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Main topic of the talk and motivations

If symmetries are broken and masses are generated radiatively one always has
first-order phase transitions (PTs) with corresponding

▸ observable gravitational waves (GWs)

▸ primordial black holes (PBHs)

also, if observed, they would signal new physics.

This radiative symmetry breaking (RSB) can be a feature of a Standard Model (SM)
extension or of a dark sector (weakly coupled to the SM)

We discuss a model-independent approach that is

▸ valid for large-enough supercooling

▸ can be implemented perturbatively

to quantitatively describe phase transitions phenomena in terms of few parameters,
which are computable once the model is specified

A further advantage: models with RSB are more predictive!
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Radiative symmetry breaking (RSB) mechanism
[Coleman-Weinberg (1973)], [Gildener, S. Weinberg (1976)]
To illustrate this general result we consider the general matter Lagrangian density

L ns
matter = −

1

4
FAµνF

Aµν + DµφaD
µφa

2
+ ψ̄ji /Dψj −

1

2
(Y aijψiψjφa + h.c.) − Vns(φ),

with

Vns(φ) =
λabcd

4!
φaφbφcφd

In the RSB mechanism masses emerge radiatively: there is an energy µ̃ at which Vns

develops a flat direction, φa = νaχ, with νaνa = 1, and χ a single scalar field
Ô⇒ RG-improved potential V along νa reads

V (χ) = λχ(µ)
4

χ4, (λχ(µ) ≡
1

3!
λabcd(µ)νaνbνcνd, λχ(µ̃) = 0)

Including the one-loop correction the quantum effective potential can always be
written

Vq(χ) =
β̄

4
(log

χ

χ0
− 1

4
)χ4,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λχ(µ̃) = 0 (flat direction),

β̄ ≡ [µ dλχ
dµ

]
µ=µ̃

> 0 (minimum condition),

The fluctuations of χ around χ0 have mass mχ =
√
β̄ χ0

χ0 ≠ 0 can break global and/or local symmetries and generate the particle masses.
E.g. a term in L of the form Lχh = λχh(µ̃)χ2∣H ∣2/2 can contribute to electroweak
(EW) symmetry breaking

http://inspirehep.net/record/81406
https://inspirehep.net/literature/3207
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Thermal effective potential and PT

Veff(χ,T ) = Vq(χ) +
T 4

2π2

⎛
⎝∑b

nbJB(m2
b(χ)/T 2) − 2∑

f

JF (m2
f (χ)/T 2)

⎞
⎠
+Λ0

The thermal functions JB and JF are

JB(x) ≡ ∫
∞

0
dpp2 log (1 − e−

√
p2+x) = −π

4

45
+ π

2

12
x − π

6
x3/2 − x

2

32
log( x

aB
) +O(x3),

JF (x) ≡ ∫
∞

0
dpp2 log (1 + e−

√
p2+x) = 7π4

360
− π

2

24
x − x

2

32
log( x

aF
) +O(x3),

The PT associated with a RSB always turns out to be of first order! [Salvio (2023)]

T > Tc

T = Tc

0 < T < Tc

T= 0

χ

E
ff
ec
ti
ve
po
te
nt
ia
l
V
ef
f

The decay rate per unit of
spacetime volume, Γ, of the
false vacuum into the true
vacuum can be computed with
the formalism of [Coleman
(1977); Callan, Coleman
(1980); Linde (1981); Linde
(1983)]

https://inspirehep.net/literature/2635102
https://inspirehep.net/literature/118681
https://inspirehep.net/literature/118681
https://inspirehep.net/literature/120130
https://inspirehep.net/literature/120130
https://inspirehep.net/literature/154779
https://inspirehep.net/literature/169593
https://inspirehep.net/literature/169593
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Supercooling and model-independent approach

As long as perturbation theory holds, for all RSB theories, when T < Tc the scalar field
χ is trapped in the false vacuum ⟨χ⟩ = 0 until T is much below Tc, in other words the
universe features a phase of supercooling [Witten (1981); Salvio (2023)]

Explanation: If the theory is scale invariant Γ must scale as T 4 and, therefore, the
smaller T , the smaller Γ. At quantum level scale invariance is broken by perturbative
loop corrections, which introduce another dependence of T in the bounce action. This
dependence, however, is logarithmic and can become large only when T is very small
compared to the other scale of the problem, χ0.

Perturbativity: The one-loop effective potential is real and when T ≪ χ0 the vacuum
mass is much larger than the thermal mass so the problem discussed in [Linde (1980)]
is absent in this case.

If enough supercooling occured a model-independent approach is possible!
[Salvio (2023) I; Salvio (2023) II]

The amount of supercooling needed is quantified by

ε ≡ g4

6β̄ log χ0
T

,

with
g2 ≡∑

b

nbm
2
b(χ)/χ2 +∑

f

m2
f (χ)/χ2

https://inspirehep.net/literature/153599
https://inspirehep.net/literature/2635102
https://inspirehep.net/literature/154778
https://inspirehep.net/literature/2635102
https://inspirehep.net/literature/2675713
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Small ε case [Salvio (2023) I]
V̄eff(χ,T ) ≡ Veff(χ,T ) − Veff(0, T ) ≈ m

2(T )
2

χ2 − λ(T )
4

χ4

m2(T ) ≡ g
2T 2

12
, λ(T ) ≡ β̄ log

χ0

T

Γ ≈ T 4 ( S3

2πT
)

3/2

exp(−S3/T ), with S3 = −8π∫
∞

0
dr r2V̄eff(χ,T )

where χ is the time-independent bounce configuration:

χ′′ + 2

r
χ′ = dV̄eff

dχ
, χ′(0) = 0, lim

r→∞
χ(r) = 0

one finds S3 ≈ c3mλ with c3 = 18.9... and for λ = 1→

χ/m

-r2 V eff /m
2

0 1 2 3 4 5

0

1

2

3

4

r m

The time-independent bounce

The nucleation temperature defined as the solution of Γ = HI is

Tn ≈ χ0 exp
⎛
⎝

√
c2 − 16a − c

8

⎞
⎠
, with a ≡ c3g√

12β̄
, c ≡ 4 log

4
√

3M̄Pl√
β̄ χ0

One always has a very strong PT and a small inverse duration β:
β

Hn
≈ a

log2(χ0/Tn)
−4

Corrections are easily computable in a small-ε expansion

https://inspirehep.net/literature/2635102
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ε ∼ 1. General case [Salvio (2023) II]

V̄eff(χ,T ) ≈ m
2(T )
2

χ2 − k(T )
3

χ3 − λ(T )
4

χ4, with k(T ) ≡ g̃
3T

4π

and
g̃3 ≡∑

b

nbm
3
b(χ)/χ3

The relation between Γ and S3

we have seen still holds, but

S3 = −
8πm3

k2 ∫
∞

0
dρρ2 (1

2
ϕ2 − 1

3
ϕ3 − λ̃

4
ϕ4)

where

ϕ ≡ kχ

m2
and λ̃ ≡ λm

2

k2
> 0

https://inspirehep.net/literature/2675713
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ε ∼ 1. General case: nucleation temperature Tn

Tn can be numerically computed once and for all as the solution λ̃n of

a1 − a2λ̃ = F (λ̃) ≡ 1 + exp(−1/
√
λ̃)

2/9 + λ̃
, where a1 ≡

c c3k
2

3πa β̄ m2
, a2 ≡

4c3k
4

3πa β̄2m4

0.2

0.4

0.6

0.8

1.0

1.2

The inset in the right plot gives the maximal value of a2 for a given a1 such that λ̃n exists



ε ∼ 1. General case: inverse duration β.

Imposing g̃ = g and ε < 3

β

Hn
≈ π3g5

6
√

3g̃8

(4π)2β̄

g̃4
(−F ′(λ̃n)) − 4
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Gravitational waves

h2ΩGW(f) ≈ 1.29×10−6 (Hr
β

)
2

( 100

g∗(Tr)
)

1/3 3.8(f/fpeak)2.8

1 + 2.8(f/fpeak)3.8

fpeak ≈ 3.79
β

Hr
(g∗(Tr)

100
)

1/6
Tr

108GeV
Hz



Gravitational waves: peak frequency

The peak frequency as a function of g and β̄ in the case of fast reheating and fixing

g∗(Tr) = 110. Also, g̃ = g and ε < 3 has been imposed.



Gravitational waves: comparison with experiments
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Regions corresponding to the GW background detected by pulsar timing arrays. In both plots

χ0 = 10 GeV, g∗(Tr) = 110 and fast reheating is assumed. Here ε < 3 has been imposed.

g = g (dashed boundary curve, shaded region)
g = 0.9g (dot-dashed boundary curve)

0.65 0.70 0.75 0.80 0.85 0.90
1.4

1.6

1.8

2.0

2.2

2.4

g

β
(4
π
)2
/g
4

g = g (solid boundary curve, shaded region)
g = 0.9g (dot-dashed boundary curve)
0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.5

1.0

1.5

2.0

2.5

g

β
(4
π
)2
/g
4
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χ0 = 2 × 109 GeV) and LISA (right plot, where χ0 = 104 GeV). In both plots g∗(Tr) = 110 and

fast reheating is assumed. Here ε < 3 has been imposed.



Primordial black holes

Late-blooming mechanism: Since the bubble formation process is statistical for both
quantum and thermal reasons, distinct causal patches percolate at different times.
Patches that percolate the latest undergo the longest vacuum-dominated stage and,
therefore, develop large over-densities triggering their collapse into PBHs (see
e.g. [Gouttenoire, Volansky (2023)])
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Density plots giving the values of β/Hn varying g and β̄. On the lower dashed line the whole dark

matter is due to PBHs generated through the late-blooming mechanism (fPBH = 1); the upper

dashed line corresponds instead to fPBH = 10−10. Here g̃ = g and ε < 3 has been imposed.

https://inspirehep.net/literature/2658149
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Conclusions

▸ SM extensions or dark sectors with RSB (where symmetries are broken and
masses are then generated radiatively) feature strong and long first-order PTs

▸ high predictivity

▸ All theories with RSB lead to

▸ observable GWs

▸ PBHs that can account for a fraction or the entire dark matter
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Thank you very much for your attention!
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