Overview and challenges of semi-leptonic B decays and implications for new physics

Nazila Mahmoudi

IP2I, Lyon University

IRN Terascale @ Laboratori Nazionali di Frascati

15-17 April 2024

- Testing the Standard Model paradigms and parameters
- Probing New Physics at the intensity frontier

Semi-leptonic *B* **decays**: $b \rightarrow s\ell\ell$

- FCNC, suppressed in the SM, sensitive to NP
- Several deviations from the SM predictions

- Relevant decays
- Theoretical framework
- The issue of hadronic uncertainties
- New physics interpretations

- Testing the Standard Model paradigms and parameters
- Probing New Physics at the intensity frontier

Semi-leptonic *B* decays: $b \rightarrow s\ell\ell$

- FCNC, suppressed in the SM, sensitive to NP
- Several deviations from the SM predictions

- Relevant decays
- Theoretical framework
- The issue of hadronic uncertainties
- New physics interpretations

- Testing the Standard Model paradigms and parameters
- Probing New Physics at the intensity frontier

Semi-leptonic *B* decays: $b \rightarrow s\ell\ell$

- FCNC, suppressed in the SM, sensitive to NP
- Several deviations from the SM predictions

- Relevant decays
- Theoretical framework
- The issue of hadronic uncertainties
- New physics interpretations

- Testing the Standard Model paradigms and parameters
- Probing New Physics at the intensity frontier

Semi-leptonic *B* decays: $b \rightarrow s\ell\ell$

- FCNC, suppressed in the SM, sensitive to NP
- Several deviations from the SM predictions

- Relevant decays
- Theoretical framework
- The issue of hadronic uncertainties
- New physics interpretations

• Clean observables: Lepton Flavour Universality ratios

$$R_X = \frac{BR(B \to X \,\mu^+\mu^-)}{BR(B \to X \,e^+e^-)}$$

• Clean observables: Lepton Flavour Universality ratios

$$R_X = \frac{BR(B \to X \,\mu^+ \mu^-)}{BR(B \to X \,e^+ e^-)}$$

• Angular observables:

Ratios of spin amplitudes: P_i , P'_i , S_i ,...

• Clean observables: Lepton Flavour Universality ratios

$$R_X = \frac{BR(B \to X \,\mu^+ \mu^-)}{BR(B \to X \,e^+ e^-)}$$

• Angular observables:

Ratios of spin amplitudes: P_i , P'_i , S_i ,...

• Branching fractions:

$$BR(B \to K^* \mu^+ \mu^-)$$

$$BR(B \to K \mu^+ \mu^-)$$

$$BR(B_s \to \phi \mu^+ \mu^-)$$

$$BR(\Lambda_b \to \Lambda \mu^+ \mu^-)$$

...

 $b \rightarrow s \ell^+ \ell^-$ transitions: $B \rightarrow K^* \mu^+ \mu^-$

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0}\ell^+\ell^- (\bar{K}^{*0} \to K^-\pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

 $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(\theta_{\ell}, \theta_{K^*}, \phi)$ > angular coefficients

 \searrow functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\mathcal{O}_{9} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu} b_{L}) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu} b_{L}) (\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

$$\mathcal{O}_{5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell}\ell), \qquad \mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell}\gamma_{5}\ell)$$

 $b \to s \ell^+ \ell^-$ transitions: $B \to K^* \mu^+ \mu^-$

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0}\ell^+\ell^- \ (\bar{K}^{*0} \to K^-\pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

 $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(\theta_{\ell}, \theta_{K^*}, \phi)$ $\stackrel{\searrow}{\longrightarrow} \text{ angular coefficients } J_{1-9}$ $\stackrel{\searrow}{\longrightarrow} \text{ functions of the spin amplitudes } A_0, A_{\parallel}, A_{\perp}, A_t, \text{ and } A_S$

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

Optimised observables: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\text{bin}} = \frac{1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{
m bin}' = \sqrt{-\int_{
m bin} dq^2 [J_{2s} + ar{J}_{2s}] \int_{
m bin} dq^2 [J_{2c} + ar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

$$S_{i} = \frac{J_{i(s,c)} + \bar{J}_{i(s,c)}}{\frac{d\Gamma}{dq^{2}} + \frac{d\bar{\Gamma}}{dq^{2}}} , \qquad P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

- consistent deviation pattern with the SM predictions
- significance of the deviations between \sim 2 and 3.5 σ
- general trend: EXP < SM in low q^2 regions
- ... but the branching ratios have very large theory uncertainties!

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

 3.7σ deviation in the 3rd bin

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

 3.7σ deviation in the 3rd bin

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)

Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.4 σ combined fit (likelihood)

 $B^0 \to K^{*0} \mu^+ \mu^-$ angular observables, in particular P'_5 / S_5

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

$P'_5(B^0 \to K^{*0} \mu^+ \mu^-)$: Current situation

First measurement of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ angular observables using the full Run 1 and Run 2 dataset (9 fb⁻¹):

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

 $R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$

- SM prediction very accurate: $R_{K}^{\mathrm{SM}} = 1.0006 \pm 0.0004$
- March 2021 using 9 fb⁻¹

 $R_{K}^{\rm exp} = 0.846^{+0.042}_{-0.039}({\rm stat})^{+0.013}_{-0.012}({\rm syst})$

• 3.1σ tension in the [1.1-6] GeV² bin

Nature Phys. 18 (2022) 3, 277

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

 $R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$

- SM prediction very accurate: $R_K^{SM} = 1.0006 \pm 0.0004$
- March 2021 using 9 fb⁻¹

 $R_{K}^{\rm exp} = 0.846^{+0.042}_{-0.039} ({\rm stat})^{+0.013}_{-0.012} ({\rm syst})$

 $\bullet~\mathbf{3.1}\sigma$ tension in the [1.1-6] GeV^2 bin

Lepton flavour universality in $B^0 \to K^{*0} \ell^+ \ell^-$

$$R_{K^*} = BR(B^0 \to K^{*0} \mu^+ \mu^-) / BR(B^0 \to K^{*0} e^+ e^-)$$

- LHCb measurement from April 2017 using 3 fb⁻¹
- Two q² regions: [0.045-1.1] and [1.1-6.0] GeV²

$$R_{K^*}^{\rm exp, bin1} = 0.66^{+0.11}_{-0.07}({\rm stat}) \pm 0.03({\rm syst})$$

$$R_{K^*}^{ ext{exp,bin2}} = 0.69^{+0.11}_{-0.07}(\text{stat}) \pm 0.05(\text{syst})$$

• 2.2-2.5 σ tension in each bin

Nature Phys. 18 (2022) 3, 277

December 2022 update

- $\bullet\,$ LHCb measurement from Dec 2022 using 9 fb $^{-1}$
- New modelling of residual backgrounds due to misidentified hadronic decays
- Results fully compatible with the SM

LHCb, PRL 131 (2023) 5, 051803, PRD 108 (2023) 3, 032002

Two other LFU measurements (October 2021) with 9 fb $^{-1}$:

$$B^+ \to K^{*+}\ell^+\ell^- \text{ and } B^0 \to K^0_S \ell^+\ell^-$$

$$R_{K^{*+}} = 0.70^{+0.18}_{-0.13}(stat)^{+0.03}_{-0.04}(syst) \text{ and } R_{K^0_S} = 0.66^{+0.20}_{-0.15}(stat)^{+0.02}_{-0.04}(syst)$$
Phys.Rev.Lett. 128 (2022) 19, 191802

More measurements to come:

 $\mathsf{B}^0_s o \phi \ell^+ \ell^-$, $B o \pi \ell^+ \ell^-$, $B o K \pi^+ \pi^- \ell^+ \ell^-$,...

Two other LFU measurements (October 2021) with 9 fb $^{-1}$:

$$B^+ \to K^{*+}\ell^+\ell^- \text{ and } B^0 \to K^0_S \ell^+\ell^-$$

$$R_{K^{*+}} = 0.70^{+0.18}_{-0.13}(stat)^{+0.03}_{-0.04}(syst) \text{ and } R_{K^0_S} = 0.66^{+0.20}_{-0.15}(stat)^{+0.02}_{-0.04}(syst)$$
Phys.Rev.Lett. 128 (2022) 19, 191802

More measurements to come:

$$B^0_s o \phi \ell^+ \ell^-$$
, $B o \pi \ell^+ \ell^-$, $B o K \pi^+ \pi^- \ell^+ \ell^-$,...

First R_K measurement by CMS:

$$R_{K} = 0.78^{+0.46}_{-0.23}(\text{stat})^{+0.09}_{-0.05}(\text{syst})$$

Uncertainty dominated by the low stats of $B \rightarrow Kee$

Differential BR measurement of $B^+ \rightarrow K^+ \mu^+ \mu^-$:

Hadronic effects and theory uncertainties

Effective Hamiltonian for $b \to s\ell\ell$ transitions: $\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$

Short-distance effects: Wilson coefficients $C_i(\mu)$

o Calculated perturbatively up to NNLL o Contain all the contributions from scales > μ Long-distance effects: matrix elements of operators $\langle O_i \rangle$:

o Require non-perturbative methods o Introduce the main theoretical uncertainties

Effective Hamiltonian for $b \to s\ell\ell$ transitions: $\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$

 $\implies B \to K^* \text{ form factors } V, A_{0,1,2}, T_{1,2,3} \text{ or alternatively } \tilde{V}_{\lambda}, \tilde{T}_{\lambda}, \tilde{S} \ (\lambda = \text{helicity of } K^*)$

Helicity amplitudes:

$$H_V(\lambda) \approx -i N' \Big\{ (C_9 - C_9') \tilde{V}_{\lambda}(q^2) + \frac{m_B^2}{q^2} \Big[\frac{2 \, \hat{m}_b}{m_B} (C_7^{\text{eff}} - C_7') \tilde{T}_{\lambda}(q^2) \Big] \\ H_A(\lambda) = -i N' (C_{10} - C_{10}') \tilde{V}_{\lambda}(q^2) \\ H_P = i N' \Big\{ \frac{2 \, m_\ell \hat{m}_b}{q^2} (C_{10} - C_{10}') \Big(1 + \frac{m_s}{m_b} \Big) \tilde{S}(q^2) \Big\}$$

 $H_{\text{eff}}^{\text{had}}$ contributes to $b \to s \overline{\ell} \ell$ through virtual photon exchange \Rightarrow affect only the $H_V(\lambda)$

Helicity amplitudes:

$$H_{V}(\lambda) \approx -i N' \Big\{ (C_{9} - C_{9}') \tilde{V}_{\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \Big[\frac{2 \hat{m}_{b}}{m_{B}} (C_{7}^{\text{eff}} - C_{7}') \tilde{T}_{\lambda}(q^{2}) \Big] \Big]$$
$$H_{A}(\lambda) = -i N' (C_{10} - C_{10}') \tilde{V}_{\lambda}(q^{2})$$
$$H_{P} = i N' \Big\{ \frac{2 m_{\ell} \hat{m}_{b}}{q^{2}} (C_{10} - C_{10}') \Big(1 + \frac{m_{s}}{m_{b}} \Big) \tilde{S}(q^{2}) \Big\}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=1...6} C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu) \Big]$$

$$\langle \overline{K}^* \ell^+ \ell^- \left| \mathcal{H}_{\text{eff}}^{\text{had}} \right| \overline{B} \rangle : \ \mathcal{A}_{\lambda}^{(\text{had})} = -i \frac{e^2}{q^2} \int \!\! d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\text{en,lept}}(x) | 0 \rangle \\ \times \int \!\! d^4 y \, e^{iq \cdot y} \langle \overline{K}_{\lambda}^* | T\{ j^{\text{en,had},\mu}(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \overline{B} \rangle$$

In general "naïve" factorization not applicable

Helicity amplitudes:

$$\begin{split} &H_V(\lambda) \approx -i \, N' \Big\{ (C_9 - C_9') \tilde{V}_{\lambda}(q^2) + \frac{m_B^2}{q^2} \Big[\frac{2 \, \hat{m}_b}{m_B} (C_7^{\text{eff}} - C_7') \tilde{T}_{\lambda}(q^2) \Big] \Big\} \\ &H_A(\lambda) = -i \, N' (C_{10} - C_{10}') \tilde{V}_{\lambda}(q^2) \\ &H_P = i \, N' \Big\{ \frac{2 \, m_\ell \hat{m}_b}{q^2} (C_{10} - C_{10}') \Big(1 + \frac{m_s}{m_b} \Big) \tilde{S}(q^2) \Big\} \end{split}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=1...6} C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu) \Big]$$

 $\langle \overline{K}^* \ell^+ \ell^- \left| \mathcal{H}_{\text{eff}}^{\text{had}} \right| \overline{B} \rangle; \quad \mathcal{A}_{\lambda}^{(\text{had})} = -i \frac{e^2}{a^2} \int d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\text{em,lept}}(x) | 0 \rangle \times \int d^4 y \, e^{iq \cdot y} \langle \overline{K}_{\lambda}^* | T\{ j^{\text{em,had},\mu}(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \overline{B} \rangle$ $\longrightarrow \frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \Big[\underbrace{Y(q^2) \tilde{V}_{\lambda}}_{\text{fact., perturbative}} + \underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\text{non-fact., QCDf}} + \underbrace{h_{\lambda}(q^2)}_{\text{power corrections, unknown}} \Big] \Big]$ Helicity amplitudes: $H_{V}(\lambda) = -i N' \left\{ (C_{9}^{\text{eff}} - C_{9}') \tilde{V}_{\lambda}(q^{2}) + \frac{m_{B}^{2}}{a^{2}} \left[\frac{2 \, \hat{m}_{b}}{m_{P}} (C_{7}^{\text{eff}} - C_{7}') \tilde{T}_{\lambda}(q^{2}) - 16\pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right\}$ $H_A(\lambda) = -i N' (C_{10} - C'_{10}) \tilde{V}_{\lambda}(q^2)$ $H_P = i N' \left\{ \frac{2 m_\ell m_b}{q^2} (C_{10} - C'_{10}) \left(1 + \frac{m_s}{m_t} \right) \tilde{S}(q^2) \right\}$

• At high q^2 : computed on the lattice

In particular for: $B \to K(^*)$ and $B_s \to \phi$

- HPQCD (2013/2023)
- FNAL/MILC (2015)
- Horgan et al. (2015)
- HPQCD (2023)
- At low q²: (mostly) Light-Cone Sum Rule (LCSR)
 - \rightarrow Challenging systematic uncertainties
 - Bharucha, Straub and Zwicky, 1503.05534
 - Khodjamirian/Rusov, 1703.04765
 - Gubernari, Kokulu and van Dyk, 1811.00983
 - Carvunis, FM, Monceaux, 2404.01290

• At high q^2 : computed on the lattice

In particular for: $B \to K(^*)$ and $B_s \to \phi$

- HPQCD (2013/2023)
- FNAL/MILC (2015)
- Horgan et al. (2015)
- HPQCD (2023)
- At low q²: (mostly) Light-Cone Sum Rule (LCSR)
 - \rightarrow Challenging systematic uncertainties
 - Bharucha, Straub and Zwicky, 1503.05534
 - Khodjamirian/Rusov, 1703.04765
 - Gubernari, Kokulu and van Dyk, 1811.00983
 - Carvunis, FM, Monceaux, 2404.01290

Fit to $B
ightarrow K^* \mu \mu$ branching ratios at low q^2

 \rightarrow Large sensitivity to local form factors

 \rightarrow Significant impacts on the fits!

Fit to $B
ightarrow K^* \mu \mu$ branching ratios at low q^2

 \rightarrow Large sensitivity to local form factors

 \rightarrow Significant impacts on the fits!

Many observables \rightarrow Global fits of the *bs* $\ell\ell$ data

Relevant Operators:

 $\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_{9\mu,e}^{(\prime)}, \mathcal{O}_{10\mu,e}^{(\prime)} \text{ and } \mathcal{O}_{(S,P)} \propto (\bar{s}_L b_R)(\bar{\ell}(1,\gamma_5)\ell)$

 NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- $B \to K^{(*)}$ and $B_s \to \phi$ form factors are obtained from the lattice+LCSR combinations, including all the correlations
- Parameterisation of uncertainties from power corrections:

$$egin{aligned} \mathcal{A}_k
ightarrow \mathcal{A}_k \left(1 + egin{aligned} \mathbf{a}_k \exp(i\phi_k) + rac{q^2}{6~ ext{GeV}^2} b_k \exp(i heta_k)
ight) \end{aligned}$$

 $|a_k|$ between 10 to 60%, $b_k \sim 2.5 a_k$ Low recoil: $b_k = 0$

 \Rightarrow Computation of a (theory + exp) correlation matrix

Global fits

Global fits of the observables obtained by minimisation of

$$\chi^2 = \left(\vec{O}^{\text{th}} - \vec{O}^{\text{exp}}\right) \cdot (\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1} \cdot \left(\vec{O}^{\text{th}} - \vec{O}^{\text{exp}}\right)$$
$$(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1} \text{ is the inverse covariance matrix.}$$

173 observables relevant for leptonic and semileptonic decays:

- BR($B \rightarrow X_s \gamma$)
- BR($B \rightarrow X_d \gamma$)
- BR($B \rightarrow K^* \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_{\mathfrak{s}} \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_{\mathfrak{s}} \mu^+ \mu^-)$
- $BR^{low}(B \rightarrow X_s e^+ e^-)$
- $BR^{high}(B \rightarrow X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_s \rightarrow e^+e^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- R_K in the low q^2 bin

- R_{K^*} in 2 low q^2 bins • $BR(B \to K^0 \mu^+ \mu^-)$ • $BR(B \to K^+ \mu^+ \mu^-)$ • $BR(B \to K^* e^+ e^-)$ • $B \to K^{*0} \mu^+ \mu^-$: $BR, F_L, A_{FB}, S_3, S_4, S_5, S_7, S_8, S_9$ in 8 low q^2 and 4 high q^2 bins
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$: BR, F_L , A_{FB} , S_3 , S_4 , S_5 , S_7 , S_8 , S_9 in 5 low q^2 and 2 high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins
- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$: BR, A_{FB}^ℓ , A_{FB}^h , $A_{FB}^{\ell h}$, F_L in the high q^2 bin

Computations performed using **SuperIso** public program

Comparison of one-operator NP fits:

Fit to only LFUV ratios and $B_{s,d} \rightarrow \ell^+ \ell^-$

pre- $R_{K^{(*)}}$ update $(\chi^2_{ m SM}=30.63)$					
	b.f. value	$\chi^2_{\rm min}$	Pull _{SM}		
δC_9^e	0.83 ± 0.21	10.8	4.4 σ		
δC_9^{μ}	-0.80 ± 0.21	11.8	4.3σ		
δC_{10}^e	-0.81 ± 0.19	8.7	4 .7 <i>σ</i>		
δC^{μ}_{10}	0.50 ± 0.14	16.2	3.8 σ		
$\delta C_{\rm LL}^e$	0.43 ± 0.11	9.7	4.6 σ		
$\delta C^{\mu}_{\rm LL}$	-0.33 ± 0.08	12.4	4.3 σ		

post- $m{R}_{m{\kappa}^{(*)}}$ update $(\chi^2_{ m SM}=$ 9.37)					
	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$		
δC_9^e	0.17 ± 0.16	8.2	1.1σ		
δC_9^{μ}	-0.18 ± 0.16	8.1	1.1σ		
δC_{10}^e	-0.15 ± 0.14	8.3	1.1σ		
δC^{μ}_{10}	0.15 ± 0.12	7.7	1.3σ		
$\delta C_{\rm LL}^{\rm e}$	0.08 ± 0.08	8.2	1.1σ		
$\delta C^{\mu}_{ m LL}$	-0.09 ± 0.07	7.7	1.3σ		

 $\delta C^\ell_{\rm LL}$ basis corresponds to $\delta C^\ell_{\bf 9} = -\delta C^\ell_{\bf 10}.$

T. Hurth, FM, S. Neshatpour, PRD 108 (2023) 11, 115037

Comparison of one-operator NP fits:

Fit to all observables

post- $R_{K^{(*)}}$ update		$(\chi^2_{\rm SM} = 271.0)$	
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\operatorname{SM}}$
δC_7	-0.02 ± 0.01	267.2	1.9σ
δC_{Q_1}	-0.04 ± 0.03	270.3	0.8σ
δC_{Q_2}	-0.01 ± 0.01	270.4	0.8σ
δC_9	-0.96 ± 0.13	230.7	6.3σ
δC_{10}	0.15 ± 0.15	270.0	1.0σ

With the assumption of 10% power corrections

T. Hurth, FM, S. Neshatpour, PRD 108 (2023) 11, 115037

Two operator fits to to all observables

With the assumption of 10% power corrections

T. Hurth, FM, S. Neshatpour, PRD 108 (2023) 11, 115037

Impact of different sets of observables:

With the assumption of 10% power corrections

T. Hurth, FM, S. Neshatpour, PRD 108 (2023) 11, 115037

- \bullet Several persisting deviations from the SM predictions in $b \to s \ell \ell$ transitions since 2013
- $\bullet~{\it C_9}$ continues to be the Wilson coeffcient which can include most of the NP effects
- LFUV components are mostly suppressed

New Physics or Not New Physics?

- More work is needed to assess the hadronic uncertainties
- ▶ The measurement of the electron modes will be very important
- Cross-check with other ratios, and also inclusive modes will be very useful

- \bullet Several persisting deviations from the SM predictions in $b \to s \ell \ell$ transitions since 2013
- $\bullet\ C_9$ continues to be the Wilson coeffcient which can include most of the NP effects
- LFUV components are mostly suppressed

New Physics or Not New Physics?

- More work is needed to assess the hadronic uncertainties
- ► The measurement of the electron modes will be very important
- Cross-check with other ratios, and also inclusive modes will be very useful

Backup

Contributions to C_9 can come from Z and photon penguins, and box diagrams

PMSSM:

FM, S. Neshatpour, J. Virto, Eur. Phys. J. C74 (2014) no.6, 2927

PMSSM with non-minimal flavour violation:

