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Canonical scale variation

Unphysical (renormalization) scale dependence in perturbative computations is of
higher order
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Canonical Scale Variation:
Variation by a factor of 2 about a “central” scale po
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How does canonical scale variation perform?

WHAT PREClSlUN AT NNL[]" Slide from Gavin Salam, PSR 2016

AAAAAAAAAAAAAAAA Q
5 5822283282 s8IE 82822 ¢z8 82 3
s £ E £ € E & El& £ £ E E E £ € -
. >T ¥ ¥ 2N N 5 £ £ N 8 L & s
10% 8 >N;N§§§ 8 e 22 %
3
5% - I 18
» g
o | . :;
oMl [- 5 .
2% |- I II I :8
-5% | I 4
-10% | I B
-15% |
NNLO
NLO
-20% - -

Marco Bonvini Theory uncertainties from missing higher orders



Beyond canonical scale variation

Also caveats of canonical scale variation:

o the result depends on the central scale chosen
o the variation by a factor of 2 is arbitrary

@ no probabilistic interpretation

New definition of theory uncertainties from missing higher orders:
o reliable
o less dependent on arbitrary assumptions

o probabilistically well defined
Ideally, theory uncertainty from MHO should be a probability distribution

A probabilistic definition in this context can only be based on a Bayesian approach
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The breakthrough: the Cacciari-Houdeau (CH) model

Cacciari and Houdeau [1105.5152] proposed a probabilistic model for the interpretation
of theory uncertainties, based on the behaviour of the perturbative expansion
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“We make the assumption that all the coefficients ¢y, in a perturbative series share
some sort of upper bound € > 0 to their absolute values, specific to the physical
process studied. The calculated coefficients will give an estimate of this ¢,
restricting the possible values for the unknown cy,.”

In other words, the model assumes that
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Bayesian inference

Inference scheme

assumptions
(model, priors) \ _ unknown
hidden higher
parameters
known / orders
orders

Inference on the unknown coefficients ¢y,
P(unknown cg|known ¢;) = /dpars P (unknown cg|pars) P (pars|known cg)

in terms of the posterior distribution of the hidden parameters
P(pars|known ¢;) o< P(known cg|pars) Py (pars)
which depends on the prior distribution Py(pars) and on the model through the

likelihood P (cg|pars)

Cacciari-Houdeau: P(cg|¢) o< 8(C — |ck|), Po(€) ox 1/
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Recent progress: my proposal(s) [MB 2006.16293]

o CH probabilistic framework is good (probably the only way to define
probabilistically a theory uncertainty from missing higher orders)

o better model assumptions on the behaviour of the expansion

@ do not forget scale dependence:

o as a tool, to gain further information on missing higher orders
(as in canonical scale variation)

o as an issue, due to the need of choosing a scale

S

Model 1:
geometric behaviour model

"

scale variation model
dependence
Other models:
variants, combinations, ...
J

Marco Bonvini Theory uncertainties from missing higher orders 7


http://arxiv.org/abs/2006.16293

New model (1): Geometric behaviour model (aka improved CH)

More general expansion

2 = Sio(k) Y dk(p) Zio()dk(p) = cr(p)ag(n)
k>0

k
s

Sio(p) [0e(p)] < cak

Power growth of the coefficients ci, ~ 1* is very likely:

CH model assumes that d;, behave as o

o Cacciari-Houdeau proposed a modified version with 717 accounted for
@ in [Bagnaschi,Cacciari,Guffanti,Jenniches 1409.5036] 7} is determined from a survey

@ in an alternative approach [Forte,lsgro,Vita 1312.6688] the value of ) is fitted

My proposal: geometric behaviour model
0 (1)| < ca®

depends on two hidden parameters ¢, a, it accounts for a possible power growth of
the coefficients within the model
Asymmetric variant, called abe model, proposed in [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]
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Constructing a “scale-independent” result

The method just described still needs to chose a renormalization scale p: if | change
the scale, the result changes. How can we get rid of the scale?

Basic idea: treat the unphysical scale 1 as a parameter of the model, and simply
marginalize over it

P(S|d0, ..., 0,) = /du P(S80, ooy 8y 12) P (2] 30, ..., 01)

where P(u|do, ..., d,,) is the posterior distribution for p given the known orders
(which depends on the model)

The prior Py (1) contains our prejudices on what are the most appropriate scales,
but the results are largely independent of the precise form and size of the prior
= a lot of arbitrariness is removed!

In this approach, inference on p selects the values that give the best convergence
properties according to the model

In [Duhr,Huss,Mazeliauskas,Szafron 2106.04585] they propose an alternative way denoted “scale
averaging”. Rather than treating the scale as a model parameter, they integrate over it using a weight
function w (), so there is no inference on w. | personally find it less powerful.
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A case study: Higgs production in gluon fusion (ggH) at LHC

cross section [pb]

S =

Higgs production in gluon fusion at LHC 13 TeV, my; = 125 GeV
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ggH at LHC: probability distributions (CH)

Probability distribution of the cross section: P(Z)
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ggH at LHC: probability distributions (geo)

Higgs production in gluon fusion at LHC 13 TeV, myy = 125 GeV
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ggH at LHC: probability distributions (geo, marginalized over 1)

Probability distribution of the cross section: P(Z)

Higgs production in gluon fusion at LHC 13 TeV, myy = 125 GeV
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ggH at LHC: statistical estimators (geo)

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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ggH at LHC: statistical estimators (geo, marginalized over p)

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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Canonical scale variation vs Geometric behaviour model

Canonical scale variation
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Canonical scale variation vs Geometric behaviour model

Geometric behaviour model (68% DoB)
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Canonical scale variation vs Geometric behaviour model

Geometric behaviour model, marginalized over scale (68% DoB)
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Correlations

Still need to account for correlations:
@ between different bins of the same observable
@ between different observables of the same process
o between different processes

No unique way to do so

Crucial observation: correlations from MHO are due to similarities in the form of the
perturbative expansions

A simple way is to use the hidden parameters, including the scale p, to correlate the
predictions

However, better (but more complicated) ways can be considered (see e.g. an
interesting proposal by F.Tackmann [SCET2019])

Thinking in progress...
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Key message: it is possible to define theory uncertainties from MHO in a probabilistic
way, which is reliable and less arbitrary than the canonical scale-variation approach

o New statistical models for theory uncertainties:
o an improved version of Cacciari-Houdeau (geometric behaviour model)

o a model inspired by scale variation, better with constrained scale dependence
(see Extra material)

o other possible variants and combinations
(see Backup)

@ A novel way to obtain scale-independent results

o Public code: THunc www.romal.infn.it/~bonvini/THunc
see also my “competitors” code MiHO: github.com/aykhuss/miho

o Correlations
o various ideas, to be discussed, implemented, and tested

Marco Bonvini Theory uncertainties from missing higher orders


https://www.roma1.infn.it/~bonvini/THunc/
https://github.com/aykhuss/miho

Extra content

(if I have time)
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New model (2): Scale variation inspired model

Scale dependence probes higher orders... why not using it?

Idea (inspired by canonical scale variation): assume that the size of the higher order
is comparable with the size of the scale dependence

Definition: “scale dependence numbers” 7,
d
r(p) =~ H@ log Xk o (1)
measure the scale dependence of X

My proposal: scale variation model

[0k 41 ()] < Arp(pe)

depends on one hidden parameter A

Canonical scale variation is approximately recovered for A = log 2
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Not all higher orders are good...

14 TeV, w=m,
90
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New model (3): Constrained scale dependence

Because (1) = O(akt1), they should also behave perturbatively

Idea: require perturbativity of the r; (1) as a model condition!

Two conditions:
[0k 41 ()| < Are(p)
[Prr1 ()] < mre(p)
that depends on two hidden parameters A\, n

Leads to more stable and narrower results
(but the implementation is numerical, hence slow)
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ggH at LHC: probability distributions (scale)

Probability distribution of the cross section: P(Z)
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ggH at LHC: probability distributions (scale v2)

Higgs production in gluon fusion at LHC 13 TeV, myy = 125 GeV
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ggH at LHC: probability distributions (scale, marginalized over p)

Higgs production in gluon fusion at LHC 13 TeV, myy = 125 GeV
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ggH at LHC: statistical estimators (scale)

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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ggH at LHC: statistical estimators (scale v2)

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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ggH at LHC: statistical estimators (scale, marginalized over 1)

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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How can a theory uncertainty from missing higher orders be probabilistic?

Frequentist approach to probability — requires repeatable events — no way...
Bayesian approach — probability defined as the degree of belief of an “event”
Initially no information — the probability of an event is given by a prior distribution,
which encodes our subjective and arbitrary prejudices.

Acquiring information — changes the degree of belief through inference (Bayes
theorem), making it less and less dependent on the prior.

see e.g. G.D'Agostini, Bayesian reasoning in data analysis

“Event” means something that can happen in different ways with different
likelihoods.

In our case, the “event” is “the observable takes the value ", and its probability
distribution will be a function of X:

P (X|information, hypotheses)

Information = perturbative expansion of the observable.
Bayes theorem — improve the knowledge on the observable, namely update the
distribution of 3.
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Model 1: Geometric behaviour model (improved Cacciari-Houdeau)

Generalized condition that accounts for a possible power growth
[0k ()] < ca®  VE < Kagympt CH: |cra¥| < ea¥

depends on two hidden parameters ¢, a
It accounts for a possible power growth of the coefficients within the model!

Likelihood:

P(3kle, ayn) o 0(ca® — |6 (p)]) =

-cak cak 8k

namely all values of dg within the allowed range are equally likely
Prior:

O(c—1
P(c,alp) o ¥ X (1 —-a)“f(a)f(1l —a), e=01, w=1
clte
Inference scheme:
inference inference sum
60, 7511, — c,a — 6n+1,6n+2,... by
~—_———
known unknown

Final output:
P(E|50, ceey 671,’ Iy modell)
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Posterior of ¢, a for Higgs prod

Probabiliy distribution of the parameters
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Defining a good scale-dependence estimator

| want to define a model that uses scale variation.
I need a dimensionless number (to be compared to dj) that probes higher orders:

re() = ‘u% log szLow)\ — O(@* ) = O(Brsa (1))

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV/

1 A T T T T T
.
Iy
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Model 2: Scale variation inspired model

| propose the condition

|5k+1(ﬂ)| < Are(p) VEk < Kasympt

that depends on one hidden parameter A
Canonical scale variation is approximately recovered for A = log 2

Likelihood:

P(0k|rk—1, A, 1) < O(Arg—1 — |0k (p)]) =

ATk Arier 8k

namely all values of dg within the allowed range are equally likely

Prior:
P(Ap) o< XMe 20(N), y=1

Inference scheme:

inference inference+7y, sum
60,..., 671”"09 ooy 1 — A — 5n+1 — 2N”+1LO
N~
known unknown

in this case only the first missing higher order can be predicted:

P(Znt1,0l00s -5 Oy Ty <oes Ty ity modelz)
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Posterior of A for Higgs production in gluon fusion

Probability distribution of the parameter A

2 T T T T
- - Py
—— = P(\I3y)
-=- P(NG1,32)
—— PN31,55,53)
15
= L
g 1
05 |
o ‘ ‘

The first non-trivial order (d1) sets the lower limit of A
—» stable but possibly non optimal (overestimating uncertainty)

Improvable allowing violation of the bound (see appendix B.3)
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Combining models and inventing new ones

Models can be combined together, requiring two or more conditions at the same time

So far we have seen three conditions

16k ()| < ca®
[0r (1) < Mg (1)
|7 ()| < mre—a ()

that are not contradictory and can thus hold at the same time

The models are implemented in a code named THunc, that provides a custom model
feature to implement any customized model

Putting all conditions together....
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Higgs in gluon fusion at LHC: probability distributions

Higgs production in gluon fusion at LHC 13 TeV, myy = 125 GeV

— 07 T T T T T T
W = = = given LO
~ — — given NLO
§ 0.6 —-=- given NNLO A
§ — given N3LO pu=05Q
2 05F i
2
o
[
< 04 -
ks
,é 03 F Custom model ]
2
=)
[2}
5 02r T
z
S 01f A 1
'D . . ~
8 .’ *a -~ - \
A 0 -t 1 PR e BT
0 10 20 30 60 70

> = cross section [pb]

Marco Bonvini Theory uncertainties from missing higher orders



From distributions to statistical estimators

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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The abc model [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]

It's a generalisation of the geometric behaviour model,

geo: |0x(p)| < ca® abc : c+b< <c+bd

k(/'l')
ak
depends on three hidden parameters a, b, ¢

They keep requiring |a| < 1, but the sign can be negative (to describe alternating
sign series)

Moreover the b parameter accounts for asymmetric behaviour

4
35 | i
3 p g ¥ ¥ |
2.5 I }; H 1
. K %}r 2r 1
Comparison for E ¥ x=0.7 15 L i
k>0 1} e=0r ]
n
05 L abc-model ——
oldl L eeometric —

0 1 2 3 4 5 6 7
n
Note: | have proposed a different way to account for a sign pattern, which can be
applied to any symmetric model (app. B.5)

Marco Bonvini Theory uncertainties from missing higher orders 41


http://arxiv.org/abs/2106.04585

Validation using known sums
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Posterior distribution for the scale p

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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Posterior distribution for the scale p

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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Scan of priors for the scale u

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV/ Higgs production in gluon fusion at LHC 13 TeV, my; = 125 GeV
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Scan of priors for the model parameters

Higgs production in gluon fusion at LHC 13 TeV, my = 125 GeV
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Explicit inference procedure in Cacciari-Houdeau

Probability of a missing higher order coefficient ¢ given the knowledge of the first
CQy +++y Cp, OFders
P(cpyCoy ey Cn)
P(coy ey Crn)
_ [ deP(ck,coy ey Cn,y €)
B J de P(cg, ..., cpn, )
_ [ deP(ck, o, .-y €n|€) Po ()
"~ [dEP(coy -, cn|E) Po(€)
[ deP(ck|e)P(colC) - - - P(cn|E)Po(€)
~ [deP(co|e) - P(cnle)Po(C)

P(ck|605 "'acn) = (k > n)

having used
P(A,B) = P(A|B)P(B), P(A) = /dB P(A, B)
The probability for the full observable is given by

oo
P(X|coy..sCn) = /dcn+1dcn+2 <o+ P(Cn41sCnt2s--|co, ...,cn)5<2 — Z cka’;)
k=0
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