

Exploring evaluation methods for generative models in HEP

Marco Letizia

Machine Learning Genoa Center and INFN

In collaboration with:

Andrea Coccaro (INFN), Gaia Grosso (IAIFI Boston),

Riccardo Torre (INFN), Humberto Reyes-Gonzalez (RWTH Aachen)

Generative models in HEP

Generative models: new examples from estimated pdf (GANs, normalizing flows, diffusion models)

 $x_{new} \sim p_{\text{gen}}(x) \approx p_{\text{true}}(x)$

- Fast simulations
- Data augmentation
- Anomaly detection

Uni**Ge**

Background estimation

Standardized and robust model evaluation is crucial!

- R. Kansal, A. Li, J. Duarte, N. Chernyavskaya, M. Pierini, B. Orzari, T. Tomei <u>arXiv:2211.10295</u>
- A. Coccaro, ML, H. Reyes-Gonzalez, R. Torre arXiv:2302.12024
- R. Das, L. Favaro, T. Heimel, C. Krause, T. Plehn, D. Shih arXiv:2305.16774
- J. Gavranovič, B. P. Kerševan arXiv:2310.08994

Evaluation of generative models

Address the problem as a two-sample test:

reject H_0 : $p_{gen} = p_{true}$ from data $X = \{x_i\} \sim p_{true}^n$, $Y = \{y_i\} \sim p_{gen}^m$

- Define a test statistic $t: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$
- Compute observed test $t_{obs} = t(X, Y)$
- Assess p(t) under the null hypothesis H_0
 - Analytic
 - Toys t(X, X')
 - Permutations
 - Bootstrap

UniGe

•
$$p(t_{obs}) = \int_{t_{obs}}^{\infty} p(t|H_0) dt \to Z = \Phi^{-1}(1 - p(t_{obs}))$$

Evaluation of generative models

Large scale and multivariate regime: prioritise sensitivity or efficiency.

• From univariate to multivariate tests A. Coccaro, ML, H. Reyes-Gonzalez, R. Torre <u>arXiv:2302.12024</u>

S. Grossi, R. Torre, to appear soon

• The New Physics Learning Machine

R. Tito D'Agnolo, A. Wulzer <u>arXiv:1806.02350</u>

ML, G. Losapio, M. Rando, G. Grosso, A. Wulzer, M. Pierini, M. Zanetti,

L. Rosasco <u>arXiv:2204.02317</u>

G. Grosso, ML, M. Pierini, A. Wulzer arXiv:2305.14137

P. Cappelli, G. Grosso, ML, H. Reyes-Gonzalez, work in progress

A. Coccaro, ML, H. Reyes-Gonzalez, R. Torre <u>arXiv:2302.12024</u> S. Grossi, R. Torre, *to appear soon*

Some metrics:

• Dimension-avg KS test

$$D_{x,y} = \sup_{x} |F_p(x) - F_q(x)|, \qquad \overline{D} = \frac{1}{d} \sum_{i} D^{(i)}$$

• Sliced 1-Wasserstein distance N. Bonneel, J. Rabin, G. Peyré, and H. Pfiste, JMIV (2015)

$$W_1(p,q) = \int |F_p(x) - F_q(x)| \, dx \,, \qquad SWD = \frac{1}{k} \sum_i W_1^{(i)} \quad \text{(randomly on a hypersphere)}$$

• Maximum mean discrepancy (a.k.a. KPD) A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, A. Smola, JMLR (2012)

$$MMD^{2} = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_{p}[f(x)] - \mathbb{E}_{q}[f(x)] \right)$$

S. Grossi, R. Torre, to appear soon

Benchmark: mixtures of q Gaussians in N dimensions

 $\begin{cases} q=3, N=5 \\ q=5, N=20 \\ q=10, N=100 \end{cases}$

Deformations:

- ϵ shift in the means
- ϵ shift in the standard deviations
- Both

For each case and test, find ϵ : reject H_0 at level $\alpha = 0.95, 0.99$.

In this synthetic case, we can use the exact likelihood-ratio test to provide a notion of best performance (Neyman-Pearson lemma)

$$t = \log \frac{\mathcal{L}(\epsilon = 0)}{\mathcal{L}(\epsilon)}$$

S. Grossi, R. Torre, to appear soon

$$n = 10000, n_{\text{toys}} = 10000, q = 3, N = 5.$$

Statistic	$\left \begin{array}{c} \epsilon^{\mu}_{95\% { m CL}} \end{array} ight $	$\epsilon^{\mu}_{99\%{ m CL}}$	t^{μ} (s)	$\epsilon^{\sigma}_{95\%{ m CL}}$	$\epsilon^{\sigma}_{99\%{ m CL}}$	t^{σ} (s)	$\epsilon^{\mu-\sigma}_{95\%{ m CL}}$	$\epsilon^{\mu-\sigma}_{99\%{ m CL}}$	$t^{\mu-\sigma}$ (s)	$t^{ m null}$ (s)
$t_{ m LLR}$	0.0011	0.0016	1422	0.0014	0.0021	1178	0.00091	0.0013	1316	-
\overline{D}	0.009	0.013	779	0.02	0.028	714	0.0076	0.011	689	59
\widetilde{D}	0.027	0.037	739	0.056	0.078	701	0.023	0.031	727	826
\widetilde{W}	0.046	0.064	521	0.093	0.13	479	0.041	0.058	561	422
$\overline{\ \cdot\ }_F$	0.059	0.083	630	0.15	0.24	569	0.053	0.075	541	30
$d_{ m FPD}$	0.077	0.1	605	0.16	0.22	510	0.069	0.094	569	439
$d_{ m KPD}$	0.12	0.16	518	2.5	2.8	357	0.12	0.16	525	2197

S. Grossi, R. Torre, to appear soon

$$n = 10000, n_{toys} = 10000, q = 5, N = 20$$

Statistic	$\left egin{array}{c} \epsilon^{\mu}_{95\%{ m CL}} ight.$	$\epsilon^{\mu}_{99\%{ m CL}}$	t^{μ} (s)	$\epsilon^{\sigma}_{95\%{ m CL}}$	$\epsilon_{99\%{ m CL}}^{\sigma}$	t^{σ} (s)	$\left egin{array}{c} \epsilon^{\mu-\sigma}_{95\%{ m CL}} ight. ight.$	$\epsilon^{\mu-\sigma}_{99\%{ m CL}}$	$t^{\mu-\sigma}$ (s)	t^{null} (s)
$t_{ m LLR}$	0.00058	0.0008	5447	0.00079	0.0011	5368	0.00049	0.00065	6230	-
\overline{D}	0.01	0.015	2148	0.027	0. <mark>039</mark>	1971	0.0097	0.014	<mark>2170</mark>	446
$\overline{\ \cdot\ }_F$	0.064	0.092	1678	0.54	0. <mark>69</mark>	1338	0.064	0.092	<mark>1773</mark>	90
\widetilde{D}	0.074	0.1	1887	0.22	0. <mark>33</mark>	1659	0.067	0.095	1853	1125
$d_{ m FPD}$	0.12	0.16	1694	0.36	0. <mark>47</mark>	1427	0.11	0.15	1642	512
\widetilde{W}	0.12	0.17	1791	0.39	0. <mark>58</mark>	1658	0.11	0.16	2036	692
$d_{ m KPD}$	0.24	0.32	1588	2.9	3. <mark>3</mark>	1136	0.24	0.32	1598	2027

S. Grossi, R. Torre, to appear soon

$$n = 10000, n_{toys} = 10000, q = 10, N = 100$$

Testing normalizing flows in high-dimensions

A. Coccaro, ML, H. Reyes-Gonzalez, Riccardo Torre arXiv:2302.12024

Correlated mixtures of Gaussians q = 3N = 4 - 400 Coupling and autoregressive flows:

- RealNVP
- MAF
- Rational quadratic splines

 $N_{\text{test}} = N_{\text{train}} = 10^5$

Uni**Ge** | Mal Ga

R. Tito D'Agnolo, A. Wulzer <u>arXiv:1806.02350</u> ML, G. Losapio, M. Rando, G, Grosso, A. Wulzer, M. Pierini, M. Zanetti, L. Rosasco <u>arXiv:2204.02317</u> G. Grosso, ML, M. Pierini, A. Wulzer <u>arXiv:2305.14137</u>

Likelihood ratio goodness-of-fit test with with supervised learning

Multivariate; unbinned; efficient; no data splitting.

Univariate

Table 1 Average training times per single run with standard deviations (low level features and reference toys). Note that time measured in hours (for NN) and seconds (for Falkon)

Model	DIMUON	SUSY	HIGGS
FLK	$(44.9 \pm 3.4) m s$	(18.2 ±1.2) s	$(\textbf{22.7}\pm\textbf{0.4})\textbf{s}$
NN	(4.23 ± 0.73) h	$(73.1 \pm 10) \mathrm{h}$	$(112 \pm 9) h$

Bold values indicate the lowest for each column (lower is better)

IRN Terascale @ LNF

P. Cappelli, G. Grosso, ML, H. Reyes-Gonzalez, work in progress

End-to-end simulations with normalizing flows: F. Vaselli, F. Cattafesta, P. Asenov, A. Rizzi <u>arXiv:2402.13684</u>

Particle jets dataset with PYTHIA + Delphes-like smearing $(pp \rightarrow t\bar{t})$.

16 features, n=1M, m=200k, $\bar{t}_{\text{training}} \approx 25$ s.

Conclusion

- Modern machine learning provides powerful methods to accelerate HEP research.
- Robust evaluation methods and uncertainty quantification is crucial for applications in precision sciences.
- We discussed nonparametric methods to evaluate generative models based on the framework of two-sample testing.
- We explored techniques that prioritise either efficiency or sensitivity, the latter based on machine learning.

https://github.com/NF4HEP https://github.com/GaiaGrosso/NPLM_package https://github.com/FalkonHEP https://github.com/mletizia/FalkonNPLM_1D

THANK YOU

G. Grosso, ML, M. Pierini, A. Wulzer arXiv:2305.14137

