Bootstrapping form factors through
six loops and beyond

Alexander Tumanov

Based on [2308.08432, upcoming] with Benjamin Basso and Lance Dixon

LAPTh, 15.02.24



Can we “solve” scattering in ./ = 4 SYM?
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How do we compute amplitudes perturbatively?
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Perturbative bootstrap

Choosing an observable ( , —_—

Formfactor : Fp(ky, ..., kn) = (k1, ..., kn|O(q)|0)

Class of functions ( , , —_—

form factors of protected operators: ,

Symbol (replaces polylogarithms with a large vector space that captures their branch cut structure)

(logz)" - 2®...® 2
. Length of the symbol = transcendentality
Li,(2) > —(1—2) 2R ...0 2

Alphabet (entries of the symbol = “letters”) {CL, b, Cy d, c, f, 2 }

Typical ansatz of transcendentality 4: E ikl Ay X Q; X ap X a;



Choosing an observable

The simplest class of local operators ./ = 4 SYM are the [protected]

| (chiral lagrangian) |

number of
particles




Choosing an observable

Divergent parts of ./ = 4 amplitudes/form factors are fixed by symmetry. [Bern, Dixon, Smirnov ’05]

The first non-trivial finite part appears at n = 6 for the amplitude and at n = 3 for form factors.

Three-point form factor of Tr ¢* Three-point form factor of Tr ¢° '

[Dixon, McLeod, Wilhelm ’20]
[Dixon, Gurdogan, McLeod, Wilhelm ’22]

[Dixon, Basso, AT '24]

The function space (conjecturally) is the same: generalized polylogarithms, six letter symbol alphabet:

u v o w 1l—u l—v 1—w

La:{aabacad7€7f}:{ o 7 % }

vw wu uwv u v W

512 523 531 . .
—, U= W = —— u+v+w=1, ¢gisthe momentum carried by the operator
q

Q> Q>

where U =

n = 3 form factors have two kinematic degrees of freedom.



Reducing the function space size

v v w l—u l—v 1—w
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At weight w the naive ansatz has 6" terms. Thankfully, there are some some unexpected constraints that limit it

significantly, called the . They forbid certain combinations of letters from appearing:
a@d... ...d®a... ...d®e... ...aR4f®Db... +/(dihedralimages)
Additionally, we also have the so-called , that forbid branch cuts at non-physical thresholds:

The resulting function space has the following size:

w 1 2 3 4 9 6 7 8

C symbols 3 9 21 48 108 249 567 1290
C functions 3 9 22 52 122 284 654 1495




Imposing the constraints

There is a natural action of the dihedral group D, generated by two transformations:

cycle: © — v —w — U a—b—c—a d—e—f—d
flip: U 4> v a<>b d<<re

Both the form factors are invariant under it. Another type of constraints that we are imposing are the
multiple-final-entry conditions.

Trgp* ..&a . &b . 2C + .. Qae@d .. Qe®d ..00bf~b2d) +

+ (dihedral images)
single-final-entry

Tr ¢p°: W +

These constraints can be loosely associated with certain supersymmetric Ward identities (Q equation),
but are much stronger than what one would expect.

double-final-entry

Lastly, at L loops, we expect L discontinuity at u — O of the Tr gbz form factor to vanish. For the Tr 453
form factor, we expect (L + 1)3t discontinuity to vanish instead.



Intermediate results

L 2 3 4 5 6 7 8 L 2 3 4 5 6
symbols in C 48 249 1290 6654 34219 7777 7777  functions in C 52 284 1495 ~8000 77777
dihedral symmetry 11 51 247 1219 7777 7777 7777  dihedral symmetry 13 63 302 ~1400 7777

(L — 1) final entries 5 9 20 44 86 191 191 (L —1) final entries 4 15 47 190 407

Lth discontinuity 2 5 17 38 75 171 164 (L +1)*t discontinuity 3 13 43 182 394

Integrability



[Alday, Maldacena ’07]

Amplitude — Wilson Loop duality

AdS/CFT ‘A\dS/CFT

T-duality

\ duality 7




Form Factor — Wilson loop duality for Tr ¢*

qzzki

duality

[Brandhuber, Spence, Travaglini, Yang ’10]
Tr ¢*

At one loop, corrections arise from dressing the Wilson loop with gluon exchanges between edges:

Wop =146 W O (9°)
i< ] ~




Form Factor — Wilson loop duality for Tr ¢°

/\ < 0"\

[Basso, AT 23]

Tr ¢°

To compensate for the charge at the infinity, the Wilson loop needs to be “charged” accordingly. [Caron-Huot ’10]

r'

= NN o)

In the general case of It ¢k, the asymptotic state consists of k — 2 zero-momentum scalars.




Tr ¢° one-loop check

We also tested this duality at one loop. Two types of diagrams need to be considered:

Typical 1-loop form factor ‘ Operator renormalisation

corrections j diagrams
Because the operator is protected, diagrams of add up to zero. The diagrams of the first kind

add up perfectly to the expected result.



m =2 amplituhedron

S R+ R+ (ki)
Z =2 (Wi+1) where  (ijk) = Y GRYR)

0% ({[igkt)nm)
(17kl) (7 kIm) (klmi) (Imijg)(maijk)

These 3-brackets are 2D versions of the standard R-invariant |ijkim]| =

This result is nothing but a triangulation of a polygon:

4 4
1
n
tree __ . . tree _ tree __ . .
Wit = — E (Lit + 1) = — E (T115T3) W3t = E (%7 + 1)
i=2 TeT, =
1

~% . This forms an amplituhedron A, eWithm=2andk'=k — 2.
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For general k we find W,'>¢ =



Wilson Loop OPE & Form Factor OPE

[Alday, Gaiotto, Maldacena, Sever, Vieira '11] [Sever, AT, Wilhelm ’20]

Wi~ Y P(0r) P(ih1]t2) P(2]0) Wso~ D PO1) P(¢1[1ha) P(ihalths) Folis)
Vi Vi




Back to bootstrapping: imposing the constraints

L 2 3 4 5 6 7 8 L 2 3 4 5 6
symbols in C 48 249 1290 6654 34219 ???? ????  functions in C 52 284 1495 ~8000 7?7777
dihedral symmetry 11 51 247 1219 7777 7777 7777  dihedral symmetry 13 63 302 ~1400 7777
(L —1) final entries 5 9 20 44 86 191 191 (L —1) final entries 4 15 47 190 407
L™ discontinuity 2 b 17 38 75 171 164 (L + 1)% discontinuity 3 3 43 182 394
collinear limit 0 1 2 8 19 70 6 OPE T! In*T 2 10 38 171 777
OPE T2 In*~ 1T 0 O 0 4 12 56 0 OPE T! In*—1T 1 6 31 158 777
OPE T2 Int2T 0 0 0 0 0 36 0 OPE T! In*—2T 0 2 20 137 322
OPE T2 Inl3T 0 0 0 0 0 0 0 OPE T! In* 2T 0 0 4 103 272
OPE T2 In“*T 0 0 0 0 0 0 0 OPET!Int™T 0 0 0 50 190
OPE T2 In'—=°T 0 0 0 0 0 0 0 OPE T! Int=°T 0 0 0 0 64
OPE T! In*—%T 0 O 0 0 0




Antipodal duality

Tr ¢°

Tr ¢°

3

Tr ¢°

antipodal map

antipodal map

NMHV

antipodal map

antipodal map

[Dixon, Gurdogan, McLeod, Wilhelm ’21]

[Dixon, Gurdogan, Liu, McLeod, Wilhelm ’22]



Future goals

Short term

Three-point form factor of Ir ¢3 at two loops (90% done).

Three-point form factor of Ir gb4 at three loops.

Unprotected operators (Konishi). Potential overlap with the Quantum Spectral Curve program.

Finding a critical amount of hidden constraints on the function spaces of amplitudes and form factors to make
bootstrap work without integrability. If it’s possible, we can turn loop calculations into a linear algebra problem!

Understanding the physical reasons behind the emergence of the antipodal duality, extended Steinmann-like
relations and multiple-final-entry constraints.



Form Factor Transitions
)\ NN

vac) FF)  [pa?) |gid") .. 61)  |FGF) [pagit™) |9i0id)

Wio(S,T) =1+ W§?§(S) T2 + O(TY Wis(S,T) = WEH(S) T + WY (S) T? + O(T")

Terms In this expansion can be computed exactly in the coupling. For example,

du
W) T = [ 22 T 6 [y (wpw ()

Where E,(u) =1+ O(g°) and pg(u) = 2u + O(g”) are the flux tube energy and momentum of a scalar.  [Basso '11]

ﬂ¢(u) Is the scalar flux tube measure, while v¢(u) Is the tilted scalar flux tube measure, which involves the octagon kernel.



Tilted Bessel Kernels

oo
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[Beisert, Eden, Staudacher '07] [Basso, Dixon, Papathansiou ’20]
a = () — octagon kernel
Pentagon transitions " Form factor transitions |
P(y|0) Fo(w)
T t ¥ .‘
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