaining VEVs, hence breaking the custodial symmetry, i.e. mW 6= mZcW .

In scenarios where custodial symmetry is broken, there are complications in the calcu-
lation of oblique parameters at loop level. The T parameter is divergent at one-loop level
[69], whereas computing S and U at one loop leads to either a gauge-dependent result or
they become divergent as the radiative corrections that one gets in the new framework are
qualitatively very di�erent from the SM ones [70, 71]. However, since we constrain the
VEVs so that the ⇢ parameter is close to one, we get vi ⌧ v = 174 GeV, as discussed
in Section 3.3. Therefore, the corrections to the oblique parameters can be estimated by
making use of the general formulas presented in Ref. [72], where the following assumptions
are made: i) the VEVs of the complex scalars are negligible, ii) the scalars do not mix
with themselves or any other scalars in the theory. Both assumptions are justified for our
analysis as we work in the limit vi ⌧ v, where i labels the new scalar added to the SM.
Further, we take U = 0 as it is typically suppressed, which greatly improves the precision
on S and T . The contribution of a scalar multiplet to the oblique parameters S and T is
given by [72]:

T =
1

16⇡c2
W
s2
W
MZ

+IX

I3=�I

(I2 � I23 + I + I3)✓+(MI3 ,MI3�1) ,

S = �
Y

3⇡

+IX

I3=�I

I3 ln
MI3

µ2
�

2

⇡

+IX

I3=�I

(I3c
2
W � Y s2W )

2⇠

✓
MI3

MZ

,
MI3

MZ

◆
,
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where µ is a arbitrary mass parameter used in dimensional regularization, Y is the hy-
percharge, I is the weak isospin, I3 is the third component of isospin for a multiplet with
(2I + 1) components and MI3 denotes the mass of the scalar component corresponding to
it, with

✓+(x, y) =
(y � x)2

3x
,

⇠(x, y) '
1

15

1

4x� 1
�

✓
2(y � x)

15
+

1

21

◆✓
1

4x� 1

◆2

, (4.8)

for |y � x|/x ⌧ 1 [73]. We also discuss the implications of the addition of new scalar
multiplets in alleviating the CDF anomaly related to the measurement of the W boson
mass9. The correction to W mass in terms of these oblique parameters (taking U = 0) is
given by [77]

mW ' mSM
W


1�

↵

4(1� 2s2
W
)
(S � 2(1� s2W )T )

�
. (4.9)

The values of S and T and the correlation ⇢ST from the current global fit of electroweak
precision data using the old MW (PDG 2022 [45]) and new CDF value of MW [78] are
shown in Table 9. For the analysis below, we parameterize a scalar multiplet with (2I +1)

PDG 2022 CDF 2022

S �0.01± 0.07 0.14± 0.08

T 0.04± 0.06 0.26± 0.06

⇢ST 0.92 0.93

Table 9. Values of S, T and the correlation ⇢ST for U = 0 allowed by the EW fit using the old
and the new data from the PDG and the CDF Collaboration, respectively.

components as � = (�I ,�I�1, . . . ,��I)
T and take the masses of the components as

M��I = m, M��I+1 = m+�m, . . . ,M�I = m+ 2I�m, (4.10)

assuming that the mass splittings among the components are equally spaced, with �m ⌧

m. In scenarios of class-B, where two new scalars are involved, for the ease of analysis
we take the mass of the lightest component to be the same, m, and assume equal mass
gaps for both multiplets, �m. Thus, using Eqs. (4.8) and (4.9), and the values given in
Table 9, we can constrain the mass of the lightest component m and the mass splitting
�m by means of a two-parameter �2 analysis. In Fig. 9 we show the EWPT bounds (at
95% C.L.) in the m��m plane along with the bounds to reproduce the previous and the
new measurement of the W boson mass. The light blue (light red) region indicates the
parameter space allowed by EWPT from the PDG (CDF measurement), whereas the dark
blue (dark red) shows the parameter space allowed by the old (new) measurement of MW .
Note that the mass splitting among the components is proportional to the Higgs VEV and

9
A similar study to explain the W-boson mass anomaly in terms of one loop e�ect of a general SU(2)L

scalar multiplet and scalar extensions violating custodial symmetry was done in Ref. [74–76].

– 27 –

Figure 9. Constraints on the scalar multiplets of the scenarios from EWPT, the experimental
measurement of MW and perturbativity. The light blue (red) region indicates the parameter space
allowed by EWPT from the PDG (CDF), whereas the dark red (blue) region shows the parameter
space allowed by the new (old) measurement of MW . The gray region is excluded from the pertur-
bativity of the scalar couplings, i.e., � 

p
4⇡.
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Upper limits
Model O

(i)
6 ee µµ ⌧⌧ ⌧µ ⌧e µe

A1 O
(1)
6 < 0.0013 < 0.0028 < 0.0053 < 0.0005 < 0.0005 < 1.3⇥ 10

�6

A2 O
(0)
6 < 0.0019 < 0.0042 < 0.0079 < 0.0007 < 0.0008 < 2⇥ 10

�6

B1 O
(1)
6 < 0.0036 < 0.0042 < 0.0012 < 0.0007 < 0.0008 < 2⇥ 10

�6

B1 O
(2)
6 < 0.0003 < 0.0007 < 0.0013 < 0.0001 < 0.0001 < 3.3⇥ 10

�7

B2 O
(2)
6 < 0.0038 < 0.0084 < 0.0159 < 0.0014 < 0.0016 < 4⇥ 10

�6

B3 O
(2)
6 < 0.0024 < 0.0028 < 0.0008 < 0.0005 < 0.0005 < 1.3⇥ 10

�6

B4 O
(1)
6 < 0.0038 < 0.0084 < 0.0159 < 0.0014 < 0.0016 < 4⇥ 10

�6

Table 6. Limits on the dimension-6 operators from Z-boson mediated tree-level non-universal and
LFV decays. For all models but B1, only one operator has a non-zero correction to Ze↵e� and the
corresponding limits are quoted. For B1, we derive the limits assuming only of them contributes
while neglecting the other one.

where r ⌘ M
2
 i
/M

2
�j

, ↵em = e
2
/(4⇡) is the fine structure constant and GF is Fermi’s decay

constant. Experimentally, the branching ratio BR(l↵ ! l�⌫↵⌫̄b) is equal to {1, 0.178, 0.174}

for ↵� = {µe, ⌧e, ⌧µ}, respectively [58]. N�( ) denotes the number of new scalars (fermionic
mediators,  = ⌃,F) in the model, whereas n� and n denote the number of components
in the scalar and fermion multiplets, respectively. Q denotes the charges of the scalar and
fermion components in the loop such that Ql↵

= Q i
�Q�j

, and cQ iQ�j
is the numerical

coe�cient of the term containing a scalar (fermion) component with charge Q�j
(Q i

) in
the expansion of the Yukawa Lagrangian in tensor notation. Finally, the loop functions
are given by [59]

f (x) =
2 + 3x� 6x

2
+ x

3
+ 6x lnx

6(1� x)4
⇡

1

6x
(for x � 1) ,

f�(x) =
1� 6x+ 3x

2
+ 2x

3
� 6x

2
lnx

6(1� x)4
⇡

1

3x
(for x � 1) ,

where in the last step we approximated them for large x. We make the following assump-
tions for Eq. (5.2) to simplify the resulting expression:

i) The components within the multiplets are degenerate i.e., M�j
= M� ,M i

= M ,

ii) Whenever there are two or more new scalars or fermions in the model, we take their
masses to be the same i.e, M�1 = M�2 = M�,

iii) We ignore the mixing among the scalars, and among SM and heavy fermions,

iv) We consider only the contributions coming from BSM states in the loop. Further, in
the limit M⌃,F � M�, the dependence on scalar masses is negligible and the bounds
can be expressed solely in terms of the fermion mediator mass only.

The most stringent bound comes from radiative muon decays, BR(µ ! e�) < 4.2 ⇥

10
�13 at 90% CL [60], which is much stronger than the radiative ⌧ -lepton decays, BR(⌧ !

e�) < 3.3⇥ 10
�8 and BR(⌧ ! µ�) < 4.4⇥ 10

�8 at 90% CL [61].
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To illustrate the limits, let us consider the model A1 which contains one new scalar
multiplet 4S�1/2 and one fermionic quintuplet 5F0 . Given the charged lepton Yukawa La-
grangian expansion

y1L̄�⌃ = y1 l̄

 
⌃
��

�
+
�

p
3

2
⌃
�
�
0
+

1
p
2
⌃
0
�
�
�

1

2
⌃
+
�
��

!
, (5.3)

we can write the branching ratio for µ ! e� as

BR(µ ! e�) =
3↵em

64⇡G
2
F

����
y
e
⇤

1 y
µ

1

M
2
�

Z
A1
�

✓
M

2
⌃

M
2
�

◆����
2

, (5.4)

with

Z
A1
�1

(x) =
1

2
f�(x)�

3

4
f (x)� [2f (x) + f�(x)] +

1

4
[f (x) + 2f�(x)] . (5.5)

Imposing the current experimental upper bound on BR(µ ! e�), we get

|y
e
⇤

1 y
µ

1 |

(M⌃/TeV)2
. 2⇥ 10

�4
. (5.6)

Similarly, bounds on various Yukawa combinations from other LFV decays can be calcu-
lated.

Upper limits
Model Yukawa combination ↵� = µe ↵� = ⌧e ↵� = ⌧µ

A1 |y
�
⇤

1 y
↵

1 |(TeV/M⌃)
2

< 0.0002 < 0.13 < 0.16

A2 |y
�
⇤

1 y
↵

1 |(TeV/MF )
2

< 0.0004 < 0.24 < 0.28

B1 |y
�
⇤

1 y
↵

1 � 0.5 y
�
⇤

2 y
↵

2 |(TeV/MF )
2

< 0.0004 < 0.29 < 0.34

B2 |y
�
⇤

1 y
↵

1 � 50 y
�
⇤

2 y
↵

2 |(TeV/MF )
2

< 0.0011 < 0.72 < 0.84

B3 |y
�
⇤

1 y
↵

1 � 2.12 y
�
⇤

2 y
↵

2 |(TeV/MF )
2

< 0.0002 < 0.15 < 0.18

B4 |y
�
⇤

1 y
↵

1 + 6.6 y
�
⇤

2 y
↵

2 |(TeV/MF )
2

< 0.0004 < 0.24 < 0.28

Table 7. 90%CL limits on combination of Yukawa couplings and fermion masses from lepton-
flavor-violating radiative decays for the di�erent models.

In models of Type-B, which contain two new scalars, both Yukawas y1 and y2 in
Eq. (2.9) enter in the decay. Note that the Yukawa combination that is constrained from
LFV decays is di�erent from the one entering in the expression of neutrino masses, where
the product of both couplings enters. For example, consider the model B1 which contains
the scalar multiplets 4S1/2, 4S�3/2 and a vector-like mediator 5F0 . The relevant charged
lepton Yukawa Lagrangian is

L̄�1FR = l̄

 
F

���
R

�
++
1 �

p
3

2
F

��
R

�
+
1 �

1
p
2
F

�
R
�
0
1 �

1

2
F

0
R�

�
1

!
,

L̄�2F
c

L = l̄

 
�F

+
L

c
�
0
2 �

p
3

2
F

0
L

c
�
�
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1
p
2
F

�
L

c
�
��
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1

2
F

��
L

c
�
���
2

!
, (5.7)
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ℒ6
eft = ci (L ϕi) iDμγμ (ϕ†

i L) ℒd≤6
ν = iνLγμ∂μ ( +ϵ) νL −

1
2 (νc

L Mν νL + h.c.)v2
ϕi

ci = ϵ

After SSB and disregarding 
couplings with the Higgses


and Goldstone bosons

Deviation from Unitarity
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Deviation from Unitarity

After SSB and disregarding 
couplings with the Higgses


and Goldstone bosons
ℒd≤6

ν = iνLγμ∂μ ( +ϵ) νL −
1
2 (νc

L Mν νL + h.c.)v2
ϕi

ci = ϵ

ℒd≤6
leptons =

1
2

νi (i γμ∂μ − Mdiag
ν i ) νi + lα (i γμ∂μ − Mdiag

l α ) lα+

After the field redefinition  and rotating  (  ) with a unitary matrix :νL → ( +ϵ)−1/2 νL νL l Uν
L

+ℒCC + ℒNC + ℒEM

νi = νL i + νc
L i

The usual PMNS mixing matrix is replaced 
by a nonunitary matrix

UPMNS → U ≡ ( −ϵ) Uν
L

ℒ6
eft = ci (L ϕi) iDμγμ (ϕ†

i L)
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After SSB and disregarding 
couplings with the Higgses


and Goldstone bosons
ℒd≤6

ν = iνLγμ∂μ ( +ϵ) νL −
1
2 (νc

L Mν νL + h.c.)v2
ϕi

ci = ϵ

After the field redefinition  and rotating  (  ) with a unitary matrix :νL → ( +ϵ)−1/2 νL νL l Uν
L

νi = νL i + νc
L i

The usual PMNS mixing matrix is replaced 
by a nonunitary matrix

UPMNS → U ≡ ( −ϵ) Uν
L

Deviation from 

unitarity

+ℒCC + ℒNC + ℒEM

ℒd≤6
leptons =

1
2

νi (i γμ∂μ − Mdiag
ν i ) νi + lα (i γμ∂μ − Mdiag

l α ) lα+

Deviation from Unitarity

ℒ6
eft = ci (L ϕi) iDμγμ (ϕ†

i L)
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Deviation from Unitarity

ℒ6
eft = c6

i (L ϕi) iDμγμ (ϕ†
j L)

v2
ϕi

c6
i = ϵ

The usual PMNS mixing matrix is replaced 
by a nonunitary matrix

UPMNS → U ≡ ( −ϵ) Uν
L

c6
i =

Yi Y†
i

Λ2
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ℒ6
eft = c6

i (L ϕi) iDμγμ (ϕ†
j L)

v2
ϕi

c6
i = ϵ

The usual PMNS mixing matrix is replaced 
by a nonunitary matrix

UPMNS → U ≡ ( −ϵ) Uν
L c6 =

Y Y†

Λ2

c5 =
Y YT

Λ

c6 ≃
c5

Λ
→ 0

c6
i =

Yi Y†
i

Λ2

In the models under analysis the 
deviation from unitarity is 

suppressed by the smallness of the 
neutrino masses, due to the 

correlation between  .c5 and c6

Deviation from Unitarity
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Corrections to the vector boson couplings

Z-couplings in units of 
ci e/(2 cw sw)

W-couplings in units of 
ci e/(2 2 sw)

ℒ6
eft = ci (L ϕi) iDμγμ (ϕ†

i L)
ci = (Yi Λ−2 Y†

i )
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Corrections to the vector boson couplings

Z-couplings in units of 
ci e/(2 cw sw)

W-couplings in units of 
ci e/(2 2 sw)

ℒ6
eft = ci (L ϕi) iDμγμ (ϕ†

i L)
ci = (Yi Λ−2 Y†

i )

Dominant effect ( )
vsm ≫ vbsm
𝒪SM = c (L ϕ) iDμγμ (ϕ†L)
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Dominant effect ( )
vsm ≫ vbsm
𝒪SM = c (L ϕ) iDμγμ (ϕ†L)

Corrections to the vector boson couplings

Sub-leading effect

𝒪1 = c1 (L ϕ1) iDμγμ (ϕ†

1 L)

ℒ6
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Corrections to the vector boson couplings
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Corrections to the vector boson couplings

Z-couplings in units of 
ci e/(2 cw sw)

W-couplings in units of 
ci e/(2 2 sw)

ℒ6
eft = ci (L ϕi) iDμγμ (ϕ†

i L)
ci = (Yi Λ−2 Y†

i )

Notice that the relation  holds

only for the model  for the operator 


(custodial symmetry conservation)

gw = gZν
+ gZe

A2 𝒪SM
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Breaking  of  U(1)L

The accidental global U(1) of lepton number can be broken by the presence of the new Higgses 
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• The symmetry breaking is realized by the non-zero
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Breaking  of  U(1)L

The accidental global U(1) of lepton number can be broken by the presence of the new Higgses 

EXPLICIT SYMMETRY BREAKING

• No explicit lepton number violating (LNV) terms


• The symmetry breaking is realized by the non-zero

vevs of the new scalars


• Production of an additional pure

massless Goldstone boson

• LNV terms in the scalar potential, e.g. 


• A new pseudo-Goldstone boson with 
a non-zero mass is provided


• Its mass is proportional to the LNV terms 
and to the VEVs of the scalars

H2ϕiϕj

SPONTANEOUS SYMMETRY BREAKING
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The Majoron  -  A-class models

V(H, Φ) = −μ2
H H†H + μ2

Φ Φ†Φ + λ1(H†H)2 + λ2(Φ†Φ)2+
+λ3 H†HΦ†Φ + λ4 H*HΦ*Φ + λ5 Φ*Φ Φ*Φ+
+[λ6 Φ*HHH + λ7 HΦHΦ + λ8 H*ΦHH + h.c.]
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The Majoron  -  A-class models

LNV terms

m2
z = 0 , m2

J =
vH (v2

H + v2
Φ)

9vΦ [−3 3λ8 + 24
vΦ

vH
λ7 + 2 3

v2
Φ

v2
H

λ6]

V(H, Φ) = −μ2
H H†H + μ2

Φ Φ†Φ + λ1(H†H)2 + λ2(Φ†Φ)2+
+λ3 H†HΦ†Φ + λ4 H*HΦ*Φ + λ5 Φ*Φ Φ*Φ+
+[λ6 Φ*HΦΦ + λ7 HΦHΦ + λ8 H*ΦHH + h.c.]
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The Majoron  -  A-class models

LNV terms

Breaking of

 hypercharge

m2
z = 0 , m2

J =
vH (v2

H + v2
Φ)

9vΦ [−3 3λ8 + 24
vΦ

vH
λ7 + 2 3

v2
Φ

v2
H

λ6]

V(H, Φ) = −μ2
H H†H + μ2

Φ Φ†Φ + λ1(H†H)2 + λ2(Φ†Φ)2+
+λ3 H†HΦ†Φ + λ4 H*HΦ*Φ + λ5 Φ*Φ Φ*Φ+
+[λ6 Φ*HΦΦ + λ7 HΦHΦ + λ8 H*ΦHH + h.c.]
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The Majoron  -  A-class models
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H
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V(H, Φ) = −μ2
H H†H + μ2

Φ Φ†Φ + λ1(H†H)2 + λ2(Φ†Φ)2+
+λ3 H†HΦ†Φ + λ4 H*HΦ*Φ + λ5 Φ*Φ Φ*Φ+
+[λ6 Φ*HΦΦ + λ7 HΦHΦ + λ8 H*ΦHH + h.c.]
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The Majoron  -  B-class models

V(H, Φ, Δ) ⊂ + λ1Δ*Φ*H Δ + λ2(Δ*Φ*H Δ)′￼+ λ3Φ*Φ*H H + λ4Φ*Φ*HΦ+
+λ5Φ*H*H H + λ6H H HΔ + λ7H HΦΔ + λ8HΦΦΔ + λ9ΦΦΦΔ + h.c.
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The Majoron  -  B-class models

V(H, Φ, Δ) ⊂ + λ1Δ*Φ*H Δ + λ2(Δ*Φ*H Δ)′￼+ λ3Φ*Φ*H H + λ4Φ*Φ*HΦ+
+λ5Φ*H*H H + λ6H H HΔ + λ7H HΦΔ + λ8HΦΦΔ + λ9ΦΦΦΔ + h.c.

m2
z = 0 , m2

J =
λ5v3

H

2 3vΦ

, m2
Ω =

λ6v3
H

2vΔ

Neglecting contributions 
𝒪(vϕ,Δ/vH)
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The Majoron  -  B-class models

V(H, Φ, Δ) ⊂ + λ1Δ*Φ*H Δ + λ2(Δ*Φ*H Δ)′￼+ λ3Φ*Φ*H H + λ4Φ*Φ*HΦ+
+λ5Φ*H*H H + λ6H H HΔ + λ7H HΦΔ + λ8HΦΦΔ + λ9ΦΦΦΔ + h.c.

m2
z = 0 , m2

J =
λ5v3

H

2 3vΦ

, m2
Ω =

λ6v3
H

2vΔ

Neglecting contributions 
𝒪(vϕ,Δ/vH)

U(1)L U(1)X
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h�i

⌫L

h�1i

⌫c
L

⌃R
⌃c

R

The full theory lagrangian can be written as:

L =LSM + ⌃Ri /D⌃R � (Y Le�⌃R + h.c.)� (Y1L�1⌃R + h.c.)�
1

2
M⌃⌃

T

RC
†⌃R + h.c. .

(2.4)
where Y and Y1 are the Yukawa matrices of the SM higgs doublet � and the new scalar
field �1, respectively.
Here the fermionic mediator is ⌃ = (4± 1, 0), where 4 represents the dimensionality of the
new Higgs. Being the only interesting representation for �1 a quadruplet and neglecting the
case in which the heavy mediator is the same as the seesaw ones, the only possibility for the
⌃ quantum numbers is (5, 0). The vertices structure fixes the hypercharge of �1 to be equal
in modulus to the lepton doublets one. Thus, the quantum numbers for �1 are (4,±1/2).
For the sake of simplicity, we are going to consider �1 with positive hypercharge. On the
other hand, a negative hypercharge would not change the content of the computation, but
it would only change the vertex interaction structure, i.e. if Y (�1) = +1/2 we have ⌃̄�̃†

L,
otherwise we would have ⌃̄�†

L.
A Majorana fermion mediator is not the only choice: neutrino masses can be obtained as
well with a Dirac mass insertion. Let’s therefore consider a vector-like fermion mediator
F , with hypercharge YF 6= 0. We can then distinguish the two left and right chiral F

components, so that they can couple di�erently to the SM and BSM Higgs multiplets. In
this case, the dim-5 Weinberg operator is obtained integrating out the F mediator in the
following diagram

h�i

⌫L

h�1i

⌫c
L

FR FL

– 5 –

Higher SU(2) representations - UV completions

Majorana Mass 
Insertion

Dirac Mass 
Insertion

ℒ5
eft =

c0i

Λ
ϕϕiLL +

cii

Λ
ϕiϕiLL +

cij

Λ
ϕiϕjLL
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L
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⌃c

R

The full theory lagrangian can be written as:

L =LSM + ⌃Ri /D⌃R � (Y Le�⌃R + h.c.)� (Y1L�1⌃R + h.c.)�
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†⌃R + h.c. .

(2.4)
where Y and Y1 are the Yukawa matrices of the SM higgs doublet � and the new scalar
field �1, respectively.
Here the fermionic mediator is ⌃ = (4± 1, 0), where 4 represents the dimensionality of the
new Higgs. Being the only interesting representation for �1 a quadruplet and neglecting the
case in which the heavy mediator is the same as the seesaw ones, the only possibility for the
⌃ quantum numbers is (5, 0). The vertices structure fixes the hypercharge of �1 to be equal
in modulus to the lepton doublets one. Thus, the quantum numbers for �1 are (4,±1/2).
For the sake of simplicity, we are going to consider �1 with positive hypercharge. On the
other hand, a negative hypercharge would not change the content of the computation, but
it would only change the vertex interaction structure, i.e. if Y (�1) = +1/2 we have ⌃̄�̃†

L,
otherwise we would have ⌃̄�†

L.
A Majorana fermion mediator is not the only choice: neutrino masses can be obtained as
well with a Dirac mass insertion. Let’s therefore consider a vector-like fermion mediator
F , with hypercharge YF 6= 0. We can then distinguish the two left and right chiral F

components, so that they can couple di�erently to the SM and BSM Higgs multiplets. In
this case, the dim-5 Weinberg operator is obtained integrating out the F mediator in the
following diagram

h�i

⌫L

h�1i

⌫c
L

FR FL

– 5 –

ℒ ⊃ − (YiLϕiℱR + h.c.) − (YjLϕjℱc
L + h.c.) + ℱ (iDμγμ − Mℱ) ℱℒ ⊃ ΣRiDμγμΣR − (YiLϕiΣR + h.c) −

1
2

MΣΣT
RC†ΣR

< ϕi >< ϕi > < ϕi > < ϕj >

ϕi = (Ni, Yi) i = 1,2
ρ(Ni, Yi, vϕi

) ≃ 1
vϕi

≪ vϕ

BSM Higgs-like scalars
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The Majoron  -  A-class models

V(H, Φ) = −μ2
H H†H + μ2

Φ Φ†Φ + λ1(H†H)2 + λ2(Φ†Φ)2+
+λ3 H†HΦ†Φ + λ4 H*HΦ*Φ + λ5 Φ*Φ Φ*Φ+
+[λ6 Φ*HHH + λ7 HΦHΦ + λ8 H*ΦHH + h.c.]

LNV terms

H0 = vH + SH + i χ
Φ0 = vΦ + SΦ + i η (z

J) = O (χ
η)


