Temporal organization of large earthquakes along the Altyn Tagh Fault, China

Nicolás Pinzón M. PhD student

Director: Prof. Yann KLINGER

Equipe de Tectonique et Mecanique de la Lithosphere

Institut de Physique du Globe de Paris (IPGP)

Mars 29, 2024

How do earthquakes accommodate deformation along strike-slip faults?

No instrumental earthquakes.

No historical records about major events.

Paleoseismic history still poorly known. Then, there is no clear pattern of rupture repetition.

Paleoseismicity along the eastern Altyn Tagh Fault (ATF)

5

Fault topography far from being obvious and ubiquitous loess layer

Fault topography far from being obvious and ubiquitous loess layer

Ridgecrest, California, area in 2019. Credit: USGS/Ben Brooks

Ridgecrest, California, area in 2019. Credit: USGS/Ben Brooks

Ridgecrest, California, area in 2019. Credit: USGS/Ben Brooks

- The average recurrence interval for the northern ATF is \sim 1371 ± 600 yr.
- the recurrence behavior of each fault segment of the ATF is rather periodic than random (COV ~0.46)

Summary of the Paleoseismic data

Higher COV - starting to deviate from a periodic behavior

Higher return intervals Lower COV – strongly periodic behavior

Rupture Pool at a Regional Scale

93⁰E

(1)

95⁰E

Rupture Pool at a Regional Scale

93⁰E

(1)

95⁰E

Rupture Pool at a Regional Scale

Although at a local scale, the fault shows independent quasi-periodic rupture behaviors, at a regional scale these large events exhibit a temporal cluster organization.

These clusters present interevent times of 475 ± 108 yr and are proceeded by long-lull periods of 1393 ± 230.

Although at a local scale, the fault shows independent quasi-periodic rupture behaviors, at a regional scale these large events exhibit a temporal cluster organization

These clusters present interevent times of 475 ± 108 yr and are proceeded by long-lull periods of 1393 ± 230.

Eastern ATF - either at the early stage of a seismic quiescence period or at the late stage of a cluster period.

4 m slip-deficit (10 mm/yr) compatible with a minimum magnitude of Mw 7.3.

How to combine paleoseismic data?

How to combine paleoseismic data?

How to combine paleoseismic data?

٠

- Abrupt reduction of the probabilities to cero.
- Lack of theoretical foundations from a mathematical perspective.

probability

How to combine paleoseismic data?

- Large uncertainties
- Theoretically correct ٠

- Smaller uncertainties **but at what cost?**
- Abrupt reduction of the probabilities to cero. ٠
- Lack of theoretical foundations from a mathematical perspective.

Hmm...

Ok...

How to combine paleoseismic data?

Looking for a method that yields betterconstrained ages and is consistent with the earthquake rupture assumptions and the probability theory.

- Abrupt reduction of the probabilities to cero.
 - Lack of theoretical foundations from a mathematical perspective.

Ok...

Hmm...

Thanks for your attention