Dark Matter Direct Detection in channel mediator models

David Cabo-Almeida

In collaboration with: Giorgio Arcadi, Federico Mescia, Javier Virto

Università degli Studi di Messina

JCAP 02 (2024) 005

UNIVERSITATDE BARCELONA

T-channel mediator Dark Matter

Fermionic DM

David Cabo-Almeida

Mode

 $\mathscr{L}_{\text{scalar}} = \Gamma_{I}^{f_{i}} \bar{f}_{i} P_{R} \Psi_{f_{i}} \Phi$ $+\lambda_{1H\Phi}\left(\Phi_{DM}^{\dagger}\Phi_{DM}\right)\left(H\right)$

 $\mathscr{L}_{\text{fermion}} = \Gamma_{I}^{f_{i}} \bar{f}_{i} P_{I}$ $+\lambda_{1H\Phi}\left(\Phi_{f_i}^{\dagger}\Phi_{f_i}\right)\left(H\right)$

David Cabo-Almeida

$$(\Phi_{DM} + \Gamma_R^{f_i} \bar{f_i} P_L \Psi_{f_i} \Phi_{DM} + \text{h.c.})$$

 $(H^{\dagger} H) + \lambda_2 H \Phi \left(\Phi_{DM}^{\dagger} T_{\Phi}^a \Phi_{DM} \right) \left(H^{\dagger} \frac{\sigma^a}{2} H \right)$

$$P_R \Phi_{f_i} \Psi_{\rm DM} + \Gamma_R^{f_i} \bar{f}_i P_L \Phi_{f_i} \Psi_{DM} + \text{h.c.}$$

$$H^{\dagger} H + \lambda_{2H\Phi} \left(\Phi_{f_i}^{\dagger} T_{\Phi}^a \Phi_{f_i} \right) \left(H^{\dagger} \frac{\sigma^a}{2} H \right)$$

Mode

 $\mathscr{L}_{\text{scalar}} = \Gamma_L^{f_i} \bar{f}_i P_R \Psi_{f_i} \Phi$ $+ \lambda_{1H\Phi} \left(\Phi_{DM}^{\dagger} \Phi_{DM} \right) \left(H \right)$ Theoretical reason $\mathscr{L}_{\text{fermion}} = \Gamma_{I}^{f_{i}} \bar{f}_{i} P_{I}$

 $+\lambda_{1H\Phi}\left(\Phi_{f_i}^{\dagger}\Phi_{f_i}\right)\left(H\right)$

David Cabo-Almeida

$$(\Phi_{DM} + \Gamma_R^{f_i} \bar{f_i} P_L \Psi_{f_i} \Phi_{DM} + \text{h.c.})$$

 $(H^{\dagger} H) + \lambda_2 H \Phi \left(\Phi_{DM}^{\dagger} T_{\Phi}^a \Phi_{DM} \right) \left(H^{\dagger} \frac{\sigma^a}{2} H \right)$

$$P_R \Phi_{f_i} \Psi_{\rm DM} + \Gamma_R^{f_i} \bar{f}_i P_L \Phi_{f_i} \Psi_{DM} + \text{h.c.}$$

$$H^{\dagger} H + \lambda_{2H\Phi} \left(\Phi_{f_i}^{\dagger} T_{\Phi}^a \Phi_{f_i} \right) \left(H^{\dagger} \frac{\sigma^a}{2} H \right)$$

IRN Terascale 2024

Tree-level results

 $c^{q}\left(\Psi_{\rm DM}^{\dagger}i\overleftrightarrow{\partial_{\mu}}\Psi_{\rm DM}\right)\bar{q}\gamma^{\mu}q$

 $c^{q} \left(\Phi_{\rm DM}^{\dagger} i \overleftrightarrow{\partial_{\mu}} \Phi_{\rm DM} \right) \bar{q} \gamma^{\mu} q$

David Cabo-Almeida

IRN Terascale 2024

 $M_{\Phi_{O}}[\text{GeV}]$

Higgs Scalar coupling

David Cabo-Almeida

$$d_{H}^{q} = \sum_{f} \frac{g^{2} \left| \Gamma_{L,R}^{f} \right|^{2} m_{f}^{2}}{16\pi^{2} m_{H}^{2} m_{W}^{2}} \left(\left(\frac{1}{\varepsilon} + \log \frac{\mu^{2}}{m_{f}^{2}} \right) + \text{finite terms} \right)$$

Higgs Scalar coupling

David Cabo-Almeida

IRN Terascale 2024

$$-3)\left(\frac{1}{\varepsilon} + \log\frac{\mu^2}{m_f^2}\right) + \text{ counterterms } + \text{ finite },$$

Higgs Scalar coupling

David Cabo-Almeida

Real DM

David Cabo-Almeida

Direct Detection

Majorana DM

WIMP Freeze out

David Cabo-Almeida

$$m_f \rightarrow 0$$

$$\left\langle \sigma v \right\rangle_{\text{DMDM}}^{\text{Majorana}} = \sum_{f} N_{c}^{f} \frac{\left| \Gamma_{L;R}^{f} \right|^{4} M_{\Psi_{\text{DM}}}^{2} \left(M_{\Psi_{\text{DM}}}^{4} + M_{\Phi_{f}}^{4} \right) v^{2}}{48\pi \left(M_{\Psi_{\text{DM}}}^{2} + M_{\Phi_{f}}^{2} \right)^{4}}$$

$$\langle \sigma v \rangle_{\text{DMDM}}^{\text{Dirac}} = \sum_{f} N_{c}^{f} \frac{\left| \Gamma_{L,R}^{f} \right|^{4} M_{\Psi_{\text{DM}}}^{2}}{32\pi \left(M_{\Psi_{\text{DM}}}^{2} + M_{\Phi_{f}}^{2} \right)^{2}}$$

$$\langle \sigma v \rangle_{\text{DMDM}}^{\text{Real}} = \sum_{f} N_{c}^{f} \frac{\left| \Gamma_{L,R}^{f} \right|^{4} M_{\Phi_{\text{DM}}}^{6} v^{4}}{60\pi \left(M_{\Phi_{\text{DM}}}^{2} + M_{\Psi_{f}}^{2} \right)^{4}}$$
$$\langle \sigma v \rangle_{\text{DMDM}}^{\text{Complex}} = \sum_{f} N_{c}^{f} \frac{\left| \Gamma_{L,R}^{f} \right|^{4} M_{\Phi_{\text{DM}}}^{2} v^{2}}{48\pi \left(M_{\Phi_{\text{DM}}}^{2} + M_{\Psi_{f}}^{2} \right)^{2}}$$

David Cabo-Almeida

IRN Terascale 2024

Relic Density

Results

David Cabo-Almeida

IRN Terascale 2024

$M_{\Phi_f,\Psi_f} \in \left[100,10^5\right] \text{GeV} \qquad \Gamma_{L,R}^f \in \left[10^{-3},\sqrt{4\pi}\right]$

Results

David Cabo-Almeida

Portal Higgs

Zero portal Higgs

David Cabo-Almeida

IRN Terascale 2024

Non-zero portal Higgs

14

tuned coannihilation region.

also strongly constrain the candidate.

the only allowing for viable masses of order or below 100 GeV

• Complete matching for both scalars and fermion DM candidates to DD EFT Lagrangian

• Strong bounds for the Complex case and Dirac case, with the exception of the very fine

• Real DM weaker DD constrains but very suppressed annihilation cross-section which

• Majorana DM results the most favoured among the ones considered in this work and

IRN Terascale 2024

Back up

Loop Diagrams

David Cabo-Almeida

Coannihilation

$$\begin{split} \langle \sigma v \rangle_{\text{eff}} &= \frac{1}{2} \langle \sigma v \rangle_{\text{DMDM}} \frac{g_{\text{DM}}^2}{g_{\text{eff}}^2} + \langle \sigma v \rangle_{\text{DMM}} \frac{g_{\text{DM}}g_{\text{M}}}{g_{\text{eff}}^2} (1 + \tilde{\Delta})^{3/2} \text{exp}[-x\tilde{\Delta}] \\ &+ \frac{1}{2} \langle \sigma v \rangle_{\text{M}^{\dagger}\text{M}} \frac{g_{\text{M}}^2}{g_{\text{eff}}^2} (1 + \tilde{\Delta})^3 \text{exp}[-2x\tilde{\Delta}] \\ \langle \sigma v \rangle_{\text{eff}} &= \langle \sigma v \rangle_{\text{DMDM}} \frac{g_{\text{DM}}^2}{g_{\text{eff}}^2} + \langle \sigma v \rangle_{\text{DMM}} \frac{g_{\text{DM}}g_{\text{M}}}{g_{\text{eff}}^2} (1 + \tilde{\Delta})^{3/2} \text{exp}[-x\tilde{\Delta}] \\ &+ \left(\langle \sigma v \rangle_{\text{M}^{\dagger}\text{M}} + \langle \sigma v \rangle_{\text{MM}} \right) \frac{g_{\text{M}}^2}{g_{\text{eff}}^2} (1 + \tilde{\Delta})^3 \text{exp}[-2x\tilde{\Delta}] \,. \end{split}$$

 $g_{\text{eff}} = g_{\text{DM}} + g_{\text{M}}(1 + \tilde{\Delta})^{3/2} \exp[-x\tilde{\Delta}]$ With

David Cabo-Almeida

] and
$$\tilde{\Delta} = (M_{\rm M} - M_{\rm DM})/M_{\rm DM}$$

David Cabo-Almeida

IRN Terascale 2024

Leptons

Dirac and Complex

David Cabo-Almeida

IRN Terascale 2024

Light quarks at Loop Level

David Cabo-Almeida

IRN Terascale 2024

