Bootstrapping form factors through six loops and beyond

Alexander Tumanov

LAPTh, 15.02.24

Based on [2308.08432, upcoming] with **Benjamin Basso** and **Lance Dixon**

general kinematics

How do we compute amplitudes perturbatively?

Perturbative bootstrap

- Choosing an observable (amplitudes, form factors, ...)
	- Form factor : $F_{\mathcal{O}}(k_1, \ldots, k_n) = \langle k_1 \rangle$

Class of functions (classical polylogs, generalized polylogs, elliptic functions, ...)

form factors of protected operators: generalized polylogs, uniform transcendentality

3) Symbol (replaces polylogarithms with a large vector space that captures their branch cut structure) $(\log z)^n \to z \otimes \ldots \otimes z$ Length of the symbol = transcendentality $\mathrm{Li}_n(z) \to -(1-z) \otimes z \otimes \ldots \otimes z$

 (4) Alphabet (entries of the symbol = "letters") $\{0\}$

$$
1,\,\ldots,\,k_n\vert\mathcal{O}(q)\vert 0\rangle
$$

$$
a,b,c,d,e,f,\ldots\}
$$

Typical ansatz of transcendentality 4: $\,\sum \alpha_{ijkl} \, a_i \otimes a_j \otimes a_k \otimes a_l$

Choosing an observable

The simplest class of local operators $\mathcal{N} = 4$ SYM are the [protected] $1/2$ -BPS operators.

 $W_{k,n}$ = $\text{Tr}\{\boldsymbol{\phi}^k\}$

Choosing an observable

[Dixon, McLeod, Wilhelm '20] [Dixon, Gurdogan, McLeod, Wilhelm '22]

Three-point form factor of $\text{Tr} \, \phi^2$ *W*2,3

[Dixon, Basso, AT '24]

The function space (conjecturally) is the same: generalized polylogarithms, six letter symbol alphabet:

$$
\mathcal{L}_a=\{a,b,c,d,e,f\}=\{\frac{u}{vw},\frac{v}{wu},\frac{w}{uv},\frac{1-u}{u},\frac{1-v}{v},\frac{1-w}{w}\}
$$

where $u = \frac{s_{12}}{q^2}$, $v = \frac{s_{23}}{q^2}$, $w = \frac{s_{31}}{q^2}$, $u + v + w = 1$, *q* is the momentum carried by the operator

 $n=3$ form factors have two kinematic degrees of freedom.

Divergent parts of $\mathcal{N} = 4$ amplitudes/form factors are fixed by symmetry. [Bern, Dixon, Smirnov '05]

The first non-trivial finite part appears at $n = 6$ for the amplitude and at $n = 3$ for form factors.

Reducing the function space size

 $\mathcal{L}_a = \{\frac{u}{v_1}, \frac{v}{v_2}, \frac{u}{u_3}\}$

At weight w the naive ansatz has 6^w terms. Thankfully, there are some some unexpected constraints that limit it significantly, called the Steinmann-like relations. They forbid certain combinations of letters from appearing:

The resulting function space has the following size**:**

$$
\frac{w}{w},\frac{1-u}{u},\frac{1-v}{v},\frac{1-w}{w}\}
$$

18. e8. f8.

Additionally, we also have the so-called first entry conditions, that forbid branch cuts at non-physical thresholds:

Imposing the constraints

There is a natural action of the dihedral group D_3 generated by two transformations:

cycle: $u \to v \to w \to u$ a flip: $u \leftrightarrow v$

Both the form factors are invariant under it. Another type of constraints that we are imposing are the multiple-final-entry conditions.

These constraints can be loosely associated with certain supersymmetric Ward identities ($\bar Q$ equation), but are much stronger than what one would expect.

Lastly, at L loops, we expect $L^{\textsf{th}}$ discontinuity at $u\to 0$ of the ${\rm Tr}\, \phi^2$ form factor to vanish. For the ${\rm Tr}\, \phi^3$ form factor, we expect $(L + 1)^{\text{St}}$ discontinuity to vanish instead. st

$$
a \to b \to c \to a, \quad d \to e \to f \to d
$$

$$
a \leftrightarrow b, \quad d \leftrightarrow e
$$

Intermediate results

$$
\left(\frac{\text{Tr}\,\phi^2}{\text{Tr}\,\phi^2}\right)
$$

Integrability

 $=$ \equiv

Form Factor — Wilson loop duality for Tr ϕ^2

At one loop, corrections arise from dressing the Wilson loop with gluon exchanges between edges:

$$
W_{2,n} = 1 + g^2 \sum_{i < j} \cdots \hspace{-0.1cm} \int
$$

 $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$

Form Factor — Wilson loop duality for $\text{Tr }\phi^3$

To compensate for the charge at the infinity, the Wilson loop needs to be "charged" accordingly. [Caron-Huot '10]

$$
W_{3,n} = \sum_{i} \bigwedge_{\dots} \bigwedge_{i+1} \bigwedge \bigcup_{\dots} \bigg| + \mathcal{O}\left(g^2\right)
$$

In the general case of Tr ϕ^k , the asymptotic state consists of $k-2$ zero-momentum scalars.

$$
\bigg\rangle\left\langle \phi(0)\right|^{2}\sqrt{\left\langle \phi(0)\right|^{2}}\sqrt{\left\langle \phi(0)\right|^{2}}\sqrt{\left\langle
$$

Tr ϕ^3 one-loop check

We also tested this duality at one loop. Two types of diagrams need to be considered:

Because the operator is protected, diagrams of the second kind add up to zero. The diagrams of the first kind add up perfectly to the expected result.

m = 2 **amplituhedron**

For general k we find $W^{\rm tree}_{k,n}=\frac{1}{(k-2)!}\left(W^{\rm tree}_{3,n}\right)^{k-2}$. This forms an amplituhedron $A_{m,n,k'}$ with $m=2$ and $k'=k-2$.

$$
\text{variant } [ijklm] = \frac{\delta^{0|4} \left(\langle [ijkl \rangle \eta_{m]} \right)}{\langle ijkl \rangle \langle jklm \rangle \langle klmi \rangle \langle lmij \rangle \langle mijk \rangle}
$$

This result is nothing but a triangulation of a polygon:

$$
W_{3,n}^{\text{tree}} = \sum_{i=1}^n \bigwedge\limits_{i+1} \bigwedge\limits_{i+1} \bigwedge\limits_{i=2}^n \big(1{ii+1}\big) \quad \text{where} \quad \left(ijk\right) = \frac{\delta^{0|2}(\langle ij\rangle\eta^-_k + \langle jk\rangle\eta^-_i + \langle ki\rangle\eta^-_j)}{\langle ij\rangle\langle jk\rangle\langle ki\rangle} \label{W3}
$$

These 3-brackets are $2D$ versions of the standard R-inv

Wilson Loop OPE & Form Factor OPE

[Alday, Gaiotto, Maldacena, Sever, Vieira '11] [Sever, AT, Wilhelm '20]

 $W_7 \sim \sum_{\psi_i} P(0|\psi_1) P(\psi_1|\psi_2) P(\psi_2|0)$

Back to bootstrapping: imposing the constraints

Antipodal duality

[Dixon, Gurdogan, McLeod, Wilhelm '21]

[Dixon, Gurdogan, Liu, McLeod, Wilhelm '22]

Future goals Short term

Three-point form factor of $\text{Tr} \phi^3$ at two loops (90% done).

Three-point form factor of $\text{Tr} \phi^4$ at three loops.

Finding a critical amount of hidden constraints on the function spaces of amplitudes and form factors to make bootstrap work without integrability. If it's possible, we can turn loop calculations into a linear algebra problem!

Unprotected operators (Konishi). Potential overlap with the Quantum Spectral Curve program.

Long term

Understanding the physical reasons behind the emergence of the antipodal duality, extended Steinmann-like relations and multiple-final-entry constraints.

Terms in this expansion can be computed exactly in the coupling. For example,

$$
\mathcal{W}_{3,3}^{(1)}(S) T = \int \frac{du}{2\pi} T^{E_{\phi}(u)} S^{ip_{\phi}(u)} \sqrt{\mu_{\phi}(u)\nu_{\phi}(u)}
$$

Where $E_{\phi}(u)=1+\mathcal{O}(g^2)$ and $p_{\phi}(u)=2u+\mathcal{O}(g^2)$ are the flux tube energy and momentum of a scalar.

 $\mu_{\phi}(u)$ is the scalar flux tube measure, while $\nu_{\phi}(u)$ is the tilted scalar flux tube measure, which involves the octagon kernel.

[Basso '11]

Tilted Bessel Kernels

