

JOURNEE ANNUELLE DE P2I

Institut Pascal (Bât 530), Grand Amphithéâtre Mardi 9 Janvier 2024 9h00 - 17h00

Décroissance double beta et CUPID

Claudia Nones IRFU/DPhP

- > What neutrinoless double beta decay is why it is important
- ➢ How much it is difficult isotopes and technologies
- > The bolometric approach: from CUORE to CUPID
- CUPID an experiment up to the challenge
- > The future and the role of CUPID-related developments

Nuclear Double Beta Decay

Double Beta Decay is the rarest nuclear weak process

It takes place between two even-even isobars

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + (...)$$

If only electrons and nothing else: Half-life larger than 10²⁵ yr - 10²⁶ yr

Age of the Universe

- Need to find single events in a ton of isotope x year(s) of exposure!
- Double beta decay specific activity: 3 x 10⁻¹¹ Bq/kg

x 10¹⁵ (!!!)

VS. 15 Bq / banana

 Keywords: background, background, background!
 3

Decay channels for Double Beta Decay

1 (A,Z)
$$\rightarrow$$
 (A,Z+2) + 2e⁻ + 2 \overline{v}_{e} ----

2v Double Beta Decay allowed by the Standard Model already observed – τ ~10¹⁸ – 10²¹ y

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-} \qquad \longrightarrow \qquad \begin{array}{c} \text{Neutrinoless Double Beta Decay (0v \beta\beta)} \\ \text{never observed} \\ \tau > 10^{25} - 10^{26} \text{ y} \end{array}$

Processes @ would imply new physics beyond the Standard Model

Violation of total lepton number conservation Creation of matter with no anti-matter partners

 $Q_{\beta\beta} \sim 2-3 \text{ MeV}$

for the most promising candidates

Experimental signatures based on the

Sum energy spectrum of the two electrons

Kinetic energy – available for the products

Which and how many nuclei?

Why Neutrinoless Double Beta Decay is important

Most of theories and models beyond the Standard Model imply neutrinoless double beta decay

- Majorana nature of neutrino (irrespectively of the mechanism)
- \blacktriangleright See-saw mechanism \Rightarrow naturalness of small neutrino masses
- Leptogenesis and matter-antimatter asymmetry in the Universe
- Neutrino mass scale and hierarchy

Minimal straightforward extension of the Standard Model to accommodate neutrino masses

Mass mechanism

 $0\nu 2\beta$ is mediated by **light massive Majorana neutrinos** (exactly those which oscillate)

Metric to compare experiments and technologies

A pletora of other more exotic mechanisms: Sterile ν , LNV,...

Not necessarily neutrino physics

Rate in case of mass mechanism

how 0v-DBD is connected to **neutrino mixing matrix** and **masses** in case of process induced by light v exchange (**mass mechanism**)

The effective Majorana mass

Experimental challenge

Next generation

Factors guiding isotope selection

General features for $0\nu\beta\beta$ searches

Requests for the source

1 Large source \rightarrow tonne scale \rightarrow > 10²⁷ nuclei

Maximize efficiency

→ The option in which the source is separated from the detector is abandoned for next-generation experiments

 $\mathsf{Source} \subseteq \mathsf{Detector}$

However, this option may be interesting in case of discovery to investigate the mechanism of $0\nu\beta\beta$

Source ≠ Detector

SuperNEMO demonstrator Modane

Requests for the background

Generic measures as underground operation, shielding (passive and active), radiopurity of materials, vetos are common to $0\nu\beta\beta$ and other rare event search

Specific desirable features for $0\nu\beta\beta$

- High energy resolution
- Particle identification
- Tracking / Event topology
- Multi-site vs. single-site events
- Surface vs. bulk events
- Fiducial volume / Active shielding
- Final-state nucleus identification

2

Currently competing technologies / experiments

1	Source dilution in a liquid scintillator		Re-use of existing infrastructures Large amount of isotopes (multi-ton) Isotope dilution (a few %) Energy resolution ~ 10 % FWHM Rough space resolution	KamLAND-Zen (¹³⁶ Xe) (leading experiment) SNO+ (¹³⁰ Te)
2	TPCs		Large amount of isotopes (multi-ton) Full isotope concentration Energy resolution ~ 1 % - 2 % FWHM Event topology	NEXT EXO-200 nEXO
3	Semiconductor detectors		 Crystal array (~1 ton scale in total) (Almost) full isotope concentration Energy resolution ~ 0.1 % - 0.2 % FWHM Particle identification Pulse shape discrimination 	GERDA MAJORANA (⁷⁶ Ge) LEGEND
(4)	Bolometers			CUORE (¹³⁰ Te) CUPID AMoRE (¹⁰⁰ Mo)

O $\nu\beta\beta$: status and prospects

Current generation (final sensitivity for recently concluded - running -

KamLAND-Zen 400/800 - T_{1/2} > 2.3×10²⁶ y **GERDA** - T_{1/2} > 1.8×10²⁶ y EXO-200 - $T_{1/2} > 3.5 \times 10^{25}$ y MAJORANA dem. - $T_{1/2} > 8.3 \times 10^{25}$ y CUORE - $T_{1/2} > 2.2 \times 10^{25}$ y CUPID-0 - $T_{1/2} > 4.6 \times 10^{24}$ y CUPID-Mo - $T_{1/2} > 1.8 \times 10^{24}$ y NEMO-3 - T_{1/2} > 1.1×10²⁴ y

The bolometric technique

Typical signal sizes: 0.1 mK / MeV, converted to about 0.1-0.5 mV / MeV

CUORE in a nutshell

CUORE is an array of **TeO₂ bolometers** searching for $0\nu\beta\beta$ decay of the **isotope** ¹³⁰**Te** and taking data in LNGS (Italy) at ~ **12-15 mK**

The largest bolometric experiment ever

- 988 crystals 5x5x5 cm, closely packed arranged in 19 towers of 13 floors each
- 742 kg (206 kg of ¹³⁰Te)
- Background according to expectations
- 1.30(3)×10⁻² counts/(keV·kg·y)
- Energy resolution at Q_{ββ} close to expectations: **7.26 keV FHWM**

One of the most sensitive $0\nu\beta\beta$ experiments of the current generation

Exposure for the current limit: 2023 kg·y
 (> 2 ton·y collected!!)

• Current limit
$$(T_{1/2}^{0v2\beta}) :> 3.3 \times 10^{250}$$

 $\langle M_{\beta\beta} \rangle < 75 - 255 \text{ meV}^{PT}$

5 y projected
$$T_{1/2}$$
 sensitivity: ~9 × 10²⁵ y

 $\langle \mathsf{M}_{\rm BB} \rangle < 50 - 130 \text{ meV}$

CUORE is not background free

→ ~ 50 counts/y in the region of interest, dominated by surface alpha background

From CUORE to CUPID

Three important messages from CUORE

- **1. A tonne-scale bolometric detector** is technically feasable
- **2. Analysis of ~1000 individual bolometers** is handable
- 3. An infrastructure to host a bolometric nextgeneration $0\nu\beta\beta$ experiment exists and will be available at the end of the CUORE physics program (~2024-2025)

CUPID (CUORE Upgrade with Particle ID) is a proposed $0\nu\beta\beta$ bolometric experiment, exploiting the CUORE infrastructure with a background 100 times lower at the ROI

CUORE background model

- Reject α background with scintillating bolometers
- Mitigate γ background by moving to ¹⁰⁰Mo

 $Q_{2\beta}$: 2527 keV (¹³⁰Te) → 3034 keV (¹⁰⁰Mo)

Increase isotope mass by enrichment
 (natural isotopic abundance: 9.7%)

CUPID rationale

CUPID: choice of the isotope and crystal

CUPID-0 – Zn⁸²Se $Q_{\beta\beta}$ = 2998 keV (evolution of LUCIFER erc) First running demonstrator (2017-2020) 24 crystals (enriched in ⁸²Se) – 5.28 kg ⁸²Se Best limit on ⁸²Se: T_{1/2} > 4.6×10²⁴ y Energy resolution: ~ 23 keV FWHM

LNGS – Italy
 Useful information for the CUPID background model
 Direct proof that α's dominate background above 2.6 MeV

 $CUPID-Mo - Li_2^{100}MoO_4 \quad Q_{\beta\beta} = 3034 \text{ keV}$ ght (keV) LSM – France betas/gammas (evolution of LUMINEU |ANR|) Conceived and built by Physics data taking: April 2019 – June 2020 IJCLab/IRFU 20 crystals (enriched in ^{100}Mo) – 2.34 kg ^{100}Mo Zero background in ROI alphas Energy resolution: ~5-7 keV FWHM Best limit on ¹⁰⁰Mo: T_{1/2} > 1.8×10²⁴ y **Essential CUPID** Full α rejection requirements met **Radiopure crystals:** U/Th \leq 1 µBq/kg 10000 2000 4000 6000 8000 Heat (keV)

CUPID: choice of the isotope and crystal

CUPID-0 – Zn⁸²Se $Q_{\beta\beta}$ = 2998 keV (evolution of LUCIFER erc) First running demonstrator (2017-2020) 24 crystals (enriched in ⁸²Se) – 5.28 kg ⁸²Se Best limit on ⁸²Se: T_{1/2} > 4.6×10²⁴ y Energy resolution: ~ 23 keV FWHM

HEAT SIGNAL

LNGS – Italy Useful information for the CUPID background model Direct proof that α's dominate background above 2.6 MeV

The CUPID collaboration

CUPID structure

- Single module:
 - 2 x Li₂¹⁰⁰MoO₄ 45×45x45 mm ~ 280 g
 - 2 x Ge light detectors
- 57 towers of 14 floors with 2 crystals each **1596 crystals**
- ~ 240 kg of ¹⁰⁰Mo with >95% enrichment
- ► ~ 1.6×10²⁷ ¹⁰⁰Mo atoms

Baseline design : Gravity stacked structure, with crystals thermally interconnected

Ge light detectors with SiO antireflective coating (each crystal has top and bottom LD) No reflective foil

Muon veto for muon induced background suppression

i MoO crystals

pieces

CUPID goals

Energy resolution: 5 keV FWHM

- Light Yield: 0.3 keV/MeV
- LD: σ baseline $\leq 100 \text{ eV}$ for PID
- Background index : 10⁻⁴ ckky (counts/keV/kg/y)

Critical background component:

random coincidence of $2\nu\beta\beta$ events (¹⁰⁰Mo fastest $2\nu\beta\beta$ emitter: $T_{1/2} = 7.1 \times 10^{18}$ y + slow bolometric response)

Use upgraded light detectors to reject pile-up by PSD 、 → Neganov Trofimov Luke (NTL) effect CUPID adopts as a baseline the BINGO technology for light detectors developed at IJCLab/IRFU

Successful test in the CROSS set-up at Canfranc

Data driven background model

CUPID light detectors and CRYOVAP

NTL light detectors are conceived, optimized, fabricated and tested thanks to a IJCLab/IRFU collaboration

Thanks to **SESAME 2023 (Ile de France)**, funding is secured for a piece of equipement for massive CUPID light detector construction \rightarrow large evaporation chamber for coating and electrode fabrication on Ge wafers

Electrodes establish an electric field in the Ge wafer which enhances the S/N ratio in light detectors by a factor 10-20, allowing for pile-up discrimination

 CRYOVAP will be a facility with unique features to develop bolometric low-temperature detectors incorporating thin-film technology

• CRYOVAP has a rich research program and is open to external users for multiple applications

CUPID sensitivity

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 $m_{\beta\beta} \; (\mathrm{meV})$

Half-life exclusion sensitivity Energy resolution: **5 keV FWHM** $1.4 \times 10^{27} \text{ y} - \text{m}_{\beta\beta} < 10-17 \text{ meV}$ Background index: **1** × **10**⁻⁴ **counts/(keV·kg·y)** Half-life 3σ discovery sensitivity Livetime:10 y $1 \times 10^{27} \text{ y} - \text{m}_{\beta\beta} < 12-20 \text{ meV}$ Livetime [yr] 10-2 10^{-3} 10^{-1} 10IH: Best fit NH: Best fit IH: 3σ band NH: 3σ band CUORE sensitivity (^{130}Te) CUPID sensitivity (¹⁰⁰Mo) BI: 0 cts/keV/kg/yr 10²⁵ ----- Bl: 1e-05 cts/keV/kg/yr ----- BI: 1e-04 cts/keV/kg/yr 10²⁴ ----- BI: 1e-03 cts/keV/kg/yr 1 1 1 1 1 1 1 1 1 10^{-1} 10^{0} 10^{1} 10^{2} 10² 10³ 10 1 Sensitive exposure [kg so yr] $m_{\text{lightest}} \text{ (meV)}$

CUPID physics reach

10 y discovery sensitivity: 1.1×10²⁷ y

 $\langle M_{\beta\beta} \rangle < 12 - 20 \text{ meV}$

CUPID technology is expandable and can deeply explore the Normal Ordering region

Technically ready CUPID Baseline

240 kg of ¹⁰⁰Mo CUORE cryostat Bkg 1×10⁻⁴ ckky Excl. sensitivity: $T_{1/2} > 1.4 \times 10^{27}$ y

240 kg of ¹⁰⁰Mo CUORE cryostat Bkg 2×10^{-5} ckky Excl. sensitivity: T_{1/2} > 2.3 × 10²⁷ y

CUPID-reach

125 cm

1000 kg of ¹⁰⁰Mo New cryostat Bkg 5×10^{-6} ckky Excl. sensitivity: $T_{1/2} > 9.2 \times 10^{27}$ y

$\textbf{0}\nu\beta\beta\textbf{:}$ prospects and major CUPID role

Current generation (final sensitivity for recently concluded - running on- commissioning projects) Next generation (projects to be started during the next decade)

CUPID, LEGEND, nEXO Supported by North-American and European agencies Under DOE review

APPEC - Sijbrand de Jong, Bruxelles, 7/12

Mass & Nature: APPEC strongly supports the CUPID and LEGEND 1000 double-beta decay experiments selected in the US-European process and endorses the development of NEXT.

Preparing the next-next generation of bolometric experiments

In case of **no discovery** for next generation experiments **the technological bondaries will have to be pushed further**

It is crucial to start to prepare now this eventuality:

- Larger isotope masses (>1-10 ton)
 → Increase of the cost
- Further background reduction required (<10⁻⁵ ckky)
 → Need of innovative technologies

This is the goal of BINGO and TINY !

erc

Three innovations to reject background in $\beta\beta$ decay experiments based on Li₂MoO₄ and TeO₂

- Revolutionary assembly to reject surface background
 - d E
- Enhanced-sensitivity light detectors (Neganov-Trofimov-Luke)
- Internal veto (ultrapure BGO/ ZnWO₄ scintillators)
- \rightarrow mitigate γ background in TeO₂

- The light detector shields the passive materials
- Less passive materials
- Compact assembly

Satisfactory performance of prototypes

29

Development of bolometric detectors containing the most promising $\beta\beta$ isotopes ⁹⁶Zr and ¹⁵⁰Nd

Main challenge in Nd-based compounds: high specific heat from magnetism → detect phonons before thermalization

TINY objective: develop a demonstrator with a 2 kg mass detector distributed in a few elements for each isotope

Conclusions

- The discovery of 0vββ decay would dramatically revise our foundational understanding of physics and cosmos
- Lepton number is not conserved
- > Neutrino is a Majorana fermion in case of mass mechanism, the absolute neutrino mass scale is fixed
- > There is a potential path for understanding the matter-antimatter asymmetry in the universe, through leptogenesis
- > There is a new mechanism demonstrated for the generation of particle mass
- The search for 0vββ decay is one of the most compelling and exciting challenges in all of contemporary physics
- CUPID is one of the three most promising next-generation experiments and has a remarkable discovery potential
- The bolometric technology implemented in CUPID and in future ambitious projects promises to play a leading role in next-to-next generation experiments.

Thanks for your attention

32

erc

<u>cea</u>

Currently competing technologies / experiments

Combining different detection methods

The CUPID experiment in a nutshell

MoO cryst

CUPID pre-CDR arXiv:1907.09376 upgrade to CDR ongoing

- Single module:
 - $2 \times \text{Li}_2^{100}\text{MoO}_4$ **45×45x45 mm ~ 280 g**
 - 2 x Ge light detectors
- 57 towers of 14 floors with 2 crystals each 1596 crystals
- ~240 kg of ¹⁰⁰Mo with >95% enrichment (~1.6×10²⁷ ¹⁰⁰Mo atoms)
- 1710 Ge light detector (CUPID-Mo, CUPID-0 basic technology + Neganov-Trofimov-Luke effect)

Baseline design

Gravity stacked structure (innovative approach with respect to CUORE and CUPID precursors)

CUPID objectives

- Energy resolution at $Q_{\beta\beta}$: $\leq 5 \text{ keV FWHM}$
- Light signal: 0.3 keV/MeV
- Light detector baseline resolution: ≤ 100 eV RMS (for PID)
- Light detector timing resolution: ≤ 0.17 ms (for pile-up)
- Background index: ≤ 10⁻⁴ counts/(kg keV yr)
- $0\nu\beta\beta$ half-life exclusion sensitivity (90% C.L.): 1.4×10²⁷ yr

Ton-scale array of high-resolution cryogenic calorimeters to search for $0\nu\beta\beta$ and other rare events

Test of the tower structure

A prototype single CUPID tower was cooled down in July and October 2022 in LNGS The tower was installed in the Cuoricino-CUOREO-CUPID-0 cryostat

- Primary goal: validate the tower structure in terms of assembly procedure, detector temperature values and distribution
- Secondary goals: Analysis of detector performance Study of the crystal radiopurity Dependence of detector behavior on glue type, crystal origin, light-detector coating method

14-floor tower run

- 28 LMO crystals
- 30 Ge light detectors

The primary goal is achieved - All the channels cool down without problems with a reasonably narrow temperature distribution and no dependence on the position in the tower

 \rightarrow The thermal scheme of the tower is validated

LMO: 7-8 keV FWHM @Q_{ββ} LD: 180 eV median RMS New test in the coming months

Test of the light-detector structure

The validation of the new CUPID-baseline light-detector assembly performed in a pulse-tube cryostat at IJCLab (Orsay)

- → Similar vibrational noise as in CUORE/CUPID cryostat
- 2 Cu frames with 2 light detectors each (0.5 mm in thickness) mounted on top of each other (CUPID configuration)
- Check of the bolometric performance
- Baseline energy resolution 70-90 eV RMS (CUPID goal for PID met)

Light detector calibration

Irradiating the detector with a ¹³³Ba source we achieved an outstanding energy resolution:

0.71 keV FWHM at 356 keV

