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Playing with Particles 
Standard model of particle physics ~ the theory of almost everything!
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• Best theoretical framework 
for particle physics  

• Description of the 
interaction of fundamental 
particles via exchange of 
force carriers 

• All the particles in SM have 
been discovered (except for 
graviton) 

• SM is incomplete  

✦ Matter-antimatter 
asymmetry , dark matter , 
existence of 3 generation of 
quarks and leptons with 
different mass scale , gravity 

: discovered at  colliders 



The Large Hadron Collider (LHC)
World’s largest and most powerful accelerator  
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• Situated 100m beneath the France–Switzerland 
border in a 27km circumference tunnel near 
Geneva 

• 1232 dipole magnets, B = 8.3T  

• Accelerates and collides two counter-circulating 
particle beams (protons or ions) 

✦ 2012 : Run 1 at 2 x 4 TeV , 2013-2015 : LS1 
✦ 2015:  Run 2 at 2 x 6.5TeV , 2018 -2022: LS2 
✦ 2022 : Run3 at 2 x 6.8TeV , 2025 - 2027 : LS3 
✦ 2027: HL-LHC 

• Houses 4 main experiments : ATLAS, CMS, 
ALICE, LHCb  

• ~ 4000MCHF (machine R&D and injectors, 
tests and pre-operation) 



Collisions at LHC 
Taking a closer look  
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              Proton-Proton :  2835 bunch/beam 
Protons/bunch :  

Beam energy : 6.8 TeV 
Luminosity :   

1011

1034 cm−2s−1

At LHC experiments :            pp 
interactions per second 

~ 1500 particles (p, n, ) produced in 
the detectors at each bunch -crossing   

π

109

Build your detector here  

Selection of 1 in 
10,000,000,000,000 
events

Event display. 6.8TeV

https://cds.cern.ch/record/2856820 

https://cds.cern.ch/record/2856820


A Toroidal LHC Apparatus (ATLAS)
As Heavy as the Eiffel Tower!
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• Largest volume detector ever constructed for particle  
collider  

✦ Dimensions : 46m long, 25m diameter, 7000 tonnes 

• 6 concentric subsystems around the interaction point 
(IP) for precise particle trajectory, momentum, and 
energy measurement  

• Inner detector (ID) submerged in 2T magnetic field for 
precise measurement of charged particle momenta



High Luminosity LHC (HL-LHC)
At least 15 million Higgs boson per year!! 
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• High Luminosity (HL) LHC:   
 Peak luminosity:  
Average collisions/BC: ∼30→ ∼200  
 Integrated luminosity: 350 → 4000 

• Increased radiation damage!     
ATLAS/CMS Pixel detectors - exposed to 
unprecedented amount of radiation 
Crucial importance to model the impact of 
radiation damage -> accurate simulation of charged-
particle interactions with the detector and the 
reconstruction of their trajectories 

1x1034 → 5 − 7x1034cm−2s−1

• Replacement of the current Inner Detector system with a full silicon Inner Tracker (ITk)                    

z [cm]
0 50 100 150 200 250 300 350 400

r [
cm

]

0

20

40

60

80

100

-1
 / 

40
00

fb
-2

cm
Si

 1
 M

eV
 n

eu
tro

n 
eq

. f
lu

en
ce

 

1410

1510

1610

1710

Simulation PreliminaryATLAS
FLUKA + PYTHIA8 + A2 tune

ITk Inclined Duals
• New Inner Tracker (ITk) 

 High granularity 
Reduced material  
Radiation hardness 
Faster readout 
Goal: new tracker to have 
better performance 
compared to current ID  



Radiation damage in Silicon Sensors
In a nutshell. 
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• Radiation damage to detector materials  : 2 types  

✦ Surface damage  due to ionising energy loss (IEL)  

✦ Accumulation of positives in the oxide ( ) and the Si/  
interface -> affects inter-strip capacitance, breakdown 
behaviour ..  

✦ Bulk (crystal) damage due to non-ionising energy loss 
(NIEL)  

❖ Inelastic collision btw incident particle and silicon lattice 
-> displacement of an atom from its lattice  

❖ Creates Interstitial site + vacancy -> Frenkel defects 

❖ Unstable point defects can create stable secondary 
defects -> energy levels in the band-gap  -> acts as 
trapping centers

Si02 Si02

• Macroscopic effects of bulk radiation damage on  detector 
operations : 

✦ Increase in depletion voltage  

✦ Increase in Leakage currents 

✦ Decrease in charge collection efficiency -> signal 
loss 

❖ Smaller signal-to-noise ratio 

❖ Induce bias in signal position reconstruction  



Radiation damage modelling : ATLAS approach
Run2 /Run3  vs. HL-LHC strategy 
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• Current strategy : Evaluate final position and  
induced signal of group of carriers in MC 

• Inputs:  

Precise electric field simulation (TCAD) to take 
into account radiation damage effects 

Weighting potential (TCAD) 

 Trapping rates (literature) 

https://iopscience.iop.org/article/10.1088/1748-0221/14/06/P06012

• HL-LHC : ATLAS/CMS pixel detectors exposed to 
unprecedented levels of radiation damage  

• Expected increase of particles density and rates in HL-LHC -> 
need for a faster algorithm 

New strategy is planed :  charge reweighing from look-up tables  
(LUTs) 

• Idea : For each simulated charge q at depth z find in which pixel 
it will end up,  by how much (k) the signal will be reduced 

Goal: Simulated pixels in MC is corrected using these information 
before digitisation -> correction scheme implemented using 
Allpix-squared (doi:10.1016/j.nima.2018.06.020)   

https://iopscience.iop.org/article/10.1088/1748-0221/14/06/P06012
doi:10.1016/j.nima.2018.06.020


• Modular, generic simulation framework aiming at facilitating 
the different steps of the simulation of semiconductor 
detectors  

• Building blocks follow individual steps of signal formation in 
detector

Allpix-squared framework
Simulation flow
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https://allpix-squared.docs.cern.ch/ 

✦ Visualisation of an 
event in APSQ with 120 
GeV  (blue track) 
incident on an RD53A 
detector  

✦ Red tracks : secondary 
electrons  

✦ Green track : 
secondary photons 

π+

https://allpix-squared.docs.cern.ch/


LUTs from Allpix-Squared
How to generate the LUTs
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• Simulate point deposition using “scan”model 
([DepositionPointCharge]) in AP2  

✦ Charge carrier deposition position change with every event, 
ensuring homogenous scanning of a single pixel cell 

✦ 125000 events simulated, deposit 1000 e-h pairs every 1um 
along x, y and 2um along z 

✦ Simulation for 100 μm thick planar sensor at 4x1015 neq/cm2 

and 600 V

• Creation of CCE LUT 

✦ CCE  per event = (max pixel charge)/( )  

✦ CCE LUT obtained by taking the most probable CCE values (MPV) at various  ,  for 
each  

• Creation of tan(LA) LUT 

✦ Perform a pol1 fit to the distribution of  electron drift  for each z  position ( 𝝙x vs. 𝝙z ) to 
extract the tanLA 

• Creation of delZ LUT 

✦ Perform a pol4 fit to distribution of 𝝙z( ) vs z  to fill 𝝙z LUT

qdep

xdep ydep

zdep

zprop − zdep

3 x 3 induction  matrix

max pixel 
charge



LUTs from Allpix-Squared
How to generate the LUTs
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• Simulate point deposition using “scan”model 
([DepositionPointCharge]) in AP2  

✦ Charge carrier deposition position change with every event, 
ensuring homogenous scanning of a single pixel cell 

✦ 125000 events simulated, deposit 1000 e-h pairs every 1um 
along x, y and 2um along z 

✦ Simulation for 100 μm thick planar sensor at 4x1015 neq/cm2 

and 600 V
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• Creation of CCE LUT 

✦ CCE  per event = (max pixel charge)/( )  

✦ CCE LUT obtained by taking the most probable CCE values (MPV) at various  ,  for 
each  

• Creation of tan(LA) LUT 

✦ Perform a pol1 fit to the distribution of  electron drift  for each z  position ( 𝝙x vs. 𝝙z ) to 
extract the tanLA 

• Creation of delZ LUT 

✦ Perform a pol4 fit to distribution of 𝝙z( ) vs z  to fill 𝝙z LUT

qdep

xdep ydep

zdep

zprop − zdep



LUTs from Allpix-Squared
LUTs
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Charge collection efficiency map

CCE = (max pix charge/ deposited charge)

• Fluence =  4x1015 neq/cm2 
• Voltage =  600V 

• Thickness =  100 μm 

• Pitch = 50 μm x 50 μm 



Closure test
 

13

• Using AP2, we’ve estimated : 

✦ CCE (Z), average Lorentz angle deflection as a function Z , average free path  

• Closure test to validate our approach : 

Simulate charge deposition  

Determine final position and fraction of induced charge using our LUTs: 

 

  

 

Continue with transfer and digitisation steps 

Compare the results at 3rd bullet  with the ones obtained using the full chain that was used to produce the lookup table 

• Developed a new module in Allpix-squared : LUTPropagator 

• Performed closure tests with: point charge deposition, line charge deposition, 120 GeV Pions  using LUTs 
generated with the “scan” model of charge deposition  

✦ RD50 Dec’23 : slides 

✦ Allpix-Squared user workshop  May23 : slides

ΔZ(Z )

qprop = CCE(zdep) * qdep(zdep)

zprop = zdep+Δz(zdep)

xprop = xdep+tan(θL)(zdep) * Δz(zdep)

https://indico.cern.ch/event/1334364/contributions/5672065/attachments/2761762/4809935/ITkRadiationdamageDigitiser_RD50WS_knakkalil.pdf
https://indico.cern.ch/event/1252505/contributions/5365264/attachments/2651589/4591099/Allpix22023_knakkali_mbomben.pdf


Propagated X Position 
Pt = 100GeV, Eta = 0 (  = 0 rad), -0.25 rad phiθtrk
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Blue track : pions 
Red : secondary electrons



Cluster size X & Y
Pt = 100GeV, Eta = 0 (  = 0 rad), -0.25 rad phiθtrk
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Cluster charge
Pt = 100GeV, Eta = 0 (  = 0 rad), -0.25 rad phiθtrk

cluster_charge
Entries  1027
Mean    7.334
Std Dev     3.801

0 5 10 15 20 25 30 35 40
cluster charge [ke]

0

2

4

6

8

10

12

14

16

18

20

22

24

cl
us

te
rs

cluster_charge
Entries  1027
Mean    7.334
Std Dev     3.801

Cluster charge (detector1)

Full simulation 
cluster_charge

Entries  1012
Mean    7.252
Std Dev       3.8

0 5 10 15 20 25 30 35
cluster charge [ke]

0

2

4

6

8

10

12

14

16

18

20

22

cl
us

te
rs cluster_charge

Entries  1012
Mean    7.252
Std Dev       3.8

Cluster charge (detector1)

LUT

Rel err mean: 1.1%

16

Excellent closure between FS and LUT-based simulations  for all the 4 observables!!!



Summary
What next??
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• Silicon detectors at hadron colliders are exposed to unprecedented levels of radiation damage  

• Signal loss is the most important effect for cluster position determination  

• Simulation of these effects in ATLAS MC for HL-LHC -> pixel reweighting 

• Allpix-Squared together with  TCAD simulations to make correction to take into account signal reduction and cluster shape 
changes  

• Produced CCE vs Z,  tan( ) vs Z  and,  vs Z  LUTs  from Allpix-squared  

• Validated the approach using closure tests: point charge depositions, line charge deposition, 120GeV Pions, Pions with Pt = 
100GeV, 10 GeV and 1GeV at eta = 0, 1, and 1.4   

• Similar efforts in progress for 3D and strip detectors  

• Next steps : 

✦ Repeat the studies at different fluences and operating voltages (1-3 x1015 neq/cm2 , 300V - 500V) 

✦ Perform studies using planar sensors  with  pixel pitch of  25 μm x  100 μm , serving as further validation for the proposed technique  

✦ Anticipating the 2024 TB campaign for ITkPixV2 modules to validate our approach with the TB data

θL ΔZ

Thank you so much for your attention !! :) 



Backup 
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Radiation damage modelling : ATLAS approach
Run2 and Run3 strategy 

19

• Current strategy : Evaluate final position and  
induced signal of group of carriers in MC 

• Inputs:  

Precise electric field simulation (TCAD) to take into 
account radiation damage effects 

Weighting potential (TCAD) 

 Trapping rates (literature) 

https://iopscience.iop.org/article/10.1088/1748-0221/14/06/P06012

ATL-COM-INDET-2022-027.pdf 

ATL-COM-INDET-2023-008.pdf 

Most Probable Values 
match at 1 % level!

Excellent agreement 
over almost two 
order of magnitudes 
of fluence!

HV : 450V

https://iopscience.iop.org/article/10.1088/1748-0221/14/06/P06012
https://cds.cern.ch/record/2839613/files/ATL-COM-INDET-2022-027.pdf
https://cds.cern.ch/record/2866558/files/ATL-COM-INDET-2023-008.pdf


Radiation damage modelling : ATLAS approach
HL-LHC strategy 
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• HL-LHC : ATLAS/CMS pixel detectors exposed to 
unprecedented levels of radiation damage  

• Expected increase of particles density and rates in HL-LHC -> 
need for a faster algorithm 

New strategy is planed :  charge reweighing from look-up tables  
(LUTs) 

• Idea : For each simulated charge q at depth z find in which pixel 
it will end up,  by how much (k) the signal will be reduced 

Goal: Simulated pixels in MC is corrected using these information 
before digitisation -> correction scheme implemented using 
Allpix-squared (doi:10.1016/j.nima.2018.06.020)   

Inspired by CMS “template method”
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Simulation PreliminaryATLAS
FLUKA + PYTHIA8 + A2 tune

ITk Inclined Duals

https://twiki.cern.ch/twiki/pub/AtlasPublic/RadiationSimulationPublicResults/
s22duala_simev_itk.pdf 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/fig_01b.png 

doi:10.1016/j.nima.2018.06.020
https://pos.sissa.it/057/035/pdf
https://twiki.cern.ch/twiki/pub/AtlasPublic/RadiationSimulationPublicResults/s22duala_simev_itk.pdf
https://twiki.cern.ch/twiki/pub/AtlasPublic/RadiationSimulationPublicResults/s22duala_simev_itk.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/fig_01b.png


Realistic simulation studies of ITk barrel pixels
Investigating Pt and   dependenciesη
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• Barrel layer ITk pixel modules tilted in the phi (-0.25 rad)  to compensate for Lorentz angle deflection 

• Studies with a 100um thick planar pixel sensors (50 μm x 50 μm) at a fluence of 4x10^15 neq/cm2 and 
600V 

✦ Pions ( ) with  Pt = 100 GeV, 10 GeV and 1 GeV at  = 0, 1 and 1.4 (  = 0 rad, 0.866 rad and 1.088 rad 
respectively) 

❖ Each event has a single pion passing through the detector ; 1000 events simulated  

• Comparison of Allpix-Squared full simulation (FS) with  LUTPropagator based simulations (LUT) 

✦ LUTPropagator module : Scale the charges using CCE LUT , propagate the carriers using tan(LA) and   
LUTs 

• Comparison variables : propagated X position, cluster size x, cluster size y,  cluster charge  

π+ η θtrk

ΔZ

P P
IP

θbeam

θtrk

θtrk

ITk barrel pixels Y

W

θbeam

θtrk

θtrk



ITk Pixel Radiation Damage Digitiser Speed Test 
First tests in Athena
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• Reminder -  charge scaling and propagation : 
✦  

✦   

✦  

• Performed first tests to determine the relative speed of the radiation damage digitiser for the 
planar  ITk pixels using dummy LUTs (unirradiated detector) 

✦ No impact anticipated upon switching to LUTs for irradiated devices 

• Initial tests indicates that the radiation damage digitiser is as fast as standard digitiser  

✦ Expectation: algorithm is the same, only additive and multiplicative corrections are applied

qprop = CCE(zdep) * qdep(zdep)

zprop = zdep+Δz(zdep)

xprop = xdep+tan(θL)(zdep) * Δz(zdep)



ITk Pixel Radiation Damage Digitiser Speed Test 
Comparison of Run2/3 strategy with the HL-LHC strategy 

23

• Defining conventions : 

✦ D1 :  Standard digitiser (no radiation damage) 

✦ D2 : Run 2/Run 3 radiation damage digitiser 

✦ D3 : ITk radiation damage  digitiser  with LUTs  

• Tests showed : t(D3) ~ t(D1) ->  ITk radiation damage digitiser is as fast as the standard 
digitiser  

• Tests also showed : t(D2) ~ 3 * t(D1) -> Run 2/Run 3 digitiser is 3 times slower than standard 
digitiser 

• Tentative conclusion : t(D2) ~ 3*t(D3) -> ITk radiation damage digitiser with LUTs is 3 times 
faster than Run 2/Run 3 digitiser   :)


