

Stable silicon isotope fractionation reflects the routing of water through a mesoscale hillslope

Andrew Guertin^{1,} Charlie Cunningham², Marine Gelin³, Hannes Bauser⁴, Jon Chorover², Louis Derry^{3,5}, Julien Bouchez³, Jennifer Druhan¹ ¹University of Illinois Urbana-Champaign, ²University of Arizona, ³Institut de Physique du Globe de Paris, ⁴University of Nevada, Las Vegas, ⁵Cornell University

Critical Zones (CZ)

- Outer layer of Earth's surface from the top of vegetation canopy to lowest depths of groundwater
- Water infiltrates subsurface of CZ at various depths to cause rock weathering
- Why do we care about weathering in the CZ:
 - Silicate weathering regulates atmospheric carbon on geologic timescale
 - Releases nutrients to biosphere
 - Sets chemistry of streams feeding larger rivers, reservoirs and aquifers
 - Evolving weather patterns, ecosystem shifts, temperature feedbacks, etc. due to Climate Change

life

air

water,

rock

Critical Zone:

Headwater Streams as Indicator of Ecosystem Health

 Surface and subsurface instruments within the catchment are great for specific local measurements

- Headwater streams integrate contributions across the entire catchment
 - How do individual factors show up in stream chemistry: weathering, vegetation, climate, contaminants, flow path, etc.?

What Does Chemistry Reveal about Hydrology

- Older water has more time to react in the subsurface (increased concentrations)
- Discharge is a cumulation water ages: Concentration-Discharge (C-Q)
 - Interpreting weathering from C alone is challenging due to equifinality from factors such as: Secondary mineral formation, incongruency, nutrient cycling, and cation exchange

Si Isotope System

- Silicon has three stable isotopes: ²⁸Si, ²⁹Si, and ³⁰Si
- No mass dependent fractionation during congruent dissolution
- Mass dependent fractionation during secondary mineral precipitation and plant uptake

•
$$\alpha_{30/28} = \frac{rate_{30}Si}{rate_{28}Si}$$

• $\varepsilon^{30/28} = (\alpha_{30/28} - 1) * 10^3$

- $f_{diss}^{Si} = \frac{(\frac{Si}{Na})_{stream}}{(\frac{Si}{Na})_{Bedrock}}$
 - Low f_{diss}^{Si} : More Si lost to secondary phases
 - f_{diss}^{Si} = 1: congruent dissolution

- $f_{diss}^{Si} = \frac{(\frac{Si}{Na})_{stream}}{(\frac{Si}{Na})_{Bedrock}}$
 - Low f_{diss}^{Si} : More Si lost to secondary phases
 - f_{diss}^{Si} = 1: congruent dissolution
- Piston flow

6

- $f_{diss}^{Si} = \frac{(\frac{Si}{Na})_{stream}}{(\frac{Si}{Na})_{Bedrock}}$
 - Low f_{diss}^{Si} : More Si lost to secondary phases
 - f_{diss}^{Si} = 1: congruent dissolution
- Piston flow
- Range in fractionation factors
 - α_{sec}=0.9980
 - α_{bio}=0.99924

- $f_{diss}^{Si} = \frac{(\frac{Si}{Na})_{stream}}{(\frac{Si}{Na})_{Bedrock}}$
 - Low f_{diss}^{Si} : More Si lost to secondary phases
 - f_{diss}^{Si} = 1: congruent dissolution
- Piston flow
- Range in fractionation factors
 - α_{sec}=0.9980
 - α_{bio}=0.99924
- Range in Transit Time Distribution (TTD)

Altered from Fernandez et al. (2022)

Landscape Evolution Observatory (LEO)

• Biosphere 2 Facility in Tucson, AZ

Image from Hazenberg et al. 2016

- LEO acts like watershed but is much simpler.
- Three identical 30 by 11 by 1-meter hillslopes filled with crushed basalt

Concentration-Ratio-Discharge Experiment

- Three 30-day pulses spaced by 30-60-90 day dry periods
- Each driven by randomly generated irrigation schedule (Kim and Troch 2022)

10

Concentration-Ratio-Discharge Experiment

- Three 30-day pulses spaced by 30-60-90 day dry periods
- Each driven by randomly generated irrigation schedule (Kim and Troch 2022)
- δ^{30} Si remains stable across all three pulse events

LEO Compared to Upland Watershed

LEO Compared to Upland Watershed

LEO Transit Time Distribution (TTD)

Combination of 7 TTDs from pulse 3 Age 0 = mean fluid age

LEO TTD pdf

Common TTD shapes

Competing Reactions Model

- Single reaction progressively removing Si from C₀
- $C(t) = C_0 * \exp(-kt)$
- Conc_NP = Concentration of element excluded from secondary phase

- Two reactions:
 - Dissolution of Si into solution
 - Precipitation of Si out of solution
- Equilibrates at C_{LIM}

•
$$C(t) = C_{LIM} + (C_0 - C_{LIM}) \exp\left(-\frac{k_{eff}}{C_{LIM}}t\right)$$

Conclusions

HE UNIVERSITY

- Controlled hillslope systems such as LEO provide a unique research opportunity with known fractionation pathways and transit time distributions
- A minimalist model for isotope fractionation during mineral weathering subject to a constrained fluid TTD accounts for the observed relationship between solute depletion and Si isotope signatures at LEO
- This work opens the possibility to revisit published Si isotope time series in upland watersheds using a competing reaction model

