
Institut für Theoretische Physik - University of Heidelberg

Modern Machine Learning 
Tools for Unfolding

IRN Terascale @ Roma, 16/04/2024

[arXiv: soon!] Nathan Huetsch, Javier Mariño Villadamigo, Anja Butter, Theo Heimel, Tilman Plehn



‣ Distributions  of a physics object  to be measured in experiments are not directly accessiblef(t) t

2

Fundamentals of unfolding

f(t)



‣ Distributions  of a physics object  to be measured in experiments are not directly accessiblef(t) t

2

Fundamentals of unfolding

f(t)
g(s)

f(t)



‣ Distributions  of a physics object  to be measured in experiments are not directly accessiblef(t) t

2

Fundamentals of unfolding

f(t)
g(s)

f(t)

‣ With MC, the direct process from an assumption  to  can be simulatedf(t)model g(s)



‣ Distributions  of a physics object  to be measured in experiments are not directly accessiblef(t) t

2

Fundamentals of unfolding

f(t)
g(s)

f(t)

‣ With MC, the direct process from an assumption  to  can be simulatedf(t)model g(s)

‣ The inverse process is ill-posed: small changes in  can cause large shifts in the g(s) f̃(t)



‣ Distributions  of a physics object  to be measured in experiments are not directly accessiblef(t) t

2

Fundamentals of unfolding

f(t)
g(s)

f(t)

‣ With MC, the direct process from an assumption  to  can be simulatedf(t)model g(s)

‣ The inverse process is ill-posed: small changes in  can cause large shifts in the g(s) f̃(t)

Unfolding

ReconstructedHard



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt
detector 
response 

matrix



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt ri = ∑
j

Rij ⋅ tj
binningdetector 

response 
matrix



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt ri = ∑
j

Rij ⋅ tj
binningdetector 

response 
matrix

‣ Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt ri = ∑
j

Rij ⋅ tj
binningdetector 

response 
matrix

‣ Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.

‣ General need for regularization: trade-off between bias and statistical uncertainty



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt ri = ∑
j

Rij ⋅ tj
binningdetector 

response 
matrix

‣ Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.

‣ General need for regularization: trade-off between bias and statistical uncertainty

‣ Requires binning and can only unfold a few dimensions



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt ri = ∑
j

Rij ⋅ tj
binningdetector 

response 
matrix

With neural networks:

‣ ML-based unfolding

‣ Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.

‣ General need for regularization: trade-off between bias and statistical uncertainty

‣ Requires binning and can only unfold a few dimensions



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt ri = ∑
j

Rij ⋅ tj
binningdetector 

response 
matrix

With neural networks:

‣ ML-based unfolding

‣ Unbinned:  advantageous if one wants to derive quantities from the unfolding observables

‣ Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.

‣ General need for regularization: trade-off between bias and statistical uncertainty

‣ Requires binning and can only unfold a few dimensions



3

Why neural networks?
Traditionally:

‣ Matrix-based unfolding

g(s) = ∫ R(s | t) f(t) dt ri = ∑
j

Rij ⋅ tj
binningdetector 

response 
matrix

With neural networks:

‣ ML-based unfolding

‣ Unbinned:  advantageous if one wants to derive quantities from the unfolding observables

‣ Allows to unfold (and account for correlations in) many dimensions

‣ Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.

‣ General need for regularization: trade-off between bias and statistical uncertainty

‣ Requires binning and can only unfold a few dimensions
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Several approaches

Event reweighting

Distribution mapping

Conditional phase space sampling

‣ Omnifold [1911.09107]


‣ (*)

‣ Direct Diffusion [2311.17175]


‣ Schrödinger Bridge [2308.12351]


‣ (*)

‣ GANs [1912.00477]


‣ Latent Diffusion [2305.10399]


‣ Conditional Flow Matching [2305.10475]


‣ cINN [2212.08674, 2006.06685]


‣ (*)

(*) These are not comprehensive lists. For a more extensive catalogue see for example the HEP ML Living Review

https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2311.17175
https://arxiv.org/abs/2308.12351
https://arxiv.org/abs/1912.00477
https://arxiv.org/abs/2305.10399
https://arxiv.org/abs/2305.10475
https://arxiv.org/abs/2212.08674
https://arxiv.org/abs/2006.06685
https://iml-wg.github.io/HEPML-LivingReview/
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Direct Diffusion (DiDi)

x1 ∼ preco(xreco)

‣ Connect  and  with a linear trajectory:x0 x1

‣ The NN is regressed to predict the velocity field:

‣ For sampling, solve ODE starting from :x1

‣ Loss:

x(t) = (1 − t)x0 + tx1

vθ(x(t), t) ≈
dx(t)

dt
= x1 − x0

x0 = x1 + ∫
0

1
vθ(x(t), t)dt

dx(t)
dt

= vθ(x(t), t)
x0 ∼ pmodel(xhard)

ℒDiDi = ⟨[vθ((1 − t)x0 + tx1, t) − (x1 − x0)]2⟩t∼𝒰([0,1]), (x0,x1)∼p(xhard,xreco)
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Several methods
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Conditional Flow Matching (CFM)

ϵ = z ∼ platent(z)x0 ∼ pmodel(xhard |xreco)

dx(t)
dt

= vθ(x(t), t |xreco)
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Conditional Flow Matching (CFM)

ϵ = z ∼ platent(z)x0 ∼ pmodel(xhard |xreco)

dx(t)
dt

= vθ(x(t), t |xreco)

x(t) = (1 − t)x0 + tϵ

vθ(x(t), t |xreco) ≈
dx(t)

dt
= ϵ−x0

x0 = ϵ +∫
0

1
vθ(x(t), t |xreco)dt

ℒCFM = ⟨[vθ((1 − t)x0 + tϵ, t, xreco) − (ϵ−x0)]2⟩t∼𝒰([0,1]), (x0,xreco)∼p(xhard,xreco), ϵ∼𝒩(0,1)

‣ Connect  and  with a linear trajectory:x0 ϵ

‣ The NN is regressed to predict the velocity field:

‣ For sampling, solve ODE starting from :ϵ

‣ Loss:
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gθ(xhard |xreco)

z ∼ platent(z)

Conditional INN (cINN)

g−1
θ (z |xreco)

x0 ∼ pmodel(xhard |xreco)



11

gθ(xhard |xreco)

z ∼ platent(z)

‣ Bijective function between  and :platent(z) pmodel(xhard |xreco)

Conditional INN (cINN)

g−1
θ (z |xreco)

pmodel(xhard |xreco) = platent(z) det
∂gθ(xh, xr)

∂xhard
= plat.(z) det Jgθ

x0 ∼ pmodel(xhard |xreco)



11

gθ(xhard |xreco)

z ∼ platent(z)

‣ Bijective function between  and :platent(z) pmodel(xhard |xreco)

‣ Pairs  are passed through the NN to the latent space:(xhard, xreco)

Conditional INN (cINN)

g−1
θ (z |xreco)

pmodel(xhard |xreco) = platent(z) det
∂gθ(xh, xr)

∂xhard
= plat.(z) det Jgθ

z = gθ(xhard |xreco)

x0 ∼ pmodel(xhard |xreco)



11

gθ(xhard |xreco)

z ∼ platent(z)

‣ Bijective function between  and :platent(z) pmodel(xhard |xreco)

‣ Pairs  are passed through the NN to the latent space:(xhard, xreco)

‣ Once trained, one can sample -conditioned on reco- from the latent:

Conditional INN (cINN)

g−1
θ (z |xreco)

pmodel(xhard |xreco) = platent(z) det
∂gθ(xh, xr)

∂xhard
= plat.(z) det Jgθ

phard(x) ≈ pmodel(xhard |xreco)

z = gθ(xhard |xreco)

x0 ∼ pmodel(xhard |xreco)



11

gθ(xhard |xreco)

z ∼ platent(z)

‣ Bijective function between  and :platent(z) pmodel(xhard |xreco)

‣ Pairs  are passed through the NN to the latent space:(xhard, xreco)

‣ Once trained, one can sample -conditioned on reco- from the latent:

‣ Loss:

Conditional INN (cINN)

g−1
θ (z |xreco)

pmodel(xhard |xreco) = platent(z) det
∂gθ(xh, xr)

∂xhard
= plat.(z) det Jgθ

phard(x) ≈ pmodel(xhard |xreco)

z = gθ(xhard |xreco)

x0 ∼ pmodel(xhard |xreco)

ℒcINN = − ⟨log pmodel(xhard |xreco)⟩(x0,x1)∼p(xhard,xreco)
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 + jets events generated at  with Pythia 8.244 and Delphes 
simulation 3.5.0 available on Zenodo. Slight modification from [1911.09107] dataset
Z(pT > 200 GeV) s = 14 TeV

 + jets eventsZ

https://doi.org/10.5281/zenodo.10668638
https://arxiv.org/abs/1911.09107
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 + jets events generated at  with Pythia 8.244 and Delphes 
simulation 3.5.0 available on Zenodo. Slight modification from [1911.09107] dataset
Z(pT > 200 GeV) s = 14 TeV

Six widely-used jet substructure observables:

 + jets eventsZ

‣ Jet mass 


‣ Jet width 


‣ Jet constituents multiplicity 


‣ Groomed mass 


‣ Groomed momentum fraction 


‣ N-subjettiness ratio 

m

w

N

log ρ = 2 log (mSD / pT)

zg = τβ=1
1

τ21 = τβ=1
2 /τβ=1

1

https://doi.org/10.5281/zenodo.10668638
https://arxiv.org/abs/1911.09107
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Unfolded observables (DiDi)
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Unfolded observables (CFM & cINN)
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Matrix elements are evaluated at  using MadGraph_aMC@NLO. Showering and 
hadronization are simulated with Pythia8, and detector response is simulated with Delphes with 
the standard CMS card. For a detailed description see [2305.10399].

s = 13 TeV

Top-pair events: unfolding to parton-level

qq̄/gg → tt̄ → (bl+νl)(b̄qq)

https://arxiv.org/abs/2305.10399
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the standard CMS card. For a detailed description see [2305.10399].

s = 13 TeV

‣ 4 DoFs for the lepton


‣ 3 DoFs for the missing 


‣ 5 DoFs per jet (4-momentum + b-tag)

⃗pν

Unfolding from 6 final-state particles :(blν)(bqq)

Top-pair events: unfolding to parton-level

27 DoFs at reco-level

qq̄/gg → tt̄ → (bl+νl)(b̄qq)

19 DoFs at parton-level

https://arxiv.org/abs/2305.10399


16

‣ Unfolding to parton-level means inverting the entire forward simulation chain

Much harder problem:

Top-pair events: unfolding to parton-level



16

‣ Unfolding to parton-level means inverting the entire forward simulation chain

‣ Faithful modeling of complex correlations at parton-level, i.e.,  boson and top mass W

Much harder problem:

Top-pair events: unfolding to parton-level



16

‣ Unfolding to parton-level means inverting the entire forward simulation chain

‣ Faithful modeling of complex correlations at parton-level, i.e.,  boson and top mass W

‣ Non-trivial combinatorics between physics objects at both levels

Much harder problem:

Top-pair events: unfolding to parton-level



16

‣ Unfolding to parton-level means inverting the entire forward simulation chain

‣ Faithful modeling of complex correlations at parton-level, i.e.,  boson and top mass W

‣ Non-trivial combinatorics between physics objects at both levels

Much harder problem:

Adding transformers:

Top-pair events: unfolding to parton-level



16

‣ Unfolding to parton-level means inverting the entire forward simulation chain

‣ Faithful modeling of complex correlations at parton-level, i.e.,  boson and top mass W

‣ Non-trivial combinatorics between physics objects at both levels

Much harder problem:

Adding transformers:

‣ Tra-CFM as an extension to CFM [2310.07752]. A transformer is employed to encode 
correlations at reco and parton-level.

Top-pair events: unfolding to parton-level

https://arxiv.org/abs/2310.07752


‣ Unfold:
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Results: naive parametrization
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‣ Unfold:
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Results: mass parametrization
Originally introduced in [2308.00027]
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https://arxiv.org/abs/2308.00027
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‣ ML-based unfolding is an unbinned transformative analysis tool
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Summary and outlook

‣ ML-based unfolding is an unbinned transformative analysis tool

‣ Distribution mapping is relatively fast to train can be used on matched and unmatched data

‣ CFM and cINN are best suited to describe complex detector effects, but they are also more 
complex architectures to train

‣ Parton-level unfolding is a reasonably complicated task, but transformers and adequate 
parametrization help greatly in accounting for correlations and resonances

‣ All the tools within percent level precision across many observables 

‣ Compare to other methods, single-event unfolding, model dependence, and more…

What is next?



Thanks for your attention!



Backup
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Direct Diffusion (DiDi)

x1 ∼ preco(xreco)

‣ Connect  and  with a linear trajectory:


‣ The NN is regressed to predict the velocity field:


‣ For sampling, solve ODE starting from :


‣ Loss:

x0 x1

x1

x(t) = (1 − t)x0 + tx1

vθ(x(t), t) ≈
dx(t)

dt
= x1 − x0

x0 = x1 + ∫
0

1
vθ(x(t), t)dt

dx(t)
dt

= vθ(x(t), t)
x0 ∼ pmodel(xhard)

ℒDiDi−P = ⟨[vθ((1 − t)x0 + tx1, t) − (x1 − x0)]2⟩t∼𝒰([0,1]), (x0,x1)∼p(xhard,xreco)

ℒDiDi−U = ⟨[vθ((1 − t)x0 + tx1, t) − (x1 − x0)]2⟩t∼𝒰([0,1]), x0∼p(xhard),x1∼p(xreco)
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 + jets events generated at  with Pythia 8.244 and Delphes 
simulation 3.5.0 available on Zenodo
Z(pT > 200 GeV) s = 14 TeV

‣ Jet mass 


‣ Jet width 


‣ Jet constituents multiplicity 


m

w

N

Networks of ~3M parameters


19M training events and 1M validation events


~4M events for testing

Six widely-used jet substructure observables:

 + jets eventsZ

https://doi.org/10.5281/zenodo.10668638
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Optimal transport (DiDi)
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Optimal transport (CFM)
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Optimal transport (cINN)
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Single events
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Single event unfolding
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Single event unfolding
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Single event unfolding
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Calibration
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Calibration
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Matrix elements are evaluated at  using MadGraph_aMC@NLO. Showering and 
hadronization are simulated with Pythia8, and detector response is simulated with Delphes with 
the standard CMS card. For a detailed description see [2305.10399].

s = 13 TeV

‣ 4 DoFs for the lepton


‣ 3 DoFs for the missing 


‣ 5 DoFs per jet (4-momentum + b-tag)

pν
T

Unfolding from 6 final-state particles :(blν)(bqq)

Top-pair events: unfolding to parton-level

Total: 27 DoFs at reco-level 

and 19 DoFs at parton-level

Non-bayesian networks


cINN ~ 8M parameters, CFM ~ 6M, Tra-CFM, Transfermer ~ 3M


10M training events and 1M testing events

https://arxiv.org/abs/2305.10399
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Adding transformers:

‣ For transfermer, likelihoods are factorized autoregressively on all previous parton-level 
dimensions and reco-level event:


‣ For Tra-CFM, the transformer is made time-dependent and a small CFM predicts velocities at 
each different dimension:

pmodel(xpart |xreco) =
n

∏
i=1

pmodel(x(i)
part | c(x(0)

part, …, x(i−1)
part , xreco))

Top-pair events: unfolding to parton-level

v(xpart(t), t |xreco) = (v(1)(c(1), t), …, v(n)(c(n), t))



36

Transfermer

Top-pair events: unfolding to parton-level
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Tra-CFM

Top-pair events: unfolding to parton-level


