

Relativistic jets from stellar-mass accreting black holes

STEP'UP 2024 PhD Congress

Noa Grollimund¹, Stéphane Corbel^{1, 2}, Francesco Carotenuto³

¹ AIM, CEA, CNRS, Université Paris Cité, Université Paris-Saclay

² Observatoire Radioastronomique de Nançay, Observatoire de Paris, PSL Research University, CNRS, Univ. Orléans

³ Astrophysics, Department of Physics, University of Oxford

X-ray binaries

Jets

Black hole

Companion star

Accretion disk

Different kinds of jets

Compacts jets

- Continuous and collimated jets
- Strong coupling between accretion and ejection
- Typical scale: ~1 AU

- superluminal

Discrete ejecta

Bipolar plasma bubbles Apparent motion often

Typical scale: ~10⁴ AU

Large scale jets

- Discrete ejecta detected up to parsec scales (~10⁵ AU)
- Strong interaction with the surrounding environment
- Observed in a few sources

Life of a black hole X-ray binary

- timescales (minutes to years)

- ejection events

STEP'UP PhD Congress 2024

How to track discrete ejecta?

Need for:

- Detecting radio emission: radio-telescope lacksquare
- High angular resolution: astronomical interferometer (or telescope array)

Radio-interferometers (VLA, ATCA, MeerKAT,...)

Principle: sampling the Fourier transform of the sky with an array of antennas

Radio-interferometer

Angular resolution

Single-dish telescope: $\theta = \lambda / D$ Array of antennas: $\theta = \lambda / \mathbf{B}$

Typical example

7

- 2003 outburst: eastern and western jets
- 2004 outburst: eastern and western jets

- 2003 outburst: eastern and western jets
- 2004 outburst: eastern and western jets
- 2005 outburst: eastern and western jets

H1743-322

10

- 2003 outburst: eastern and western jets
- 2004 outburst: eastern and western jets
- 2005 outburst: eastern and western jets
- 2003 outburst: micro-ejections

- 2003 outburst: eastern and western jets
- 2004 outburst: eastern and western jets
- 2005 outburst: eastern and western jets
- 2003 outburst: micro-ejections

- 2003 outburst: eastern and western jets
- 2004 outburst: eastern and western jets
- 2005 outburst: eastern and western jets
- 2003 outburst: micro-ejections
- Additional moving ejecta

Constrained parameters

Interaction with the interstellar medium

- Deceleration
- Reactivation of the jets

Kinematics

If D in unknown: $\beta \ge 0.112$ $\theta \le 83.6 \deg$ $D \leq 7.4 \text{ kpc}$

If D = 7.0 kpc, $\beta = 0.95$ $\theta = 83.2 \deg$

Radio emission of the jets $E_{\rm min} \sim 2 \cdot 10^{43} \, {\rm erg}$ Minimum energy

Thank you

Backup slides

Speed, inclinaison and distance

 $\beta \cos \theta = \frac{\mu_a - \mu_r}{\mu_a + \mu_r}$ $\beta_{r,a} = \frac{\beta \sin \theta}{1 \pm \beta \cos \theta}$ $D = \frac{c \tan \theta}{2} \frac{\mu_a - \mu_r}{\mu_a \mu_r}$

Degeneracy between β et θ if D is unknown

Fit of the proper motion (deceleration model)

 $\mu_a = 26.3 \pm 5.6 \text{ mas/day}$ $\mu_r = 21.0 \pm 2.4 \text{ mas/day}$

Corbel et al. (2005) $\beta \cos \theta = 0.112 \pm 0.027$ $\beta\cos\theta = 0.23 \pm 0.05$

Without knowledge on the distance:

 $\beta \ge 0.112$ $\theta \le 83.6 \deg$ $D \le 7.4 \mathrm{kpc}$

If $D = 7.0 \, \text{kpc}$

 $\beta = 0.95 \ (\gamma = 3.2) \qquad \theta = 83.2 \deg$

Big questions

- 1) **Powering mechanism? Composition** of the jets: leptonic? baryonic?
- 2) Contrains on the **physical parameters** of the jets? **Energetic content**?
- 3) **Observational signatures** announcing discrete ejections? **Causality** in the disk?
- 4) **Jet-ISM interaction**?

Large-scale jets and interaction with the ISM

STEP'UP PhD Congress 2024

Large-scale jets and interaction with the ISM

- large-scale jets.
- Detection up to parsec scales.

STEP'UP PhD Congress 2024

MeerKAT (SKA-mid precursor) observations suggest the omnipresence of the

• Interaction with the interstellar medium: reactivation of the jets + deceleration • Wideband synchrotron emission by high energy (up to TeV) particles • Properties of the jets and the environment inferred from the kinematics

Radio interferometry

The Very Large Array (VLA)

Principle: sampling the Fourier transform of the sky with an array of antennas

Reduction and analysis of radio data:

Flagging: excluding aberrant and/or corrupted data

Calibration of the visibilities

Imaging: reconstruction via inverse Fourier transform

Deconvolution: « cleaning » of the image by iterative subtraction of the PSF

Fit of the point sources by bidimensional gaussian functions

The microquasar H1743-322

- X-ray binary discovered in 1977, localized towards the galactic bulge
- First detection of the discrete ejecta by Corbel et al. during the 2003 outburst
- Since then, regular outbursts (2004, 2005, 2008,..., 2018)

Extremely dense and comprehensive VLA dataset: 200+ multifrequency observations (up to 6 bands)

22

Energy of the transient jets

- Estimate of the minimum energy of the jets using the radio flare
- Hypothesis: equipartition between magnetic ulletenergy and energy of the electrons in the plasma bubble

$$E_{\rm min} = 3 \cdot 10^{33} \, \eta^{4/7} \left(\frac{\Delta t}{\rm s}\right)^{9/7} \left(\frac{\nu}{\rm GHz}\right)^{2/7} \left(\frac{S_{\nu}}{\rm mJy}\right)^{4/7} \left(\frac{D}{\rm kpc}\right)^{8/7}$$

- Peak flux density during the flare $S_{\nu} = 93.37 \pm 0.28 \text{ mJy}$ ($\nu = 4.860 \text{ GHz}$)
- **Distance** of the microquasar D = 7 kpc
- Ejection timescale (rise time of the flare) $\Delta t \simeq 10$ jours

McClintock et al. (2009)

 $E_{\rm min} \sim 2 \cdot 10^{43} \, {\rm erg}$ $P_{\rm min} \sim 3 \cdot 10^{37} \, {\rm erg/s}$

