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Motivations

Strongly-coupled gauge theories in a confinement phase

Phenomenologically
relevant

▶ QCD

▶ Dark matter

▶ Composite Higgs

▶ ...

but...

Lack of theoretical
control
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Motivations

We consider the question

Confinement =⇒ Dynamical symmetry breaking?

Focus on QCD-like theories: Nc > 2 colours, Nf massless flavours

▶ SU(Nf )L × SU(Nf )R × U(1)B
?−→ SU(Nf )V × U(1)B

▶ Need for a theoretical proof
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Plan

i) Review of AMC and PMC

ii) ChSB via Nf -independence

iii) ChSB via downlifting
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’t Hooft anomaly matching

One of the few non-perturbative analytical tools for
strongly-coupled theories [’t Hooft 1980]

▶ Gauge theory with global
symmetry group GF

▶ Add weak background gauge
fields for GF

▶ Cancel the ’t Hooft anomalies
with spectator fermions
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GAUGING
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GAUGING

Anomalies must match in the UV and in the IR:

AUV = AIR
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Anomaly matching conditions
The IR anomaly can be saturated by:

Massless fermions =⇒ Unbroken symmetry
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Anomaly matching conditions
The IR anomaly can be saturated by:

Massless fermions =⇒ Unbroken symmetry

Massless NGB =⇒ Broken symmetry

Anomaly matching conditions (AMC)

▶ Assume unbroken symmetry

▶ Match the anomaly for a generic spectrum of fermions

No solution =⇒ Broken symmetry
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Anomaly matching conditions

Assume that bound states are interpolated by gauge-invariant
local operators

▶ Transform in tensor representations of GF

▶ Equivalent tensors, corresponding to the same irreps, give
the same contribution to the anomaly

AMC cannot distinguish equivalent tensors

▶ Each irreps r has an integer multiplicity ℓ(r) that tells how
many times it appears in the spectrum
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Anomaly matching conditions

QCD-like gauge theory

GF = G [Nf ] = SU(Nf )L × SU(Nf )R × U(1)B

▶ ’t Hooft anomalies [SU(Nf )L/R ]
3 and

[SU(Nf )L/R ]
2U(1)B

∑
r

ℓ(r)A(r)︸ ︷︷ ︸
AIR

= NcA(rq)︸ ︷︷ ︸
AUV

▶ Denoted as AMC[Nf ]
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Persistent mass conditions

Another tool introduced by [’t Hooft 1980]:

Naive: Bound states "containing" massive quarks are massive

▶ What does "containing" mean?
▶ Decoupling applies only in the limit of large masses [Preskill and

Weinberg 1981; Dimopoulos and Preskill 1982]

mq

mBS

(a)

m* mq

mBS

(b)

m* mq

mBS

(c)
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Persistent mass conditions

Give mass to k quarks:

G [Nf , k] = SU(Nf −k)L×SU(Nf −k)R×U(1)B×U(1)H1 × ...× U(1)Hk︸ ︷︷ ︸
GH

Persistent mass conditions:

When we give an arbitrary small mass to a subset of quarks,
the bound states charged under GH must be allowed to get a
mass i.e. be in vector-like representations

▶ Can be proved for vector-like gauge theories by developing the
approach of [Vafa and Witten 1984]

▶ For states neutral under GH we cannot state anything
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Persistent mass conditions

One massive quark:

G [Nf , 1] = SU(Nf −1)L×SU(Nf −1)R×U(1)B×U(1)H

▶ States with H ̸= 0 are in vector-like representations

0 = ℓ(r̂1) =
∑
r

ℓ(r)K (r → r̂1) ∀r̂1 with H ̸= 0

Similar equations for k massive quarks, up to Nf − 2
▶ Overall denoted as PMC[Nf ]
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Strategies for proving ChSB

No integer solutions to AMC[Nf ]∪PMC[Nf ] =⇒ ChSB
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Strategies for proving ChSB

No integer solutions to AMC[Nf ]∪PMC[Nf ] =⇒ ChSB

Historical attempts are not general:
▶ Specialize to only baryonic spectrum [Frishman et al. 1981; Cohen

and Frishman 1982; Schwimmer 1982], large Nc [Coleman and Witten
1980]...

▶ Rely on unproven assumptions, e.g. Nf -independence [’t Hooft
1980; Farrar 1980]
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Strategies for proving ChSB

No integer solutions to AMC[Nf ]∪PMC[Nf ] =⇒ ChSB

Historical attempts are not general:
▶ Specialize to only baryonic spectrum [Frishman et al. 1981; Cohen

and Frishman 1982; Schwimmer 1982], large Nc [Coleman and Witten
1980]...

▶ Rely on unproven assumptions, e.g. Nf -independence [’t Hooft
1980; Farrar 1980]

Our work:
▶ Prove under which dynamical assumptions Nf -independence

holds
▶ Purely∗ algebraic proof of ChSB based on downlifting
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ChSB from Nf -independence

Naive: The dynamics behind bound states should not depend
on the number of fundamental quarks in the spectrum

▶ If {ℓ} solves AMC[N ′
f ] ∪ PMC[N ′

f ], then it is a solution for any
Nf > N ′

f

Nf -independence =⇒ ChSB (v1):
▶ Rewrite AMC as:

h∑
i=0

ai ({ℓ})N i
f = 0

▶ Zeroes for infinite values of Nf

imply ai ({ℓ}) = 0
▶ a0({ℓ}) = 0 has no solutions

Nf -independence =⇒ ChSB (v2):
▶ AMC[k · p] have no solutions for p

prime factor of Nc
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ChSB from Nf -independence

The statement of Nf -independence is ill-defined in general
▶ Equivalence between tensor operators changes with Nf

▶ No well-defined notion of uplifting of an irreps from Nf to
Nf + 1

Restrict the allowed irreps:

A tensor T {n}
{n̄} of G [Nf ] is said class-A if:

n + n < Nf

Two different class-A tensors cannot be equivalent

▶ Class-A irreps uniquely identified by the corresponding class-A
tensor

IRN Terascale @ LNF 16/04/2024 Marcello Romano 13



ChSB from Nf -independence

The statement of Nf -independence is ill-defined in general
▶ Equivalence between tensor operators changes with Nf

▶ No well-defined notion of uplifting of an irreps from Nf to
Nf + 1

Restrict the allowed irreps:

A tensor T {n}
{n̄} of G [Nf ] is said class-A if:

n + n < Nf

Two different class-A tensors cannot be equivalent

▶ Class-A irreps uniquely identified by the corresponding class-A
tensor

IRN Terascale @ LNF 16/04/2024 Marcello Romano 13



ChSB from Nf -independence

Restricted to class-A irreps uplifting is well defined
▶ {ℓ(r)} → {ℓ(U(r))}

Prove Nf -independence as an algebraic property of AMC and
PMC:

Let {ℓ(r)} be a solution to AMC[N ′
f ] ∪ PMC[N ′

f ] that is
restricted to class A. Then for any Nf ≥ N ′

f the set
{ℓ(U(r))} = {ℓ(r)} is a solution to AMC[Nf ] ∪ PMC[Nf ]

Therefore:

Chiral symmetry is spontaneously broken, under the dy-
namical assumption that the bound states spectrum is re-
stricted to class A
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ChSB from downlifting

Let {ℓ(r)} be a solution to AMC[Nf ] ∪ PMC[Nf ]

Downlifted spectrum:

ℓ̄(r ′) =
∑
r

ℓ(r)K (r → r ′)

with r ′ irreps of G [Nf − 1]

We prove that:

The set {ℓ̄(r ′)} is a solution of AMC[Nf − 1]∪ PMC[Nf − 1]
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ChSB from downlifting

Critical values of Nf

▶ First noticed by Weinberg for baryons with Nc = 3
▶ Values of Nf for which the [SU(Nf )L]

2U(1)B AMC has
no integer solutions

1 =
∑
r

ℓ(r) b(r)︸︷︷︸
Baryon
number

d(rR)︸ ︷︷ ︸
Dimension

T (rL)︸ ︷︷ ︸
Dynkin
index

▶ LHS is 1, RHS multiple of p =⇒ No integer solutions

In general, we prove:

AMC[k · p] have no integer solutions for p prime factor of Nc
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ChSB from downlifting

Combine:
▶ Downlifting: No integer solutions for N ′

f implies no integer
solutions for Nf > N ′

f

▶ Critical values of Nf : No integer solutions for Nf = pmin

smallest prime divider of Nc

Chiral symmetry is spontaneously broken for any Nf ≥ pmin

Assuming the absence of phase transitions for large quark
masses, we can prove ChSB also for Nf < pmin via a continuity
argument
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Conclusions

What did we obtain?
▶ Critical analysis of AMC and PMC
▶ Proof of chiral symmetry breaking in QCD-like theories

▶ Nf -independence
▶ Downlifting + critical values of Nf

Further developments!
▶ Extension of our results beyond QCD-like theories
▶ What about chiral gauge theories? [Bolognesi, Konishi, and Luzio

2022]

▶ New techniques? Generalized symmetries [Gaiotto et al. 2015]
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THANKS FOR YOUR ATTENTION!
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Critical values of Nf

There are critical values of Nf , at fixed Nc , for which the
[SU(Nf )L/R ]

2U(1)B AMC has no integer solutions

Example
Nc = 3, Nf = 3 · k, only b = 1 baryons:

▶ ℓ1 = ℓ ( ⊗ 1), ℓ2 = ℓ
(

⊗ 1
)
, ℓ3 = ℓ

(
⊗ 1

)
,

ℓ4 = ℓ ( ⊗ ), ℓ5 = ℓ
(

⊗
)

+ parity conjugates ℓ6, ℓ7, ℓ8, ℓ9, ℓ10

1 =
1
2
(Nf + 2)(Nf + 3)ℓ1 + (N2

f − 3)ℓ2 +
1
2
(Nf − 2)(Nf − 3)ℓ3+

+ Nf (Nf + 2)ℓ4 + Nf (Nf − 2)ℓ5 +
1
2
Nf (Nf + 1)ℓ6 +

1
2
Nf (Nf − 1)ℓ7

(1)

▶ LHS is 1, RHS is a multiple of 3 =⇒ No integer solutions
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