High fidelity modeling of iceberg capsize

Nicolas De Pinho Dias

PhD student, IPGP-ECN

Alban Leroyer, LHEEA-ECN Anne Mangeney, IPGP-UPC Olivier Castelnau, PIMM-ENSAM Jean-Baptiste Thiebot, Hokkaido University

1

What is a glacier and Why do we care ?

Full of cracks and meltwater rivers

Snow accumulates and becomes ice

"Flowing" downhill

Glaciers: Contain 70% of Earth's fresh water

Fuel dams for electricity

Contribute to sea level rise: 15% in Greenland Half of it from Iceberg calving !

If terminus in water: Icebergs calve

The terminus of Bear Glacier Kenai Fjords National Park, Alaska. NPS Photo.

Iceberg Calving & Capsize

How to monitor iceberg calving ?

Time-lapse imaging:

Cameras Aerial/space vehicles <u>Wave-related techniques:</u> Laser scanning

Interferometry

Hydrophones

Seismic signal for calving monitoring

Work in progress !

Detection & Modeling

A. Sergeant, P. Bonnet, E. Pirot, S. Wetter *[Wetter et al., EGU2024]*

Numerical model for capsize

Fine/Marine, developed at EC-Nantes & distributed by Cadense Design ~30 y-old for Naval applications + Fluid-Structure interactions

Reynolds Average Navier-Stokes Equations Cell centered unstructured **finite-volume** method

Interface capturing method [Queutey & Visonneau, 2007]

Arbitrary Lagrangian Eulerian formulation [Leroyer et al., 2008]

Sliding grids [A.A.B. Basara & D. Beader, 2004]

Numerical model for capsize

Fine/Marine, developed at EC-Nantes & distributed by Cadense Design ~30 y-old for Naval applications + Fluid-Structure interactions

Reynolds Average Navier-Stokes Equations Cell centered unstructured finite-volume method

Interface capturing method [Queutey & Visonnea]

Arbitrary Lagrangian Eulerian formulation [Leroyer et al., 2008]

Sliding grids [A.A.B. Basara & D. Beader, 2004]

Spring-damper contact model : $|\mathbf{F}| = a|x_{ice} - x_{wall}|^2 + b|U_x|^2$ for $x_{ice} < x_{wall}$ [Rengifo et al., 2009, Flores & Lankarani, 2016]

Volume penalisation method α U/dt^1.5 [Engels et al., 2015, Hester et al., 2021]

Experimental database

Validation test cases

Burton

Amundson

Murray

Reference lab experiments

Burton et al. 2012	Amundson et al. 2012	Murray et al. 2015
Open Ocean	Floating glacier	Grounded glacier
Iceberg height (H) in cm		
10	10	20
Aspect ratio		
0.5	0.5	0.22

Quasi 2D experiments

Various quantities studied: Positions, velocity, energy, forces, pressure, stability.

Focus on dynamics to validate the model

2D Grounded glacier simulation, Height=800m, aspect ratio=0.22

Some Greenland Glacier Thicknesses at terminus :

Helheim: 600 m

Jakobshavn: 600 m

Bowdoin: 300 m

2D Grounded glacier simulation, Height=800m, aspect ratio=0.22

11

Results !

Open Ocean & Floating Glacier <u>ok</u>

Grounded Glacier 2D?

3D Effects more important !

Results !

Floating Glacier ok

Grounded Glacier 2D ?

3D Effects more important !

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize, Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize, Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize, Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Birds feasting next to a glacier in Svalbard [Lydersen et al., 2013]

Also observed after capsize. Why?

Take-home message

Successful model calibration Robust enough to retrieve experimental data !

Opens applications in many fields Biology Cryo-seismology Glacier mechanics

Next step: Database to link seismic signal to calved-iceberg volume

