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» Distributions /(7) of a physics object 7 to be measured in experiments are not directly accessible
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» With MC, the direct process from an assumption /(7)"°““' to ¢(s) can be simulated

» The inverse process is ill-posed: small changes in g(s) can cause large shifts in the f(t)
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» Distributions /(7) of a physics object 7 to be measured in experiments are not directly accessible
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Why neural networks?

Traditionally:

> Matrix-based unfolding

5(s) = Jf(t) dt —)

detector binning
response
matrix

Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.

”i=sz:f‘tj
j

General need for regularization: trade-off between bias and statistical uncertainty

Requires binning and can only unfold a few dimensions

With neural networks:
» ML-based unfolding
Unbinned: advantageous if one wants to derive quantities from the unfolding observables

Allows to unfold (and account for correlations in) many dimensions



Several approaches

Event reweighting Conditional phase space sampling
> Omnifold [1911.09107] > GANSs [1912.00477]
> (%) » Latent Diffusion [2305.10399]

» Conditional Flow Matching [2305.10475]
» CcINN [2212.08674, 2006.06685]

> ()

Distribution mapping

» Direct Diffusion [2311.17175]
> Schrddinger Bridge [2308.12351]

> ()

(") These are not comprehensive lists. For a more extensive catalogue see for example the HEP ML Living Review
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Direct Diffusion (DiDi)

a0
dr

— V@(-X(t)a t)

AL ~P reco(xreco)

» Connect Xy and x; with a linear trajectory: x(t) = (1 = H)xg + tx,
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dx(7)

— V@(X(f), t)
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Direct Diffusion (DiDi)

XI‘ cCO

» Connect Xy and x; with a linear trajectory: x(t) = (1 = H)xg + tx,

dx(t)

» The NN is regressed to predict the velocity field: Ve(x(2), 1) & e Rt

0
» For sampling, solve ODE starting from Xx;: Xo=Xx;+ | vy(x(2), H)dt



>

Ao ~ P model(xhard)

Connect X, and x; with a linear trajectory:

Direct Diffusion (DiDi)

dx(7)
dt

The NN is regressed to predict the velocity field:

<:>

- . V@(X(f), t)

x(t) = (1 — Dxy + 1x

dx(t) B

Vo(x(1), 1) = m

X1 — X

0

For sampling, solve ODE starting from Xx;: X = X + J Vo(x(2), 1)dt

L oss:

Zbipi = <[V9((1 — )xg +1x), 1) — (X — Xo)]2>

1

! N%( 10,1] )9 (-XOaxl)Np (xhard’xreco)

)



Several methods

Conditional phase space sampling
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Conditional Flow Matching (CFM)

<:>

dx(7)
dt — V@(X(t), [ ‘ xrec())
Xy ™ pmodel(xhard | xreco) €= platent(z)
» Connect Xy and € with a linear trajectory: x(1) = (1 = H)xy + te
dx(t)

» The NN is regressed to predict the velocity field: Vo(X(1), 1| Xpeeo) & rraR

0
» For sampling, solve ODE starting from e: Xg =€ +[ Vy(X(1), | Xep)dt

1

_ B 2
> Loss:  Zopy = ([e((1 = Dxg + 16, 1, Xpeo) = (6=Xp)] >r~%([0,11), (X0:Xreco) P Fnarastreco)s E~ A (0,1)



Several methods

Conditional phase space sampling

Omnifold | ] GANS [ ]
() Latent Diffusion [ ]

Conditional Elow.Matching,[o,

i'fCINN [2212 08674, 2006. 06685]

10475]

Distribution mapping

» Direct Diffusion [2311.17175]

Schrodinger Bridge | ]
()

(") These are not comprehensive lists. For a more extensive catalogue see for example the HEP ML Living Review
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Conditional INN (cINN)

g H(Xhard ‘ Areco

—1
6 (Z | xreco
Ao~ P model(xhard ‘ Areco <~ platent(z)
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Conditional INN (cINN)

g H(Xhard ‘ xreco)
ﬁ

<:>

—

—1
g@ (Z | XI‘GCO)
Xo ~ P model(xhard ‘ xreco) < platent(z)

> Bijective function between py,i.n(2) @and Prodel®hard | Xreco):

{ ag Q(Xha xr)

OXhard

pmodel(xhard ‘ xreco) =P latent(z) de =P lat.(Z) | det Jge |
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g H(Xhard ‘ xreco)
ﬁ

<:>

—

—1
g@ (Z | XI‘GCO)
Xo ~ P model(xhard ‘ xreco) < platent(z)

> Bijective function between py,i.n(2) @and Prodel®hard | Xreco):

{ ag Q(Xha xr)

Pmodel¥hard | Xeco) = Platent(2) | de 3
*hard

— b (2) |det Jg9|

> Pairs (X,,.4; ) are passed through the NN to the latent space: 7= 8s(*hard | Xreco)

xI’GCO

» Once trained, one can sample -conditioned on reco- from the latent:  Phard™®) & Pmodeihard | Xreco)
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Conditional INN (cINN)

g H(Xhard ‘ xreco)
ﬁ

<:>

1
gy (2] Xreco)

Ao~ P model(xhard ‘ xreco)

>

Bijective function between py,...«(2) and p..oqe1Xnara | X;

Pairs (Xhard9

Once trained, one can sample -conditioned on reco- from the latent:

. oss:

€CO) )

{ ag Q(Xha xr)

axhard

P model(xhard ‘ xreco) — platent(z) de

) are passed through the NN to the latent space:

xI’GCO

Z cINN — — <10g pmodel(xhard ‘ xreco)>(x0,x1)~p(xhard,xreco)

L~ P latent(z)

=P () |det,,

£ = gH(xhard ‘ xreco)

P hard(x) ~ p model(xhard ‘ xreco)
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Z + Jets events

Z(pr > 200 GeV) + jets events generated at \/E = 14 TeV with Pythia 8.244 and Delphes
simulation 3.5.0 available on Zenodo. Slight modification from [1911.0910/] dataset
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Z + Jets events

Z(pr > 200 GeV) + jets events generated at \/E = 14 TeV with Pythia 8.244 and Delphes
simulation 3.5.0 available on Zenodo. Slight modification from [1911.0910/] dataset

Six widely-used jet substructure observables:

» Jet mass m » Groomed mass log p = 2log (mqp / p7)

» Jet width w » Groomed momentum fraction Ty = Tlﬁ =1

» Jet constituents multiplicity NV » N-subjettiness ratio 7, = 7/=!/7/=!
2 '
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Unfolded observables (DiDi)
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Top-palir events: unfolding to parton-level

Matrix elements are evaluated at \/E = 13 TeV using MadGraph_aMC@NLO. Showering and

hadronization are simulated with Pythia8, and detector response is simulated with Delphes with
the standard CMS card. For a detailed description see [2305.10399].

qq/gg — tt — (bl*v))(bqq)
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Matrix elements are evaluated at \/E = 13 TeV using MadGraph_aMC@NLO. Showering and

hadronization are simulated with Pythia8, and detector response is simulated with Delphes with
the standard CMS card. For a detailed description see [2305.10399].

qq/gg — tt — (bl*v))(bqq)

Unfolding from 6 final-state particles (blv)(bqq):

> 4 DoFs for the lepton

» 3 DoFs for the missing ]—51/ 27 DoFs at reco-level

> 5 DoFs per jet (4-momentum + b-tag)

> (pT,bl: nbl’ ¢blapT,l: UIE (.bl:pT,w My ¢v:pT,bh: T)bh: ¢bh’ mqlapT,qla nqla ¢q1;pT,q22 quza ¢q2)

19 DoFs at parton-level
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Top-palir events: unfolding to parton-level

Much harder problem:

> Unfolding to parton-level means inverting the entire forward simulation chain

» Faithful modeling of complex correlations at parton-level, i.e., W boson and top mass

> Non-trivial combinatorics between physics objects at both levels

Adding transformers:

» Tra-CFM as an extension to CFM [2310.07/752]. A transformer is employed to encode
correlations at reco and parton-level.
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Results: naive parametrization

» Unfold: (pT,bl’ Ny, ¢b1:pT,l: UIE ¢l:pT,v’ MNy> ¢v:pT,bh: U ¢bh: Mgy >PT,q.0 Mgy ¢q1:pT,qza Ng,> (:qu)
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Results: mass parametrization

> UnfOId (mt:th:nt: tan3nW9¢W9(md1) ndl ¢ )

Originally introduced in [2308.0002/]
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Summary and outlook

» ML-based unfolding is an unbinned transformative analysis tool
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Summary and outlook

ML-based unfolding is an unbinned transformative analysis tool
Distribution mapping is relatively fast to train can be used on matched and unmatched data

CFM and cINN are best suited to describe complex detector effects, but they are also more
complex architectures to train

Parton-level unfolding is a reasonably complicated task, but transformers and adequate
parametrization help greatly in accounting for correlations and resonances

All the tools within percent level precision across many observables

What is next?

Compare to other methods, single-event unfolding, model dependence, and more...

19



Thanks for your attention!



Backup



>

Direct Diffusion (DiDi)

<:>

dx(7)
dt — Vﬁ(x(t)a t)
Xo ~ P model(xhard) X ~P reco(xreco
Connect x; and x; with a linear trajectory: x(t) = (1 = xp + 1xy
dx(t)
The NN is regressed to predict the velocity field: Vo(x(1), 1) = e Rt

For sampling, solve ODE starting from x;: Xy =x; + J

L oss:

0

1
Zipi—p = {[Ve((1 = Dxg + 131, 1) = (] = X))]*)

Zipi-u = {[Ve((1 = Dxg + 1x1, 1) = (x; = xp)]*)

Vo(x(2), 1)dt

ti~%([0,1]), (x()axl)Np (Xhardaxreco)

i~2([0,1]), X0~DP Xnard) X1 ~P Xeco)

)

27



Z + Jets events

Z(pr > 200 GeV) + jets events generated at \/E = 14 TeV with Pythia 8.244 and Delphes
simulation 3.5.0 available on Zenodo

Six widely-used jet substructure observables:

» Jet mass m
» Jet width w

» Jet constituents multiplicity N

Networks of ~3M parameters

19M training events and 1M validation events

~4M events for testing

23
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Top-palir events: unfolding to parton-level

Matrix elements are evaluated at \/E = 13 TeV using MadGraph_aMC@NLO. Showering and

hadronization are simulated with Pythia8, and detector response is simulated with Delphes with
the standard CMS card. For a detailed description see [2305.10399].

Unfolding from 6 final-state particles (blv)(bqq):
> 4 DoFs for the lepton

Total: 27 DoFs at reco-level
» 3 DoFs for the missing p;

and 19 DoFs at parton-level
> 5 DoFs per jet (4-momentum + b-tag)
Non-bayesian networks

cINN ~ 8M parameters, CFM ~ 6M, Tra-CFM, Transfermer ~ 3M

10M training events and 1M testing events
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Top-palir events: unfolding to parton-level

Adding transformers:;

> For transfermer, likelihoods are factorized autoregressively on all previous parton-level
dimensions and reco-level event:
(0)
X

B . 1
pmodel(xpart ‘ xreco) — Hpmodel(xlggrt ‘ C( part® "’ xé;rt )9 xreco))
=1

> For Tra-CFM, the transformer is made time-dependent and a small CFM predicts velocities at
each different dimension:

V(Xpart(t)a [ ‘ ‘XI'ECO) — (V(l)(c(l)a t)a R V(Ifl)(c(l’l), t))
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Top-palir events: unfolding to parton-level

Tra-CFM
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