Recherche d'un nouveau type de radioactivité: la double désintégration alpha

F. Mercier, J. Zhao, R.-D. Lasseri, J. P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C 102, 011301(R) (2020) **Calculations based on** F. Mercier, J. Zhao, J.-P.Ebran, E. Khan, T. Nikšić, D. Vretenar, Phys. Rev. Lett. 127, 012501 (2021) E. Khan, L. Heitz, F. Mercier, J. P. Ebran, Phys. Rev. C 106, 064330 (2022) J. Zhao, J. P. Ebran, L. Heitz, E. Khan, F. Mercier, T. Nikšić, and D. Vretenar, Phys. Rev. C 107 034311(2023)

Decays

Interaction	Nom de la radioactivité (date de découverte)	Particule(s) émise(s) par le noyau		
	γ (1900)	photon		
Electromagnétique	Electron de conversion (1938)	e-		
	β-(1898)	e, v _e		
Faible	β+(1933)	e^+, v_e		
	Capture électronique (1937)	ν _e		
	Double β ⁻ (1980)	$2e^{-}, 2v_{e}$		
	Double capture électronique (2001)	$2v_{e}$		
	β ⁻ Etat lié (1992)	V _e		
	α (1896)	₂ ⁴ He		
Forte (+EM)	n, p (1970), 2p (2000), 2n (2012)	n ou p ou 2p ou 2n		
	Clusters (1984)	¹⁴ C ou ²⁴ Ne ou ³² Si,		
	Fission (1939)	n + 2 noyaux lourds (⁹⁰ Zr, ¹³² Sn,)		
	Fission ternaire (2010)	n + 3 noyaux lourds		

Examples of rare decay modes by strong interaction

K. Miernik et al, Phys. Rev. Lett. 99 (2007) 192501

α decay from textbooks

$$\mathbf{K}(\mathbf{r}) \equiv \frac{\sqrt{2m_{\alpha}(V(r) - Q_{\alpha})}}{\hbar}$$

A microscopic approach to α decay Potential energy surfaces calculated with covariant EDF

$$S(L) = \int_{s_{in}}^{s_{out}} \frac{1}{\hbar} \sqrt{2\mathcal{M}_{eff}(s)[V_{eff}(s) - E_0]} ds$$
: minimization of the action integral
$$P = \frac{1}{1 + \exp[2S(L)]}$$
: barrier penetration probability (WKB)
$$T_{1/2} = \ln 2/(nP)$$
 n: number of assaults per unit of time

time

¹⁴C cluster decay in ^{222,224}Ra

The 2α decay

	¹⁴ C	⁸ Be	2α	
T _{theo}	10 ^{15.87} s	10 ^{27.87} s	10 ^{13.03} s	
T _{exp}	10 ^{15.86} s	??	??	

- Unobserved for now
- 2α decay predicted since several decades as ⁸Be cluster emission: negligible BR
- Here, separate emissions of the 2 α , BR larger than observed ¹⁴C cluster emission

Best 2α decay candidates ?

Recherche d'un nouveau type de radioactivité: la double désintégration alpha

E. Khan, Ch. Theisen / Journée annuelle P2I 9 janvier 2024

How to detect double alpha decay

- Measure in coincidence alpha particles
 - Energy (sum $E_{\alpha 1} + E_{\alpha 2} = Q_{2\alpha}$)
 - Timing
 - Position (back to back and eventually asymmetric double alpha decay)

Basic idea = implant nuclei of interest in a catcher + measure alpha with position sensitive detectors Statistics needed >> 1/Branching Ratio

GSI 2022²²⁴**Ra**. Basic principle : do an experiment as fast as

Experimental approaches

CERN/Isolde : setup with better perfomances and more relevant isotope(s)

possible with as much as

possible existing setup.

The GSI experiment, FRS cryogenic stopping cell

The GSI experiment

Measurement Feb – July 2022, 123 days

A novel device to perform rare decay searches using the FRS Ion Catcher

L. Varga^{a,b}, H. Wilsenach^{c,f}, O. Hall^a, T. Dickel^{b,c}, M. P. Reiter^a, D. Amanbayev^c, T. Davinson^a, D. J. Morrissey^d, I. Pohjalainen^b, N. Tortorelli^{b,c}, J. Yu^b, J. Zhao^b, S. Ayet^{h,b,a}, S. Beck^b, J. Bergmann^c, Z. Ge^b, H. Geissel^{b,c}, L. Heitz^{i,m}, C. Hornung^b, N. Kalantar-Nayestanaki^j, E. Khan^m, G. Kripko-Koncz^c, I. Mardor^{f,g}, M. Narang^{j,b}, W. Plass^{b,c}, C. Scheidenberger^{b,c,l}, M. Simonov^c, S. K. Singh^b, A. State^k, C. Theisenⁱ, M. Vandebrouckⁱ, P. J. Woods^a, FRS Ion Catcher Collaboration

^aSchool of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
 ^bGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
 ^cII. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
 ^dDept. of Chemistry, Michigan State Universität Gießen, 35392 Gießen, Germany
 ^dDept. of Chemistry, Michigan State Universität München, Germany
 ^eLudwig-Maximilians-Universität München, Germany
 ^fSchool of Physics and Astronomy, Tel Aviv University, 6997801 Tel Aviv, Israel
 ^gSoreq Nuclear Research Center, 81800 Yavne, Israel
 ^hUniversity Valencia, 46010 Valencia, Spain
 ⁱIrfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
 ^jNuclear Energy Group, ESRIG, University of Groningen, Zernikelaan 25, 9747 AA, Groningen, the Netherlands
 ^kExtreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National Institute for R& D in Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest-Mägurele, Romania
 ^lHelmholtz Research Academy Hesse for FAIR (HFHF), GSI Helmholtz Center for Heavy Ion Research, Gießen, 35392, Germany

Abstract

A novel system has been developed to detect simultaneous double-alpha emission from purified and weightless sources. The system includes the collection of ²²⁴Ra low-energy recoils in purified helium buffer gas from the decay of ²²⁸Th. The recoil products are thermalized and collected in a cryogenic buffer gas cell and extracted into an RF-ion guide for mass selection. The mass-separated ions are implanted at low kinetic energy into a thin carbon foil placed between two large-area double-sided silicon strip detectors to observe correlated alpha-particle emission. The apparatus is described in detail, including insights into its experimental performance.

Keywords: double-alpha decay, 224-Ra, cryogenic stopping cell, DSSD, exotic radioactive decay modes

Submitted to NIMA

Isolde experiment : why ?

- A wide range of available isotope
- Spallation reactions. Protons 1.4 GeV on various target
- Low energy beam 30-60 keV : perfect for implantation in a catcher
- Option molecular beams to avoid isobar contamination

What is Isolde ?

The CERN accelerator complex Complexe des accélérateurs du CERN

7

cea

Random coincidence (remember low Branching Ratio = 10^{-7} or less) ٠

Random coincidence rate = $2 \Delta T$ (gate width) * Rate Detector 1 * Rate Detector 2

- Contamination in the region of interest ٠
- \rightarrow choice of the decay chain, beam intensity, etc.

First experiment at Isolde : the setup

Array also sensitive to asymmetric double alpha decay

2024 01 09

Double alpha @ Isolde

+ pumping 2 turbo + 2 dry+ cooling for detectors and electronics

+ DSSD detector at 0 deg for beam alignment
+ HV, LV, electronics for 1024 + 32 channels
+ DAQ, online monitoring, etc.

C 20 µg/cm² (90 nm) ACF metal on a glass support detached by floating in water C foils from SEASON

First experiment at Isolde

Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday June 30 th
Technical stop	Technical stop	²²² Ra / ²²⁰ Ra	CERN blackout	²²⁰ Ra	²²⁰ Ra				

Use of hot GPS target to produce ²¹⁸Rn

Less beam time than expected due to CERN technical shutdown and Cern blackout

~4 days 222 Ra ~2.10¹⁰ implanted + ~2 days 220 Ra ~ 2.10⁸ implanted + 2 days 218 Rn ~3.10⁹ implanted

Unexpected beam contamination

Problem tuning beam position and spot size

Overall good data quality

Analysis in progress

²²⁰Ra alpha-alpha coincidences [PRELIMINARY]

With time cut $\Delta T < 20$ ns

P2I grant and continuation

P2l Grant 41 k€

- →Transport (from/to ISOLDE/GANIL/SACLAY)
- → Pumping unit (Chamber and pumping were borrowed from GANIL & WISArD collaboration)
- \rightarrow Cable and electronics maintenance
- \rightarrow DAQ maintenance

Beyond P2I

- \rightarrow New target loader
- \rightarrow improved beam diagnostic e.g. MCP
- -> reasonably sized chamber
- \rightarrow digital electronics (long term)

Isolde experiment

An experiment prepared rapidly to answer a burning physics question

Setup built in ~ 1 year

Most of the setup made from existing or borrowed hardware

Smooth and versatile beam conditions

Data collected on ²²²Ra (more than expected), ²²⁰Ra (less than expected but super clean), ²¹⁸Rn (not foreseen)

Good on-line data quality

Experiment technically successful

Some improvements to be done : beam purity, beam diagnostic and alignment, DAQ and electronics maintenance, pumping

8 UTs remaining

L. Heitz^{1,2,} E. Khan^{2,} Ch. Theisen¹, T. Chaminade¹, V. Alcindor², M.Assié², B. Blank³, D. Beaumel², J. Bequet¹, Y. Blumenfeld², D. Cotte^{1,(4)}, T.Davinson⁵, D. Desforges¹, T. Dickel⁶, J.-P. Ebran⁷, J.Giovinazzo³, C.Houarner⁸, K. Johnston⁴, M. Kowalska⁴, U. Köster⁹, I. Moore¹⁰, V.Morel⁸, L. Nies⁶, A. Ortega-Moral³, I. Pohjalainen¹⁰, P.M. Reiter⁵, T. Roger⁸, F.Saillant⁸, M. Simonov⁶, B. Sulignano¹, D. Thisse¹, L. Thulliez¹, G. Toccabens¹, M. Vandebrouck¹, H. Wilsenach⁶

¹Irfu, ²IJCLAB, ³Bordeaux, ⁴CERN, ⁵Edinburgh, ⁶GSI, ⁷CEA DAM, ⁸Ganil, ⁹ILL, ¹⁰Jyväskylä

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement N°101057511

GSI-IN2P3-DRF collaboration agreement : grants 23-90 IN2P3-GSI (Khan, Dickel) and 23-91 CEA-GSI (Theisen, Dickel) for travel to/from GSI

P2I grant « Projets P2I 2023 »

Fin