Bootstrapping form factors through six loops and beyond

Based on [2308.08432, upcoming] with Benjamin Basso and Lance Dixon

LAPTh, 15.02.24

Alexander Tumanov

general kinematics

Perturbative bootstrap

- Choosing an observable (amplitudes, form factors, ...)
 - Form factor : $F_{\mathcal{O}}(k_1, \ldots, k_n) = \langle k_1, \ldots, k_n | \mathcal{O}(q) | 0 \rangle$

Class of functions (classical polylogs, generalized polylogs, elliptic functions, ...)

form factors of protected operators: generalized polylogs, uniform transcendentality

Symbol (replaces polylogarithms with a large vector space that captures their branch cut structure) $(\log z)^n \to z \otimes \ldots \otimes z$

Length of the symbol = transcendentality $\operatorname{Li}_n(z) \to -(1-z) \otimes z \otimes \ldots \otimes z$

. . .

Alphabet (entries of the symbol = "letters") $\left\{ ($

$$a, b, c, d, e, f, \ldots \}$$

Typical ansatz of transcendentality 4: $\sum lpha_{ijkl} a_i \otimes a_j \otimes a_k \otimes a_l$

Choosing an observable

The simplest class of local operators $\mathcal{N} = 4$ SYM are the [protected] 1/2-BPS operators.

 $W_{k,n}$ - $\operatorname{Tr}\{\phi^k\}$

. . .

Choosing an observable

Divergent parts of $\mathcal{N} = 4$ amplitudes/form factors are fixed by symmetry. [Bern, Dixon, Smirnov '05]

The first non-trivial finite part appears at n = 6 for the amplitude and at n = 3 for form factors.

Three-point form factor of $\mathrm{Tr}\,\phi^2$ $W_{2.3}$

[Dixon, McLeod, Wilhelm '20] [Dixon, Gurdogan, McLeod, Wilhelm '22]

The function space (conjecturally) is the same: generalized polylogarithms, six letter symbol alphabet:

$$\mathcal{L}_{a} = \{a, b, c, d, e, f\} = \{\frac{u}{vw}, \frac{v}{wu}, \frac{w}{uv}, \frac{1-u}{u}, \frac{1-v}{v}, \frac{1-w}{w}\}$$

 s_{12} where $u = \frac{12}{q^2}$, $v = \frac{23}{q^2}$, $w = \frac{31}{q^2}$, u + v + w = 1, q is the momentum carried by the operator

n = 3 form factors have two kinematic degrees of freedom.

[Dixon, Basso, AT '24]

Reducing the function space size

 $\mathcal{L}_a = \{\frac{u}{vu}, \frac{v}{wu}, \frac{u}{wu}, \frac{u}{wu}\}$

At weight w the naive ansatz has 6^{w} terms. Thankfully, there are some some unexpected constraints that limit it significantly, called the Steinmann-like relations. They forbid certain combinations of letters from appearing:

$$\dots a \otimes d \dots \dots d \otimes a \dots \dots d \otimes e$$
.

Additionally, we also have the so-called first entry conditions, that forbid branch cuts at non-physical thresholds:

The resulting function space has the following size:

w	1	2	3	4	5	6	7	8
${\mathcal C} \ { m symbols}$	3	9	21	48	108	249	567	1290
${\mathcal C}$ functions	3	9	22	52	122	284	654	1495

$$\frac{w}{w}, \frac{1-u}{u}, \frac{1-v}{v}, \frac{1-w}{w}\}$$

 $\ldots a \otimes abc \otimes b \ldots$ + (dihedral images)

 $d \otimes \ldots \qquad e \otimes \ldots \qquad f \otimes \ldots$

Imposing the constraints

There is a natural action of the dihedral group D_3 generated by two transformations:

cycle: $u \to v \to w \to u$ a flip: $u \leftrightarrow v$

Both the form factors are invariant under it. Another type of constraints that we are imposing are the multiple-final-entry conditions.

These constraints can be loosely associated with certain supersymmetric Ward identities (\bar{Q} equation), but are much stronger than what one would expect.

Lastly, at *L* loops, we expect L^{th} discontinuity at $u \to 0$ of the $\operatorname{Tr} \phi^2$ form factor to vanish. For the $\operatorname{Tr} \phi^3$ form factor, we expect $(L+1)^{\text{st}}$ discontinuity to vanish instead.

$$b \to b \to c \to a, \quad d \to e \to f \to d$$

 $a \leftrightarrow b, \quad d \leftrightarrow e$

Intermediate results

$$\mathrm{Tr}\phi^2$$

L	2	3	4	5	6	7	8	L	2	3	4	5	6
symbols in \mathcal{C}	48	249	1290	6654	34219	????	????	functions in \mathcal{C}	52	284	1495	~ 8000	?????
dihedral symmetry	11	51	247	1219	????	????	????	dihedral symmetry	13	63	302	$\sim \! 1400$????
(L-1) final entries	5	9	20	44	86	191	191	(L-1) final entries	4	15	47	190	407
L^{th} discontinuity	2	5	17	38	75	171	164	$(L+1)^{st}$ discontinuity	3	13	43	182	394

Integrability

?

_

Form Factor — Wilson loop duality for $Tr \phi^2$

At one loop, corrections arise from dressing the Wilson loop with gluon exchanges between edges:

$$W_{2,n} = 1 + g^2 \sum_{i < j} \cdots \sum_{i < j} \cdots$$

_...

Form Factor — Wilson loop duality for $Tr \phi^3$

To compensate for the charge at the infinity, the Wilson loop needs to be "charged" accordingly. [Caron-Huot '10]

$$W_{3,n} = \sum_{i} \dots \bigwedge_{i \to j+1} \bigwedge_{i+1} \dots + \mathcal{O}\left(g^2\right)$$

In the general case of Tr ϕ^k , the asymptotic state consists of k-2 zero-momentum scalars.

$$\langle \phi(0) | \stackrel{\wedge}{\longrightarrow} \langle \phi(0) | \stackrel{\wedge}{\longrightarrow} \rangle$$

$Tr \phi^3$ one-loop check

We also tested this duality at one loop. Two types of diagrams need to be considered:

Because the operator is protected, diagrams of the second kind add up to zero. The diagrams of the first kind add up perfectly to the expected result.

m = 2 amplituhedron

$$W_{3,n}^{\text{tree}} = \sum_{i=1}^{n} \dots \bigwedge_{i \neq j} \bigwedge_{i+1} \bigwedge_{\dots} = -\sum_{i=2}^{n-1} (1ii+1) \quad \text{where} \quad (ijk) = \frac{\delta^{0|2}(\langle ij \rangle \eta_k^- + \langle jk \rangle \eta_i^- + \langle ki \rangle \eta_j^-)}{\langle ij \rangle \langle jk \rangle \langle ki \rangle}$$

These 3-brackets are 2D versions of the standard R-inv

This result is nothing but a triangulation of a polygon:

For general k we find $W_{k,n}^{\text{tree}} = \frac{1}{(k-2)!} \left(W_{3,n}^{\text{tree}} \right)^{k-2}$. This forms an amplituhedron $A_{m,n,k'}$ with m = 2 and k' = k - 2.

variant
$$[ijklm] = \frac{\delta^{0|4} \left(\langle [ijkl \rangle \eta_m] \right)}{\langle ijkl \rangle \langle jklm \rangle \langle klmi \rangle \langle lmij \rangle \langle mijk \rangle}$$

Wilson Loop OPE & Form Factor OPE

[Alday, Gaiotto, Maldacena, Sever, Vieira '11]

[Sever, AT, Wilhelm '20]

Back to bootstrapping: imposing the constraints

 $\mathrm{Tr}\phi^2$

L	2	3	4	5	6	7	8	L	2	3	4	5	6
symbols in \mathcal{C}	48	249	1290	6654	34219	????	????	functions in \mathcal{C}	52	284	1495	~ 8000	?????
dihedral symmetry	11	51	247	1219	????	????	????	dihedral symmetry	13	63	302	$\sim \! 1400$????
(L-1) final entries	5	9	20	44	86	191	191	(L-1) final entries	4	15	47	190	407
L^{th} discontinuity	2	5	17	38	75	171	164	$(L+1)^{st}$ discontinuity	3	13	43	182	394
collinear limit	0	1	2	8	19	70	6	$\text{OPE} \ T^1 \ln^L T$	2	10	38	171	???
OPE $T^2 \ln^{L-1} T$	0	0	0	4	12	56	0	$\text{OPE } T^1 \ln^{L-1} T$	1	6	31	158	???
OPE $T^2 \ln^{L-2} T$	0	0	0	0	0	36	0	$\text{OPE} \ T^1 \ln^{L-2} T$	0	2	20	137	322
OPE $T^2 \ln^{L-3} T$	0	0	0	0	0	0	0	$\text{OPE } T^1 \ln^{L-3} T$	0	0	4	103	272
OPE $T^2 \ln^{L-4} T$	0	0	0	0	0	0	0	${\rm OPE}\;T^1\ln^{L-4}T$	0	0	0	50	190
OPE $T^2 \ln^{L-5} T$	0	0	0	0	0	0	0	$\text{OPE} \ T^1 \ln^{L-5} T$	0	0	0	0	64
								$\text{OPE} \ T^1 \ln^{L-6} T$	0	0	0	0	0

$\mathrm{Tr}\phi^3$	
	ļ

Antipodal duality

[Dixon, Gurdogan, McLeod, Wilhelm '21]

[Dixon, Gurdogan, Liu, McLeod, Wilhelm '22]

Future goals Short term

Three-point form factor of $Tr \phi^3$ at two loops (90% done).

Three-point form factor of $Tr \phi^4$ at three loops.

Unprotected operators (Konishi). Potential overlap with the Quantum Spectral Curve program.

Long term

Finding a critical amount of hidden constraints on the function spaces of amplitudes and form factors to make bootstrap work without integrability. If it's possible, we can turn loop calculations into a linear algebra problem!

Understanding the physical reasons behind the emergence of the antipodal duality, extended Steinmann-like relations and multiple-final-entry constraints.

Terms in this expansion can be computed exactly in the coupling. For example,

$$\mathcal{W}_{3,3}^{(1)}(S) T = \int \frac{du}{2\pi} T^{E_{\phi}(u)} S^{ip_{\phi}(u)} \sqrt{\mu_{\phi}(u)\nu_{\phi}(u)}$$

Where $E_{\phi}(u) = 1 + O(g^2)$ and $p_{\phi}(u) = 2u + O(g^2)$ are the flux tube energy and momentum of a scalar.

 $\mu_{\phi}(u)$ is the scalar flux tube measure, while $\nu_{\phi}(u)$ is the tilted scalar flux tube measure, which involves the octagon kernel.

[Basso '11]

Tilted Bessel Kernels

[Beisert, Eden, Staudacher '07]

