

S-Se-Te sequestration into Earth's core suggests a volatile-poor late veneer composition

Calvo, L. M.^a; **Siebert**, J.^a; **Blanchard**, I.^b; **Huang**, D.^c; **Kubik**, E. ^d; **Labidi**, J.^a; **Bonino**, V.^e; **Badro**, J.^a

(a) IPGP, Paris (b) IMPMC, Paris (c) ETH, Zürich (d) BGI, Bayreuth (e) ESRF, Grenoble

Accretion models

Sulfur, selenium and tellurium

- Similar volatility
- Similar abundance in BSE
- Similar geochimical behavior
 - Volatile-Siderophile elements

Relevant trackers for Timing & Model of volatile elements arrival to Earth!

Did they arrive during or after Earth's core formed?

Experimental studies at low pressure

(Rose-Weston et al., 2009)

Experimental studies at low pressure

5

S-Se-Te in the mantle

Sulfur behaviour at core conditions

Sulfur shows lower partition coeficient (≈ more S partitions into the mantle than previously thought)... How do Se and Te behave at core conditions?

Our study

- Experimental approach:
 - Laser Heated-Diamond anvil cell experiments at core PT conditions (43-90 GPa, 3600-4700 K)
 - Peridotite-Fe(S,Se,Te) alloy-Peridotite
- Analytical approach:
 - EPMA analysis on metal and silicate phases
 - Nano-XRF analyses at ID16B ESRF
 - Higher spatial and analytical resolution (~100 nm, ppm level)

Unreacte Silicate Sil.

S, Se, Te at core conditions

9

S, Se, Te at core conditions

*Semi transparent symbols: Li & Agee 2001; Chabot & Agee 2003; Rose-Weston et al., 2009; Suer et al., 2017; Vogel et al., 2018; Huang et al., 2021; Kubik et al., 2021

Comparison with previous (LP) studies

Modelling results (without late veneer)

Modelling results (with late veneer)

Conclusions

- Sulfur, selenium and tellurium (volatile and siderophile elements)
 - Good trackers for constraining: timing and model of accretion
- No studies have been performed with S-Se-Te at core condition. We explored their metal-silicate partitioning at HP-HT
- A first approach tells that:
 - A *late veneer* does not seem to be required to explain the concentrations in Earth's mantle.
 - A *heterogeneous accretion* process is more likely than a *homogeneous* one with a constant delivery of these elements
 - Further modelling will allow us to propose possible volatile accretting scenarios

Thank you!

Modelling

- Each step increment of mass of
 - M_E (0-80%): 0.1 % Earth mass
 - M_E(80-90%): 2 % Earth mass
 - M_E(90-99.5%): 9.5 % Earth mass
 - M_E(99.5-100%): 0.5 % Earth mass
- P^{eq} at 40% of CMB
- T^{eq} average liq-sol peridotite (Badro et al., 2015)
- Constant $fO_2(X_{BSE}^{FeO} = 0.057)$
- Log Cs=-5.372 (pyrolitic mantle, Suer et al., 2017)