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• Outer layer of Earth’s surface from the top of 
vegetation canopy to lowest depths of 
groundwater 

• Water infiltrates subsurface of CZ at various 
depths to cause rock weathering

• Why do we care about weathering in the CZ: 
• Silicate weathering regulates atmospheric carbon on 

geologic timescale
• Releases nutrients to biosphere
• Sets chemistry of streams feeding larger rivers, 

reservoirs and aquifers 
• Evolving weather patterns, ecosystem shifts, 

temperature feedbacks, etc. due to Climate Change

1White et al. (2015)

Critical Zones (CZ)



• Surface and 
subsurface 
instruments within the 
catchment are great 
for specific local 
measurements

• Headwater streams 
integrate contributions 
across the entire 
catchment

• How do individual 
factors show up in 
stream chemistry: 
weathering, vegetation, 
climate, contaminants, 
flow path, etc.?
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Headwater Streams as Indicator of 
Ecosystem Health
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• Older water has more time to react in the subsurface (increased 
concentrations)

• Discharge is a cumulation water ages: Concentration-Discharge (C-Q)
• Interpreting weathering from C alone is challenging due to equifinality from factors such 

as: Secondary mineral formation, incongruency, nutrient cycling, and cation exchange

What Does Chemistry Reveal about Hydrology 



• Silicon has three stable isotopes: 
28Si, 29Si, and 30Si

• No mass dependent fractionation 
during congruent dissolution

• Mass dependent fractionation 
during secondary mineral 
precipitation and plant uptake
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Reaction progressSi Isotope System



d30Si in Upland Watersheds
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• Low 𝑓!"##$" :	More Si lost to secondary phases
• 𝑓!"##$"  = 1: congruent dissolution
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• Piston flow 

d30Si in Upland Watersheds

6(Bethke and Johnson, 2008)

Piston Flow

Altered from Fernandez et al. (2022)
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• Low 𝑓!"##$" :	More Si lost to secondary phases
• 𝑓!"##$"  = 1: congruent dissolution

• Piston flow 
• Range in fractionation factors 

• asec=0.9980 
• abio=0.99924

d30Si in Upland Watersheds
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Altered from Fernandez et al. (2022)
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Piston Flow



d30Si in Upland Watersheds
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• Low 𝑓!"##$" :	More Si lost to secondary phases
• 𝑓!"##$"  = 1: congruent dissolution

• Piston flow 
• Range in fractionation factors 

• asec=0.9980 
• abio=0.99924

• Range in Transit Time Distribution (TTD)

Kirchner (2000)

Piston Flow
Exponential
Gamma TTD (a=0.5)
Gamma TTD (a=0.25)
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abio

Altered from Fernandez et al. (2022)



• Biosphere 2 Facility in Tucson, AZ
• LEO acts like watershed but is much simpler. 
• Three identical 30 by 11 by 1-meter hillslopes filled with 

crushed basalt 9

Image from Hazenberg et al. 2016

Landscape Evolution Observatory (LEO)

Image from biosphere2 Instagram



Concentration-Ratio-Discharge Experiment
• Three 30-day pulses spaced by 30-60-90 day dry periods
• Each driven by randomly generated irrigation schedule (Kim and Troch 2022)
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Concentration-Ratio-Discharge Experiment
• Three 30-day pulses spaced by 30-60-90 day dry periods
• Each driven by randomly generated irrigation schedule (Kim and Troch 2022)
• d30Si remains stable across all three pulse events
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LEO 
Compared  
to Upland 
Watershed
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LEO 
Compared  
to Upland 
Watershed
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LEO Transit Time Distribution (TTD)

Kirchner et al. (2000)

LEO TTD pdf Common TTD shapes

Combination of 7 TTDs from pulse 3
Age 0 = mean fluid age
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Competing Reactions Model

• Single reaction progressively 
removing Si from C0

• 𝐶 𝑡 = 𝐶' ∗ exp −𝑘𝑡
• Conc_NP = Concentration of element 

excluded from secondary phase

• Two reactions: 
• Dissolution of Si into solution
• Precipitation of Si out of solution

• Equilibrates at CLIM

• 𝐶 𝑡 = 𝐶()* + 𝐶' − 𝐶()* exp −
+/00
,123

𝑡CLIM

C0
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LEO TTD (Fernandez et al. 2022 
model)
LEO TTD: Competing Reaction 
Model

LEO TTD 
Competing 
reaction fit requires 
a fractionation 
factor of 
asec = 0.9985 and 
adiss = 1
No 𝑓!"##$"  
dependence <0.25

LEO TTD fit 
requires a 
fractionation factor 
of a = 0.9995 and 
strong 𝑓!"##$"  
relationship
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Conclusions
• Controlled hillslope systems such as LEO provide 

a unique research opportunity with known 
fractionation pathways and transit time 
distributions

• A  minimalist model for isotope fractionation during 
mineral weathering subject to a constrained fluid 
TTD accounts for the observed relationship 
between solute depletion and Si isotope 
signatures at LEO

• This work opens the possibility to revisit published 
Si isotope time series in upland watersheds using 
a competing reaction model


