On the proof of chiral symmetry breaking in QCD-like theories

Marcello Romano

Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique

Based on:

- L. Ciambriello, R. Contino, A. Luzio, MR, L-X. Xu [2212.02930](arxiv.org/abs/2212.02930)
- L. Ciambriello, R. Contino, A. Luzio, MR, L-X. Xu [2404.02967](arxiv.org/abs/2404.02967)

IRN Terascale @ LNF 16/04/2024

Strongly-coupled gauge theories in a confinement phase

Strongly-coupled gauge theories in a confinement phase

 $but...$

Strongly-coupled gauge theories in a confinement phase

 $but...$

Lack of theoretical control

We consider the question

 $\text{Confinement} \Longrightarrow \text{Dynamic}$ symmetry breaking?

We consider the question

Confinement \implies Dynamical symmetry breaking?

Focus on QCD-like theories: $N_c > 2$ colours, N_f massless flavours

$$
\blacktriangleright \; SU(N_f)_L \times SU(N_f)_R \times U(1)_B \stackrel{?}{\to} SU(N_f)_V \times U(1)_B
$$

▶ Need for a theoretical proof

Plan

i) Review of AMC and PMC

ii) ChSB via N_f -independence

iii) ChSB via downlifting

't Hooft anomaly matching

One of the few non-perturbative analytical tools for strongly-coupled theories ['t Hooft [1980\]](#page-35-0)

- \blacktriangleright Gauge theory with global symmetry group G_F
- ▶ Add weak background gauge fields for G_F
- \blacktriangleright Cancel the 't Hooft anomalies with spectator fermions

't Hooft anomaly matching

One of the few non-perturbative analytical tools for strongly-coupled theories ['t Hooft [1980\]](#page-35-0)

Anomalies must match in the UV and in the IR:

$$
\mathcal{A}_{UV} = \mathcal{A}_{IR}
$$

The IR anomaly can be saturated by:

The IR anomaly can be saturated by:

The IR anomaly can be saturated by:

- ▶ Assume unbroken symmetry
- \blacktriangleright Match the anomaly for a generic spectrum of fermions

No solution \implies Broken symmetry

Assume that bound states are interpolated by gauge-invariant local operators

- \triangleright Transform in tensor representations of G_F
- \blacktriangleright Equivalent tensors, corresponding to the same irreps, give the same contribution to the anomaly

AMC cannot distinguish equivalent tensors

 \blacktriangleright Each irreps r has an integer multiplicity $\ell(r)$ that tells how many times it appears in the spectrum

QCD-like gauge theory

 $G_F = G[N_f] = SU(N_f)_L \times SU(N_f)_R \times U(1)_B$

 \blacktriangleright 't Hooft anomalies $[SU(N_f)_{L/R}]^3$ and $[SU(N_f)_{L/R}]^2U(1)_B$

$$
\sum_{r} \ell(r) \mathcal{A}(r) = N_c \mathcal{A}(r_q)
$$

 \blacktriangleright Denoted as AMC[N_f]

Another tool introduced by ['t Hooft [1980\]](#page-35-0):

Naive: Bound states "containing" massive quarks are massive

- ▶ What does "containing" mean?
- ▶ Decoupling applies only in the limit of large masses [Preskill and Weinberg [1981;](#page-35-1) Dimopoulos and Preskill [1982\]](#page-35-2)

Give mass to k quarks:

Give mass to k quarks:

$$
G[N_f,k] = SU(N_f-k)_L \times SU(N_f-k)_R \times U(1)_B \times \underbrace{U(1)_{H_1} \times ... \times U(1)_{H_k}}_{G_H}
$$

Persistent mass conditions:

When we give an arbitrary small mass to a subset of quarks, the bound states charged under G_H must be allowed to get a mass i.e. be in vector-like representations

Give mass to k quarks:

$$
G[N_f,k] = SU(N_f-k)_L \times SU(N_f-k)_R \times U(1)_B \times \underbrace{U(1)_{H_1} \times ... \times U(1)_{H_k}}_{G_H}
$$

Persistent mass conditions:

When we give an arbitrary small mass to a subset of quarks, the bound states charged under G_H must be allowed to get a mass i.e. be in vector-like representations

- ▶ Can be proved for vector-like gauge theories by developing the approach of [Vafa and Witten [1984\]](#page-35-3)
- \triangleright For states neutral under G_H we cannot state anything

IRN Terascale @ LNF 16/04/2024 Marcello Romano

One massive quark:

$$
G[N_f,1] = SU(N_f-1)_L \times SU(N_f-1)_R \times U(1)_B \times U(1)_H
$$

▶ States with $H \neq 0$ are in vector-like representations

$$
0 = \ell(\hat{r}_1) = \sum_{r} \ell(r)K(r \to \hat{r}_1) \ \forall \hat{r}_1 \text{ with } H \neq 0
$$

Similar equations for k massive quarks, up to $N_f - 2$

$$
\blacktriangleright
$$
 Overall denoted as $PMC[N_f]$

Strategies for proving ChSB

No integer solutions to $\mathsf{AMC}[N_f] \cup \mathsf{PMC}[N_f] \Longrightarrow \mathsf{ChSB}$

Strategies for proving ChSB

No integer solutions to $\mathsf{AMC}[N_f] \cup \mathsf{PMC}[N_f] \Longrightarrow \mathsf{ChSB}$

Historical attempts are not general:

- ▶ Specialize to only baryonic spectrum [Frishman et al. [1981;](#page-35-4) Cohen and Frishman [1982;](#page-35-5) Schwimmer [1982\]](#page-35-6), large N_c [Coleman and Witten [1980\]](#page-36-0)...
- \triangleright Rely on unproven assumptions, e.g. N_f -independence ['t Hooft] [1980;](#page-35-0) Farrar [1980\]](#page-36-1)

Strategies for proving ChSB

No integer solutions to $\mathsf{AMC}[N_f] \cup \mathsf{PMC}[N_f] \Longrightarrow \mathsf{ChSB}$

Historical attempts are not general:

- ▶ Specialize to only baryonic spectrum [Frishman et al. [1981;](#page-35-4) Cohen and Frishman [1982;](#page-35-5) Schwimmer [1982\]](#page-35-6), large N_c [Coleman and Witten [1980\]](#page-36-0)...
- \triangleright Rely on unproven assumptions, e.g. N_f -independence ['t Hooft] [1980;](#page-35-0) Farrar [1980\]](#page-36-1)

Our work:

- \triangleright Prove under which dynamical assumptions N_f -independence holds
- ▶ Purely^{*} algebraic proof of ChSB based on downlifting

Naive: The dynamics behind bound states should not depend on the number of fundamental quarks in the spectrum

▶ If $\{\ell\}$ solves $AMC[N_f'] \cup PMC[N_f']$, then it is a solution for any $N_f > N'_f$

$$
N_f\text{-independence}\Longrightarrow \text{ChSB (v1):}
$$

Rewrite AMC as:

$$
\sum_{i=0}^h a_i(\{\ell\})N_f^i=0
$$

- \triangleright Zeroes for infinite values of N_f imply $a_i({\{\ell\}}) = 0$
- ▶ $a_0({\ell}) = 0$ has no solutions

 N_f -independence \implies ChSB (v2):

 \blacktriangleright AMC[$k \cdot p$] have no solutions for p prime factor of N_c

The statement of N_f -independence is **ill-defined** in general

- \blacktriangleright Equivalence between tensor operators changes with N_f
- \blacktriangleright No well-defined notion of uplifting of an irreps from N_f to $N_f + 1$

The statement of N_f -independence is **ill-defined** in general

- \blacktriangleright Equivalence between tensor operators changes with N_f
- \blacktriangleright No well-defined notion of uplifting of an irreps from N_f to $N_f + 1$

Restrict the allowed irreps:

A tensor
$$
T_{\{\bar{n}\}}^{\{n\}}
$$
 of $G[N_f]$ is said class-A if:

$$
n + \overline{n} < N_f
$$

Two different class-A tensors cannot be equivalent

▶ Class-A irreps uniquely identified by the corresponding class-A tensor

Restricted to class-A irreps uplifting is well defined

 $\blacktriangleright \{\ell(r)\}\rightarrow \{\ell(U(r))\}\$

Prove N_f -independence as an algebraic property of AMC and PMC:

Let $\{\ell(r)\}\,$ be a solution to $\mathsf{AMC}[N_f'] \,\cup\, \mathsf{PMC}[N_f']$ that is **restricted to class A**. Then for any $N_f \ge N_f'$ the set $\{ \ell(U(r)) \} = \{ \ell(r) \}$ is a solution to $\mathsf{AMC}[N_f] \cup \mathsf{PMC}[N_f]$

Restricted to class-A irreps uplifting is well defined

 $\blacktriangleright \{\ell(r)\}\rightarrow \{\ell(U(r))\}\$

Prove N_f -independence as an algebraic property of AMC and PMC:

Let $\{\ell(r)\}\,$ be a solution to $\mathsf{AMC}[N_f'] \,\cup\, \mathsf{PMC}[N_f']$ that is **restricted to class A**. Then for any $N_f \ge N_f'$ the set $\{ \ell(U(r)) \} = \{ \ell(r) \}$ is a solution to $\mathsf{AMC}[N_f] \cup \mathsf{PMC}[N_f]$

Therefore:

Chiral symmetry is spontaneously broken, under the dynamical assumption that the bound states spectrum is restricted to class A

Let $\{\ell(r)\}\,$ be a solution to $AMC[N_f]\cup PMC[N_f]$

Downlifted spectrum:

$$
\bar{\ell}(r') = \sum_{r} \ell(r)K(r \to r')
$$

with r' irreps of $G[N_f-1]$

Let $\{\ell(r)\}\,$ be a solution to $AMC[N_f]\cup PMC[N_f]$

Downlifted spectrum:

$$
\bar{\ell}(r') = \sum_{r} \ell(r)K(r \to r')
$$

with r' irreps of $G[N_f-1]$

We prove that:

The set $\{\bar{\ell}(r')\}$ is a solution of $\mathsf{AMC}[N_f-1] \cup \mathsf{PMC}[N_f-1]$

- \triangleright First noticed by Weinberg for baryons with $N_c = 3$
- \blacktriangleright Values of N_f for which the $[SU(N_f)_L]^2U(1)_B$ AMC has no integer solutions

$$
1 = \sum_{r} \ell(r) \underbrace{b(r)}_{\text{Baryon Dimension}} \underbrace{d(r_R)}_{\text{Dimension Dynkin}} \frac{T(r_L)}{T(r_L)}
$$

▶ LHS is 1, RHS multiple of $p \implies$ No integer solutions

index

In general, we prove:

AMC[$k \cdot p$] have no integer solutions for p prime factor of N_c

Combine:

- ▶ Downlifting: No integer solutions for N_f implies no integer solutions for $N_f > N_f'$
- **Critical values of** N_f : No integer solutions for $N_f = p_{min}$ smallest prime divider of N_c

Chiral symmetry is spontaneously broken for any $N_f \ge p_{min}$

Assuming the absence of phase transitions for large quark masses, we can prove ChSB also for $N_f < p_{min}$ via a continuity argument

Conclusions

What did we obtain?

- ▶ Critical analysis of AMC and PMC
- ▶ Proof of chiral symmetry breaking in QCD-like theories
	- \blacktriangleright N_f-independence
	- ▶ Downlifting + critical values of N_f

Conclusions

What did we obtain?

- ▶ Critical analysis of AMC and PMC
- ▶ Proof of chiral symmetry breaking in QCD-like theories
	- \blacktriangleright N_f-independence
	- ▶ Downlifting + critical values of N_f

Further developments!

- ▶ Extension of our results beyond QCD-like theories
- ▶ What about chiral gauge theories? [Bolognesi, Konishi, and Luzio] [2022\]](#page-36-2)
- ▶ New techniques? Generalized symmetries [Gaiotto et al. [2015\]](#page-36-3)

THANKS FOR YOUR ATTENTION!

References I

- 量 't Hooft, Gerard (1980). "Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking". In: NATO Sci. Ser. B 59. Ed. by Gerard 't Hooft et al., pp. 135–157. DOI: [10.1007/978-1-4684-7571-5_9](https://doi.org/10.1007/978-1-4684-7571-5_9).
- 量 Preskill, John and Steven Weinberg (1981). "'DECOUPLING' CONSTRAINTS ON MASSLESS COMPOSITE PARTICLES". In: Phys. Rev. D 24, p. 1059. DOI: [10.1103/PhysRevD.24.1059](https://doi.org/10.1103/PhysRevD.24.1059).
- F Dimopoulos, Savas and John Preskill (1982). "Massless Composites With Massive Constituents". In: Nucl. Phys. B 199, pp. 206–222. DOI: [10.1016/0550-3213\(82\)90345-5](https://doi.org/10.1016/0550-3213(82)90345-5).
- Ħ Vafa, Cumrun and Edward Witten (1984). "Parity Conservation in QCD". In: Phys. Rev. Lett. 53, p. 535. DOI: [10.1103/PhysRevLett.53.535](https://doi.org/10.1103/PhysRevLett.53.535).
- 歸 Frishman, Y. et al. (1981). "The Axial Anomaly and the Bound State Spectrum in Confining Theories". In: Nucl. Phys. B 177, pp. 157–171. DOI: [10.1016/0550-3213\(81\)90268-6](https://doi.org/10.1016/0550-3213(81)90268-6).
- F Cohen, E. and Y. Frishman (1982). "ANOMALY EQUATIONS AND THE PERSISTENT MASS CONDITION". In: Phys. Lett. B 109, pp. 35-39. DOI: [10.1016/0370-2693\(82\)90457-9](https://doi.org/10.1016/0370-2693(82)90457-9).
- F Schwimmer, A. (1982). "Anomaly Equations and Superalgebras". In: Nucl. Phys. B 198, pp. 269–279. DOI: [10.1016/0550-3213\(82\)90557-0](https://doi.org/10.1016/0550-3213(82)90557-0).

References II

- Coleman, Sidney R. and Edward Witten (1980). "Chiral Symmetry Breakdown in Large N Chromodynamics". In: Phys. Rev. Lett. 45, p. 100. DOI: [10.1103/PhysRevLett.45.100](https://doi.org/10.1103/PhysRevLett.45.100).
- 歸 Farrar, Glennys R. (1980). "Anomaly Nonmatching in Composite Models". In: Phys. Lett. B 96, pp. 273–275. DOI: [10.1016/0370-2693\(80\)90765-0](https://doi.org/10.1016/0370-2693(80)90765-0).
	- Bolognesi, Stefano, Kenichi Konishi, and Andrea Luzio (2022). "Anomalies and phases of strongly coupled chiral gauge theories: Recent developments". In: Int. J. Mod. Phys. A 37.36, p. 2230014. DOI: [10.1142/S0217751X22300149](https://doi.org/10.1142/S0217751X22300149). arXiv: [2110.02104 \[hep-th\]](https://arxiv.org/abs/2110.02104).
-

Gaiotto, Davide et al. (2015). "Generalized Global Symmetries". In: JHEP 02, p. 172. DOI: [10.1007/JHEP02\(2015\)172](https://doi.org/10.1007/JHEP02(2015)172). arXiv: [1412.5148 \[hep-th\]](https://arxiv.org/abs/1412.5148).

Critical values of N_f

There are critical values of N_f , at fixed N_c , for which the $[SU(N_f)_{L/R}]^2 U(1)_B$ AMC has no integer solutions

Example

 $N_c = 3$, $N_f = 3 \cdot k$, only $b = 1$ baryons:

$$
\mathbf{P} \ \ell_1 = \ell \, (\square \square \otimes 1), \ \ell_2 = \ell \, (\square \otimes 1), \ \ell_3 = \ell \, (\square \otimes 1),
$$
\n
$$
\ell_4 = \ell \, (\square \otimes \square), \ \ell_5 = \ell \, (\square \otimes \square) + \text{parity conjugates } \ \ell_6, \ \ell_7, \ \ell_8, \ \ell_9, \ \ell_{10}
$$
\n
$$
1 = \frac{1}{2} (N_f + 2)(N_f + 3)\ell_1 + (N_f^2 - 3)\ell_2 + \frac{1}{2} (N_f - 2)(N_f - 3)\ell_3 +
$$
\n
$$
+ N_f (N_f + 2)\ell_4 + N_f (N_f - 2)\ell_5 + \frac{1}{2} N_f (N_f + 1)\ell_6 + \frac{1}{2} N_f (N_f - 1)\ell_7 \tag{1}
$$

▶ LHS is 1, RHS is a multiple of $3 \implies$ No integer solutions