On the proof of chiral symmetry breaking in QCD-like theories

Marcello Romano

Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique

Based on:

- L. Ciambriello, R. Contino, A. Luzio, MR, L-X. Xu 2212.02930
- L. Ciambriello, R. Contino, A. Luzio, MR, L-X. Xu 2404.02967

IRN Terascale @ LNF 16/04/2024

Strongly-coupled gauge theories in a confinement phase

Strongly-coupled gauge theories in a confinement phase

but...

Strongly-coupled gauge theories in a confinement phase

but...

Lack of theoretical control

We consider the question

 $\mathsf{Confinement} \Longrightarrow \mathsf{Dynamical \ symmetry \ breaking}?$

We consider the question

 $Confinement \Longrightarrow Dynamical symmetry breaking?$

Focus on QCD-like theories: $N_c > 2$ colours, N_f massless flavours

►
$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \xrightarrow{?} SU(N_f)_V \times U(1)_B$$

Plan

i) Review of AMC and PMC

ii) ChSB via N_f-independence

iii) ChSB via downlifting

't Hooft anomaly matching

One of the few non-perturbative analytical tools for strongly-coupled theories ['t Hooft 1980]

- Gauge theory with global symmetry group G_F
- Add weak background gauge fields for G_F
- Cancel the 't Hooft anomalies with spectator fermions

't Hooft anomaly matching

One of the few non-perturbative analytical tools for strongly-coupled theories ['t Hooft 1980]

Anomalies must match in the UV and in the IR:

$$\mathcal{A}_{UV}=\mathcal{A}_{IR}$$

The IR anomaly can be saturated by:

The IR anomaly can be saturated by:

The IR anomaly can be saturated by:

- Assume unbroken symmetry
- Match the anomaly for a generic spectrum of fermions

No solution \implies Broken symmetry

Assume that **bound states** are interpolated by **gauge-invariant local operators**

- Transform in tensor representations of G_F
- Equivalent tensors, corresponding to the same irreps, give the same contribution to the anomaly

AMC cannot distinguish equivalent tensors

► Each irreps r has an integer multiplicity l(r) that tells how many times it appears in the spectrum

QCD-like gauge theory

 $G_F = G[N_f] = SU(N_f)_L \times SU(N_f)_R \times U(1)_B$

▶ 't Hooft anomalies $[SU(N_f)_{L/R}]^3$ and $[SU(N_f)_{L/R}]^2U(1)_B$

$$\underbrace{\sum_{r} \ell(r) \mathcal{A}(r)}_{\mathcal{A}_{IR}} = \underbrace{N_{c} \mathcal{A}(r_{q})}_{\mathcal{A}_{UV}}$$

▶ Denoted as AMC[N_f]

IRN Terascale @ LNF 16/04/2024

Another tool introduced by ['t Hooft 1980]:

Naive: Bound states "containing" massive quarks are massive

- What does "containing" mean?
- Decoupling applies only in the limit of large masses [Preskill and Weinberg 1981; Dimopoulos and Preskill 1982]

Give mass to k quarks:

Give mass to k quarks:

 $G[N_f,k] = SU(N_f-k)_L \times SU(N_f-k)_R \times U(1)_B \times \underbrace{U(1)_{H_1} \times ... \times U(1)_{H_k}}_{G_H}$

Persistent mass conditions:

When we give an arbitrary small mass to a subset of quarks, the bound states charged under G_H must be allowed to get a mass i.e. be in vector-like representations

Give mass to k quarks:

$$G[N_f,k] = SU(N_f-k)_L \times SU(N_f-k)_R \times U(1)_B \times \underbrace{U(1)_{H_1} \times \ldots \times U(1)_{H_k}}_{G_H}$$

Persistent mass conditions:

When we give an arbitrary small mass to a subset of quarks, the bound states charged under G_H must be allowed to get a mass i.e. be in vector-like representations

- Can be proved for vector-like gauge theories by developing the approach of [Vafa and Witten 1984]
- For states neutral under G_H we cannot state anything

IRN Terascale @ LNF 16/04/2024

Marcello Romano

One massive quark:

$$G[N_f, 1] = SU(N_f - 1)_L \times SU(N_f - 1)_R \times U(1)_B \times U(1)_H$$

▶ States with $H \neq 0$ are in vector-like representations

$$0 = \ell(\hat{r}_1) = \sum_r \ell(r) K(r \to \hat{r}_1) \ \forall \hat{r}_1 \text{ with } H \neq 0$$

Similar equations for k massive quarks, up to $N_f - 2$

IRN Terascale @ LNF 16/04/2024

Strategies for proving ChSB

No integer solutions to $AMC[N_f] \cup PMC[N_f] \Longrightarrow ChSB$

Strategies for proving ChSB

No integer solutions to $AMC[N_f] \cup PMC[N_f] \Longrightarrow ChSB$

Historical attempts are not general:

- Specialize to only baryonic spectrum [Frishman et al. 1981; Cohen and Frishman 1982; Schwimmer 1982], large N_c [Coleman and Witten 1980]...
- Rely on unproven assumptions, e.g. N_f-independence ['t Hooft 1980; Farrar 1980]

Strategies for proving ChSB

No integer solutions to $AMC[N_f] \cup PMC[N_f] \Longrightarrow ChSB$

Historical attempts are not general:

- Specialize to only baryonic spectrum [Frishman et al. 1981; Cohen and Frishman 1982; Schwimmer 1982], large N_c [Coleman and Witten 1980]...
- Rely on unproven assumptions, e.g. N_f-independence ['t Hooft 1980; Farrar 1980]

Our work:

- Prove under which dynamical assumptions N_f-independence holds
- Purely* algebraic proof of ChSB based on downlifting

Naive: The dynamics behind bound states should not depend on the number of fundamental quarks in the spectrum

If {ℓ} solves AMC[N'_f] ∪ PMC[N'_f], then it is a solution for any N_f > N'_f

$$N_f$$
-independence \implies ChSB (v1):

Rewrite AMC as:

$$\sum_{i=0}^{h} a_i(\{\ell\}) N_f^i = 0$$

- Zeroes for infinite values of N_f imply a_i({ℓ}) = 0
- $a_0(\{\ell\}) = 0$ has no solutions

 N_f -independence \implies ChSB (v2):

AMC[k · p] have no solutions for p prime factor of N_c

IRN Terascale @ LNF 16/04/2024

The statement of N_f -independence is **ill-defined** in general

- Equivalence between tensor operators changes with N_f
- ▶ No well-defined notion of **uplifting** of an irreps from N_f to $N_f + 1$

The statement of N_f -independence is **ill-defined** in general

- Equivalence between tensor operators changes with N_f
- ▶ No well-defined notion of **uplifting** of an irreps from N_f to $N_f + 1$

Restrict the allowed irreps:

A tensor
$$\mathcal{T}_{\{\overline{n}\}}^{\{n\}}$$
 of $G[N_f]$ is said **class-A** if:
 $n + \overline{n} < N_f$

Two different class-A tensors cannot be equivalent

Class-A irreps uniquely identified by the corresponding class-A tensor

IRN Terascale @ LNF 16/04/2024

Marcello Romano

Restricted to class-A irreps uplifting is well defined

 $\blacktriangleright \ \{\ell(r)\} \to \{\ell(U(r))\}$

Prove N_f -independence as an **algebraic property of AMC and PMC**:

Let $\{\ell(r)\}$ be a solution to $AMC[N'_f] \cup PMC[N'_f]$ that is restricted to class **A**. Then for any $N_f \ge N'_f$ the set $\{\ell(U(r))\} = \{\ell(r)\}$ is a solution to $AMC[N_f] \cup PMC[N_f]$

Restricted to class-A irreps uplifting is well defined

 $\blacktriangleright \ \{\ell(r)\} \to \{\ell(U(r))\}$

Prove *N_f*-independence as an **algebraic property of AMC and PMC**:

Let $\{\ell(r)\}$ be a solution to $AMC[N'_f] \cup PMC[N'_f]$ that is restricted to class **A**. Then for any $N_f \ge N'_f$ the set $\{\ell(U(r))\} = \{\ell(r)\}$ is a solution to $AMC[N_f] \cup PMC[N_f]$

Therefore:

Chiral symmetry is spontaneously broken, under the dynamical assumption that the bound states spectrum is restricted to class ${\sf A}$

Let $\{\ell(r)\}$ be a solution to $AMC[N_f] \cup PMC[N_f]$

Downlifted spectrum:

$$\bar{\ell}(r') = \sum_{r} \ell(r) K(r \to r')$$

with r' irreps of $G[N_f - 1]$

Let $\{\ell(r)\}$ be a solution to $AMC[N_f] \cup PMC[N_f]$

Downlifted spectrum:

$$\bar{\ell}(r') = \sum_{r} \ell(r) K(r \to r')$$

with r' irreps of $G[N_f - 1]$

We prove that:

The set $\{\overline{\ell}(r')\}$ is a solution of AMC $[N_f - 1] \cup \mathsf{PMC}[N_f - 1]$

Critical values of N_f

- First noticed by Weinberg for baryons with $N_c = 3$
- Values of N_f for which the [SU(N_f)_L]²U(1)_B AMC has no integer solutions

$$1 = \sum_{r} \ell(r) \underbrace{b(r)}_{\text{Baryon Dimension}} \underbrace{d(r_R)}_{\text{Dimension}} \underbrace{T(r_L)}_{\text{Durkin}}$$

Baryon Dimension Dynkin number index

• LHS is 1, RHS multiple of $p \Longrightarrow$ No integer solutions

Critical values of N_f

- First noticed by Weinberg for baryons with $N_c = 3$
- ► Values of N_f for which the $[SU(N_f)_L]^2 U(1)_B$ AMC has no integer solutions

$$1 = \sum_{r} \ell(r) \underbrace{b(r)}_{\text{Baryon Dimension Dynkin}} \underbrace{d(r_R)}_{\text{Dynkin}} \underbrace{T(r_L)}_{\text{Dynkin}}$$

Baryon Dimension Dynkin number index

• LHS is 1, RHS multiple of $p \Longrightarrow$ No integer solutions

In general, we prove:

 $AMC[k \cdot p]$ have no integer solutions for p prime factor of N_c

Combine:

- Downlifting: No integer solutions for N'_f implies no integer solutions for N_f > N'_f
- Critical values of N_f: No integer solutions for N_f = p_{min} smallest prime divider of N_c

Chiral symmetry is spontaneously broken for any $N_f \ge p_{min}$

Assuming the absence of phase transitions for large quark masses, we can prove ChSB also for $N_f < p_{min}$ via a continuity argument

Conclusions

What did we obtain?

- Critical analysis of AMC and PMC
- Proof of chiral symmetry breaking in QCD-like theories
 - ► *N_f*-independence
 - Downlifting + critical values of N_f

Conclusions

What did we obtain?

- Critical analysis of AMC and PMC
- Proof of chiral symmetry breaking in QCD-like theories
 - ► *N_f*-independence
 - Downlifting + critical values of N_f

Further developments!

- Extension of our results beyond QCD-like theories
- What about chiral gauge theories? [Bolognesi, Konishi, and Luzio 2022]
- ▶ New techniques? Generalized symmetries [Gaiotto et al. 2015]

THANKS FOR YOUR ATTENTION!

References I

- 't Hooft, Gerard (1980). "Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking". In: NATO Sci. Ser. B 59. Ed. by Gerard 't Hooft et al., pp. 135–157. DOI: 10.1007/978-1-4684-7571-5_9.
- Preskill, John and Steven Weinberg (1981). "'DECOUPLING' CONSTRAINTS ON MASSLESS COMPOSITE PARTICLES". In: Phys. Rev. D 24, p. 1059. DOI: 10.1103/PhysRevD.24.1059.
- Dimopoulos, Savas and John Preskill (1982). "Massless Composites With Massive Constituents". In: Nucl. Phys. B 199, pp. 206–222. DOI: 10.1016/0550-3213(82)90345-5.
- Vafa, Cumrun and Edward Witten (1984). "Parity Conservation in QCD". In: *Phys. Rev. Lett.* 53, p. 535. DOI: 10.1103/PhysRevLett.53.535.
- Frishman, Y. et al. (1981). "The Axial Anomaly and the Bound State Spectrum in Confining Theories". In: Nucl. Phys. B 177, pp. 157–171. DOI: 10.1016/0550-3213(81)90268-6.
- Cohen, E. and Y. Frishman (1982). "ANOMALY EQUATIONS AND THE PERSISTENT MASS CONDITION". In: *Phys. Lett. B* 109, pp. 35–39. DOI: 10.1016/0370-2693(82)90457-9.
- Schwimmer, A. (1982). "Anomaly Equations and Superalgebras". In: *Nucl. Phys. B* 198, pp. 269–279. DOI: 10.1016/0550-3213(82)90557-0.

IRN Terascale @ LNF 16/04/2024

Marcello Romano

References II

- Coleman, Sidney R. and Edward Witten (1980). "Chiral Symmetry Breakdown in Large N Chromodynamics". In: *Phys. Rev. Lett.* 45, p. 100. DOI: 10.1103/PhysRevLett.45.100.
- Farrar, Glennys R. (1980). "Anomaly Nonmatching in Composite Models".
 In: Phys. Lett. B 96, pp. 273–275. DOI: 10.1016/0370-2693(80)90765-0.
 - Bolognesi, Stefano, Kenichi Konishi, and Andrea Luzio (2022). "Anomalies and phases of strongly coupled chiral gauge theories: Recent developments". In: *Int. J. Mod. Phys. A* 37.36, p. 2230014. DOI: 10.1142/S0217751X22300149. arXiv: 2110.02104 [hep-th].

Gaiotto, Davide et al. (2015). "Generalized Global Symmetries". In: *JHEP* 02, p. 172. DOI: 10.1007/JHEP02(2015)172. arXiv: 1412.5148 [hep-th].

Critical values of N_f

There are critical values of N_f , at fixed N_c , for which the $[SU(N_f)_{L/R}]^2 U(1)_B$ AMC has no integer solutions

Example

 $N_c = 3$, $N_f = 3 \cdot k$, only b = 1 baryons:

$$\ell_{1} = \ell (\square \otimes 1), \ \ell_{2} = \ell (\square \otimes 1), \ \ell_{3} = \ell (\square \otimes 1), \ \ell_{4} = \ell (\square \otimes \square), \ \ell_{5} = \ell (\square \otimes \square) + \text{ parity conjugates } \ell_{6}, \ \ell_{7}, \ \ell_{8}, \ \ell_{9}, \ \ell_{10}$$

$$1 = \frac{1}{2} (N_{f} + 2)(N_{f} + 3)\ell_{1} + (N_{f}^{2} - 3)\ell_{2} + \frac{1}{2}(N_{f} - 2)(N_{f} - 3)\ell_{3} + N_{f}(N_{f} + 2)\ell_{4} + N_{f}(N_{f} - 2)\ell_{5} + \frac{1}{2}N_{f}(N_{f} + 1)\ell_{6} + \frac{1}{2}N_{f}(N_{f} - 1)\ell_{7}$$

$$(1)$$

► LHS is 1, RHS is a multiple of 3 ⇒ No integer solutions

IRN Terascale @ LNF 16/04/2024

Marcello Romano