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Canonical scale variation

Unphysical (renormalization) scale dependence in perturbative computations is of
higher order

ΣNnLO(µ) =

n∑
k=0

ck(µ)α
k
s(µ) µ

d

dµ
ΣNnLO(µ) = O(αn+1

s )

Canonical Scale Variation:
Variation by a factor of 2 about a “central” scale µ0

Σ ≈ ΣNnLO(µ0) ± max
µ0/2≤µ≤2µ0

|ΣNnLO(µ) − ΣNnLO(µ0)|

μ0 2μ0μ0/2
μ

Σpert
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How does canonical scale variation perform?

For many processes NNLO scale band is ~±2%  
Though only in 3/17 cases is NNLO (central) within NLO scale band…

WHAT PRECISION AT NNLO?
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Slide from Gavin Salam, PSR 2016
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Beyond canonical scale variation

Also caveats of canonical scale variation:

the result depends on the central scale chosen

the variation by a factor of 2 is arbitrary

no probabilistic interpretation

New definition of theory uncertainties from missing higher orders:

reliable

less dependent on arbitrary assumptions

probabilistically well defined

Ideally, theory uncertainty from MHO should be a probability distribution

A probabilistic definition in this context can only be based on a Bayesian approach
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The breakthrough: the Cacciari-Houdeau (CH) model

Cacciari and Houdeau [1105.5152] proposed a probabilistic model for the interpretation
of theory uncertainties, based on the behaviour of the perturbative expansion

Σ =
∑
k

ckα
k
s

“We make the assumption that all the coefficients ck in a perturbative series share
some sort of upper bound c̄ > 0 to their absolute values, specific to the physical
process studied. The calculated coefficients will give an estimate of this c̄,
restricting the possible values for the unknown ck.”

In other words, the model assumes that

|ck| ≤ c̄ ∀k
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Figure 2: Numerical estimates of the exact densities f(�k|c0, . . . , ck) (continuous curves) and their
analytical approximations in eq. (34) (dashed curves) in the case c̄(k) = 1 for k = 0 (left), k = 1
(middle), and k = 2 (right), for ↵s = 0.5 (top row) and ↵s = 0.12 (bottom row). These numerical
estimates are computed by integrating over the distributions for 10 unknown coe�cients, the results
being stable when using more. Using values of ↵s of the order of 0.2 or 0.3 does not degrade
significantly the quality of the approximation seen here in the ↵s = 0.12 case.

where f(c̄|c0, . . . , ck) is given in eq. (30) and the f(cn|c̄) in eq. (20). Figure 2 shows the numerical
results for k = 0, 1 and 2 and the corresponding analytical approximation for f(�k|c0, . . . , ck) in
eq. (34). We can see that the agreement is extremely good, especially when small (realistic) value
of ↵s are used. We will therefore rely on the approximation of equation (33) for our predictions of
densities for �k in the rest of this paper.

3 Comparison with the conventional method

In deriving the density for �k in the previous section we made no reference to the scale variation
�k of the partial sum �k(Q, µ) which is usually employed in the conventional uncertainty estimate
[��

k ,�+
k ] of section 2.1. In order to assess the compatibility of the two methods, we now wish to

study the relation between the density for �k and an interval of the kind [��
k ,�+

k ].
Given a specific series and a set of coe�cients (c0, . . . , ck) we wish to evaluate

C(�k 2 [��
k ,�+

k ]|c0, . . . , ck) =

Z �+
k

��
k

f(�k|c0, . . . , ck) d�k (39)

and, for definiteness, we now take [��
k ,�+

k ] as the interval given by eq. (8), so that we can set

��
k = min(�k(Q, Q/2),�k(Q, 2Q)) � �k = ��

k � �k (40)

�+
k = max(�k(Q, Q/2),�k(Q, 2Q)) � �k = �+

k � �k (41)

Since the shape of �k(Q, µ), and therefore the values of ��
k and �+

k , depend on all the values of
the calculated coe�cients (c0, . . . , ck), while the density function f(�k|c0, . . . , ck) depends only on

12
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Bayesian inference

known 
orders

assumptions 
(model, priors)

hidden 
parameters

unknown 
higher 
orders

Inference scheme

Inference on the unknown coefficients ck

P (unknown ck|known ck) =

∫
dpars P (unknown ck|pars)P (pars|known ck)

in terms of the posterior distribution of the hidden parameters

P (pars|known ck) ∝ P (known ck|pars)P0(pars)

which depends on the prior distribution P0(pars) and on the model through the
likelihood P (ck|pars)

Cacciari-Houdeau: P (ck|c̄) ∝ θ(c̄ − |ck|), P0(c̄) ∝ 1/c̄
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Recent progress: my proposal(s) [MB 2006.16293]

CH probabilistic framework is good (probably the only way to define
probabilistically a theory uncertainty from missing higher orders)

better model assumptions on the behaviour of the expansion

do not forget scale dependence:
as a tool, to gain further information on missing higher orders
(as in canonical scale variation)

as an issue, due to the need of choosing a scale

Model 1: 
geometric behaviour model

a unified probabilistic way 
to deal with scale 

dependence

Model 2: 
scale variation model

Other models: 
variants, combinations, ...
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New model (1): Geometric behaviour model (aka improved CH)

More general expansion

Σ = ΣLO(µ)
∑
k≥0

δk(µ) ΣLO(µ)δk(µ) = ck(µ)α
k
s(µ)

CH model assumes that δk behave as αk
s

ΣLO(µ) |δk(µ)| ≤ c̄ αk
s

Power growth of the coefficients ck ∼ ηk is very likely:

Cacciari-Houdeau proposed a modified version with η accounted for

in [Bagnaschi,Cacciari,Guffanti,Jenniches 1409.5036] η is determined from a survey

in an alternative approach [Forte,Isgrò,Vita 1312.6688] the value of η is fitted

My proposal: geometric behaviour model

|δk(µ)| ≤ c ak

depends on two hidden parameters c, a, it accounts for a possible power growth of
the coefficients within the model
Asymmetric variant, called abc model, proposed in [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]

Marco Bonvini Theory uncertainties from missing higher orders 8

http://arxiv.org/abs/1409.5036
http://arxiv.org/abs/1312.6688
http://arxiv.org/abs/2106.04585


Constructing a “scale-independent” result

The method just described still needs to chose a renormalization scale µ: if I change
the scale, the result changes. How can we get rid of the scale?

Basic idea: treat the unphysical scale µ as a parameter of the model, and simply
marginalize over it

P (Σ|δ0, ..., δn) =

∫
dµ P (Σ|δ0, ..., δn, µ)P (µ|δ0, ..., δn)

where P (µ|δ0, ..., δn) is the posterior distribution for µ given the known orders
(which depends on the model)

The prior P0(µ) contains our prejudices on what are the most appropriate scales,
but the results are largely independent of the precise form and size of the prior
⇒ a lot of arbitrariness is removed!

In this approach, inference on µ selects the values that give the best convergence
properties according to the model

In [Duhr,Huss,Mazeliauskas,Szafron 2106.04585] they propose an alternative way denoted “scale

averaging”. Rather than treating the scale as a model parameter, they integrate over it using a weight

function w(µ), so there is no inference on µ. I personally find it less powerful.
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A case study: Higgs production in gluon fusion (ggH) at LHC
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ggH at LHC: probability distributions (CH)
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ggH at LHC: probability distributions (geo)
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ggH at LHC: probability distributions (geo, marginalized over µ)
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ggH at LHC: statistical estimators (geo)
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ggH at LHC: statistical estimators (geo, marginalized over µ)
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Canonical scale variation vs Geometric behaviour model
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Canonical scale variation vs Geometric behaviour model
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Canonical scale variation vs Geometric behaviour model
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Correlations

Still need to account for correlations:

between different bins of the same observable

between different observables of the same process

between different processes

No unique way to do so

Crucial observation: correlations from MHO are due to similarities in the form of the
perturbative expansions

A simple way is to use the hidden parameters, including the scale µ, to correlate the
predictions

However, better (but more complicated) ways can be considered (see e.g. an
interesting proposal by F.Tackmann [SCET2019])

Thinking in progress...
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Summary

Key message: it is possible to define theory uncertainties from MHO in a probabilistic
way, which is reliable and less arbitrary than the canonical scale-variation approach

New statistical models for theory uncertainties:
an improved version of Cacciari-Houdeau (geometric behaviour model)

a model inspired by scale variation, better with constrained scale dependence
(see Extra material)

other possible variants and combinations
(see Backup)

A novel way to obtain scale-independent results

Public code: THunc www.roma1.infn.it/∼bonvini/THunc

see also my “competitors” code MiHO: github.com/aykhuss/miho

Correlations
various ideas, to be discussed, implemented, and tested
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Extra content
(if I have time)
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New model (2): Scale variation inspired model

Scale dependence probes higher orders... why not using it?

Idea (inspired by canonical scale variation): assume that the size of the higher order
is comparable with the size of the scale dependence

Definition: “scale dependence numbers” rk

rk(µ) ≃
∣∣∣∣µ d

dµ
log ΣNkLO(µ)

∣∣∣∣
measure the scale dependence of Σ

My proposal: scale variation model

|δk+1(µ)| ≤ λ rk(µ)

depends on one hidden parameter λ

Canonical scale variation is approximately recovered for λ = log 2
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Not all higher orders are good...

In figure 1, the different orders of the hadronic gluon fusion cross section for the 8 TeV

LHC and a Higgs mass of 125 GeV, along with several N3LO approximants for various

numerical values of K are plotted as a function of the renormalisation scale µr, while the

factorisation scale is fixed to µf = mh. Note that the convolutions of splitting kernels and

partonic cross sections do not enter in this plot, since they are proportional to log(µ2
f/m2

h).

The µr scale variation for LHC with 14 TeV centre-of-mass energy is shown in fig. 3. The

µf scale dependence, shown in figure 5 for 8 TeV centre-of-mass energy, is, as expected,

extremely mild, in accordance with what is observed at NNLO.
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Figure 3: Scale variation of the different orders of the gluon fusion cross section at 14 TeV.

µf is fixed to mh and only µr is varied. The scaling coefficient K is varied from 0 to 40.

Figures 2 and 4 display the overall scale dependence, with both scales set to be equal

and varied simultaneously. We note that the curves for the approximate N3LO cross

section with various Ks spread widely in the low scale region, i.e. for µ < 30 GeV. This

is not unreasonable, though, as in this regime, the unknown N3LO contributions that are

neglected become much more important due to the running of αs. Indeed, at the lowest

renormalisation scale considered, µ = mh/16 ≈ 7 GeV, the coupling becomes as big as

– 15 –

[Buehler,Lazopoulos 1306.2223]
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New model (3): Constrained scale dependence

Because rk(µ) = O(αk+1
s ), they should also behave perturbatively

Idea: require perturbativity of the rk(µ) as a model condition!

Two conditions:

|δk+1(µ)| ≤ λrk(µ)

|rk+1(µ)| ≤ ηrk(µ)

that depends on two hidden parameters λ, η

Leads to more stable and narrower results
(but the implementation is numerical, hence slow)
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ggH at LHC: probability distributions (scale)
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ggH at LHC: probability distributions (scale v2)
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ggH at LHC: probability distributions (scale, marginalized over µ)
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ggH at LHC: statistical estimators (scale)
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ggH at LHC: statistical estimators (scale v2)
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ggH at LHC: statistical estimators (scale, marginalized over µ)
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Backup slides
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How can a theory uncertainty from missing higher orders be probabilistic?

Frequentist approach to probability → requires repeatable events → no way...

Bayesian approach → probability defined as the degree of belief of an “event”

Initially no information → the probability of an event is given by a prior distribution,
which encodes our subjective and arbitrary prejudices.

Acquiring information → changes the degree of belief through inference (Bayes
theorem), making it less and less dependent on the prior.

see e.g. G.D’Agostini, Bayesian reasoning in data analysis

“Event” means something that can happen in different ways with different
likelihoods.
In our case, the “event” is “the observable takes the value Σ”, and its probability
distribution will be a function of Σ:

P (Σ|information, hypotheses)

Information = perturbative expansion of the observable.
Bayes theorem → improve the knowledge on the observable, namely update the
distribution of Σ.
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Model 1: Geometric behaviour model (improved Cacciari-Houdeau)

Generalized condition that accounts for a possible power growth

|δk(µ)| ≤ cak ∀k < kasympt CH:
∣∣ckαk

s

∣∣ ≤ c̄αk
s

depends on two hidden parameters c, a
It accounts for a possible power growth of the coefficients within the model!

Likelihood:

P (δk|c, a,µ) ∝ θ(cak − |δk(µ)|) =
cak-cak δk

λrk-1 δk-λrk-1

namely all values of δk within the allowed range are equally likely
Prior:

P (c, a|µ) ∝
θ(c − 1)

c1+ϵ
× (1 − a)ωθ(a)θ(1 − a), ϵ = 0.1, ω = 1

Inference scheme:

δ0, ..., δn︸ ︷︷ ︸
known

inference−→ c, a
inference−→ δn+1, δn+2, ...︸ ︷︷ ︸

unknown

sum−→ Σ

Final output:
P (Σ|δ0, ..., δn, µ,model1)
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Posterior of c, a for Higgs production in gluon fusion

Probability distribution of the parameters
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δ0 + δ1 + δ2 + δ3 + ... = 1 + 1.36 + 0.85 + 0.35 + ...
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Defining a good scale-dependence estimator

I want to define a model that uses scale variation.
I need a dimensionless number (to be compared to δk) that probes higher orders:

rk(µ) ≃
∣∣∣∣µ d

dµ
log ΣNkLO(µ)

∣∣∣∣ = O(αk+1
s ) = O(δk+1(µ))
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Model 2: Scale variation inspired model

I propose the condition

|δk+1(µ)| ≤ λrk(µ) ∀k < kasympt

that depends on one hidden parameter λ
Canonical scale variation is approximately recovered for λ = log 2

Likelihood:

P (δk|rk−1, λ, µ) ∝ θ(λrk−1 − |δk(µ)|) =

cak-cak δk

λrk-1 δk-λrk-1

namely all values of δk within the allowed range are equally likely

Prior:
P (λ|µ) ∝ λγe−λθ(λ), γ = 1

Inference scheme:

δ0, ..., δn, r0, ..., rn−1︸ ︷︷ ︸
known

inference−→ λ
inference+rn−→ δn+1︸ ︷︷ ︸

unknown

sum−→ Σ
Nn+1LO

in this case only the first missing higher order can be predicted:

P (Σ
Nn+1LO

|δ0, ..., δn, r0, ..., rn, µ,model2)
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Posterior of λ for Higgs production in gluon fusion
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The first non-trivial order (δ1) sets the lower limit of λ

→ stable but possibly non optimal (overestimating uncertainty)

Improvable allowing violation of the bound (see appendix B.3)
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Combining models and inventing new ones

Models can be combined together, requiring two or more conditions at the same time

So far we have seen three conditions

|δk(µ)| ≤ cak

|δk(µ)| ≤ λrk−1(µ)

|rk(µ)| ≤ ηrk−1(µ)

that are not contradictory and can thus hold at the same time

The models are implemented in a code named THunc, that provides a custom model
feature to implement any customized model

Putting all conditions together....
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Higgs in gluon fusion at LHC: probability distributions
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From distributions to statistical estimators

 0

 10

 20

 30

 40

 50

 60

 70

LO NLO NNLO N3LO

Custom model

µ = mH/2

µF = mH/2

mH = 125 GeV
Σ

 =
 c
ro
s
s
 s
e
c
tio
n

  
[p
b
]

knowledge of

std dev
95% DoB
68% DoB
median
mean
conventional

Higgs production in gluon fusion at LHC 13 TeV, mH = 125 GeV

Marco Bonvini Theory uncertainties from missing higher orders 40



The abc model [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]

It’s a generalisation of the geometric behaviour model,

geo: |δk(µ)| ≤ cak abc : −c + b ≤
δk(µ)

ak
≤ c + b

depends on three hidden parameters a, b, c
They keep requiring |a| ≤ 1, but the sign can be negative (to describe alternating
sign series)
Moreover the b parameter accounts for asymmetric behaviour

Comparison for
∑
k≥0

xk, x = 0.7
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Figure 3. Top left panel: The probability distribution from the abc-model for Sest
n+1 for different

values of n for the geometric series with x = 0.7. Top right panel: The same as the left panel, but we
show the probability for the scaled deviation from the known correction (Sest

n+1�Sn+1)/|Sn+1�Sn|.
Bottom left panel: The median (plus), 68% CI (errorbox) and 95% CI (errorbar) for the posterior of
Sest

n+1 , computed from the abc (blue) and geometric (red) models using information on the previous
orders. The exact values of Sn are shown as black circles. Bottom right panel: The same as the
left panel, but the exact Sn value is subtracted from Sest

n+1 and the difference is normalised by
|Sn+1 � Sn|.

distribution Pabc(�n) analytically in terms of Gauss’ hypergeometric function, allowing for
a fast and efficient numerical implementation of the model.

In the top left panel of figure 3 we show the probability distributions for the partial
sums Sn :=

Pn
k=0 �k =

Pn
k=0 xk for x = 0.7 and n  7 using the abc-model with parameter

values (✏,!, ⇠, ⌘) = (0.1, 1, 2, 0.1) (see the discussion below for the choice of these values).
For n = 0, the probability distribution is symmetric and centred around S0 = 1. For
n > 0 the distributions are clearly not symmetric and become more and more peaked
as n increases. In the top right panel we show the probability distributions for the scaled
deviation from the known correction (Sest

n+1�Sn+1)/|Sn+1�Sn| = (�est
n+1��n+1)/|�n+1|. This

allows us to compare different orders without the suppression of the expansion parameter.
In this plot the Sn+1 value corresponds to zero on the x-axis, while Sn corresponds to ±1

(depending on the sign of �n+1). Again, for n = 0 the distribution is centred around the
initial value S0, but for each subsequent order, the distribution shifts towards the true value.
We note that the shape of the distribution does not change significantly beyond n = 3, so

– 19 –

Note: I have proposed a different way to account for a sign pattern, which can be
applied to any symmetric model (app. B.5)
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Validation using known sums
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Posterior distribution for the scale µ
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Posterior distribution for the scale µ
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Scan of priors for the scale µ
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Scan of priors for the model parameters
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Explicit inference procedure in Cacciari-Houdeau

Probability of a missing higher order coefficient ck given the knowledge of the first
c0, ..., cn orders

P (ck|c0, ..., cn) =
P (ck, c0, ..., cn)

P (c0, ..., cn)
(k > n)

=

∫
dc̄ P (ck, c0, ..., cn, c̄)∫
dc̄ P (c0, ..., cn, c̄)

=

∫
dc̄ P (ck, c0, ..., cn|c̄)P0(c̄)∫
dc̄ P (c0, ..., cn|c̄)P0(c̄)

=

∫
dc̄ P (ck|c̄)P (c0|c̄) · · ·P (cn|c̄)P0(c̄)∫

dc̄ P (c0|c̄) · · ·P (cn|c̄)P0(c̄)

having used

P (A,B) = P (A|B)P (B), P (A) =

∫
dB P (A,B)

The probability for the full observable is given by

P (Σ|c0, ..., cn) =

∫
dcn+1dcn+2 · · · P (cn+1, cn+2, ...|c0, ..., cn)δ

(
Σ −

∞∑
k=0

ckα
k
s

)
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