7';oral orggmzat:ob of Iar
<along the Altyn Tagh Fa

£ Nicolas Pinzén M.
Y PhD/student
2. '. j Director: Pro'f. Yann KLINGER
i

Eque de Te;tomque et Mecanlque de Ia L|thosphere

-
e

Instltut de Phy5|que du Globe de Parls (IPGP)

Mars 29, 2024



Introduction

How do earthquakes accommodate deformation along strike-slip faults?
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No instrumental earthquakes.
No historical records about major events.
Paleoseismic history still poorly known. Then, there is no clear pattern of rupture repetition.

Paleoseismicity along the eastern Altyn Tagh Fault (ATF)
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03 Paleoseismicity along the eastern Altyn Tagh Fault (ATF) T1 - Bangoba Trench (master trench)

Fault topography far from being obvious and ubiquitous loess layer
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04 Faleoseismicity along the eastern Altyn Tagh Fault (ATF) Dating earthquakes
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Ridgecrest, California, area in 2019. Credit: USGS/Ben Brooks




04 Faleoseismicity along the eastern Altyn Tagh Fault (ATF) Dating earthquakes
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05 Paleoseismicity along the eastern Altyn Tagh Fault (ATF) T1 - Bangoba Trench (master trench)

South

Spatial location of the trench T1 N

T2 % . s T
—— T ——— -- y




05 Paleoseismicity along the eastern Altyn Tagh Fault (ATF) T1 - Bangoba Trench (master trench)

South

Spatial location of the trench T1 N

T A . e




06 Faleoearthquake Temporal Organization Fault Section Scale — Aksai Section
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« The average recurrence interval for the northern ATF is ~1371 + 600 yr.

* the recurrence behavior of each fault segment of the ATF is rather periodic than random (COV ~0.46)



07 Temporal Organization of large Earthquakes Fault system scale — Multiple fault sections

Summary of the Paleoseismic data
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Lower return intervals Higher return intervals
Higher COV - starting to deviate from a periodic behavior Lower COV — strongly periodic behavior
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Rupture Pool at a Regional Scale
Distance (km)
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Temporal Organization of large Earthquakes

Fault system scale — Multiple fault sections
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overlap area(i, j) = Zmin[pyr,-(T), pyri(m], (1)

Minimum overlap criteria (x%) = 0.09
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Rupture Pool at a Regional Scale
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Although at a local scale, the fault shows independent quasi-periodic rupture behaviors, at a regional scale these large
events exhibit a temporal cluster organization.

These clusters present interevent times of 475 = 108 yr and are proceeded by long-lull periods of 1393 = 230.
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A
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Although at a local scale, the fault shows independent quasi-periodic rupture behaviors, at a regional scale these large
events exhibit a temporal cluster organization

These clusters present interevent times of 475 = 108 yr and are proceeded by long-lull periods of 1393 = 230.

Eastern ATF - either at the early stage of a seismic quiescence period or at the late stage of a cluster period.

4 m slip-deficit (10 mm/yr) compatible with a minimum magnitude of Mw 7.3.
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How to combine paleoseismic data?
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How to combine paleoseismic data?
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(Biasi et al., 2009) (DuRoss al., 2011)
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How to combine paleoseismic data?
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* Large uncertainties * Smaller uncertainties
* Theoretically correct « Abrupt reduction of the probabilities to cero.

e Lack of theoretical foundations from a
mathematical perspective.
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How to combine paleoseismic data?
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How to combine paleoseismic data?
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Looking for a method that yields better- (Biasi et al., 2005) (DuRoss al., 2011)
constrained ages and is consistent with * Large uncertainties « Smaller uncertainties but at what cost?
the earthquake rupture assumptions * Theoretically correct « Abrupt reduction of the probabilities to cero.
and the probability theory. ) « Lack of theoretical foundations from a
W mathematical perspective. <

Ok... Hmm...
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