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-
Volcanoes are dangerous to .

surrounding populations

Monitoring implies
interpreting various data
(seismicity, gas,
deformation...)

Machine learning algorithms
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State at OVPF 3/11

Using seismic noise correlations to
estimate volcano interior temporal

seismic velocity changes. [Brenguier et
al., 2011]

Using multiparameter (seismicity,
extensometer and seismic velocity
changes rate) for eruptions time
predictability. [Schmid et al., 2012]

Automatic detection of eruptive tremor
with machine learning [Ren et al., 2020]

Monitoring long-term deformation and
CO, degassing and using a threshold
on seismicity [Peltier et al., 2021]
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Data : long term time series
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Machine learning (ML) algorithms 5/11

Algorithms with parameter trained on data to make decisions based
on patterns observed.

Artificial Neural Networks are ML algorithm that associate X data
with Y, observables, approximating an unknown function f.

Unsupervised: Supervised:
What is the difference Which picture is a
between those two puppy and which one is

pictures? a kitten?




Unsupervised and supervised classification

Unsupervised anomaly detection

Predicted class
abnormal normal

dormant 29.45%

precursor| 39.7%

True class

erupting 46.0%

Dormant state is more usually
classified as normal.

Precursor and eruption states are not
well detected.

Supervised signal classification

Predicted class
dormant precursor erupting

dormant 86.81% 3.3% 989%

0.0% 10.0%

precursor

True class

eruptingl 18.72%  2.98%

Dormant and eruption state are quite
well classified.

Precursors are not well detected.



Forecasting the chanels 711

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future seismicity
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Forecasting the chanels 711

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future seismicity
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Forecasting the chanels 711

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future seismicity
Sample n°39134 at 2023-07-02T04
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Forecasting the chanels 711

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future seismicity
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Forecasting the chanels 711

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future seismicity
Sample n°39159 at 2023-07-03T05
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Forecasting the chanels 8/11

Normalised 12 hours gradient of seismicty

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future 12 hours gradient of the seismicity
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Forecasting the chanels 8/11

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future 12 hours gradient of the seismicity
Sample n°39133 at 2023-07-02T03
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Forecasting the chanels 8/11

Normalised 12 hours gradient of seismicty

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?
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Forecasting the chanels

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?

Predicting the future 12 hours gradient of the seismicity

Normalised 12 hours gradient of seismicty
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Normalised 12 hours gradient of seismicty

Human with lots of experience can do better, thus can we predict
evolution of the channels and let humans do what they are strong in ?
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Forecasting the chanels 911

An other geophysical time series: the deformation

8 days gradient of the distance between two gnss stations

Normalised 8 days gradient of the distance (cm/j)

Sample n°635 at 2023-06-09T00

Intrusion
—— Past t+1 day prediction
—@- Input slope_8
- Predicted slope_8
—@- Expected slope_8

—— Raw slope_8

—ﬁ
What it see What it

predict

2023-04-15 2023-04-22 2023-05-01 2023-05-08 2023-05-15 2023-05-22 2023-06-01 2023-06-08 2023-06-15

Time

I o © = =
o o ul (= w
Ul

|
5
days gradient of the distance (cm/j)

vk
o (6]
Raw 8



Forecasting the chanels
An other geophysical time series: the deformation

8 days gradient of the distance between two gnss stations

Normalised 8 days gradient of the distance (cm/j)
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An other geophysical time series: the deformation

8 days gradient of the distance between two gnss stations

Sample n°680 at 2023-07-24T00
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Conclusion 10/11

Unsupervised: detect changes in the data close to eruption, but lack accuracy.

Supervised:could predict the active or the rest state of the volcano but not the
pre-eruptive state.

Forecasting: have difficulties to predict the augmentation of earthquakes and
deformation, but works to predict how it will return to the rest state.

Nexts steps:

e Fine tuning and optimization of the forecasting models;
e Hourly deformation prediction;

e Predicting seismicity and deformation together;

e Can we predict CO, flux ?



Conclusion 10/11

Unsupervised: detect changes in the data close to eruption, but lack accuracy.

Supervised:could predict the active or the rest state of the volcano but not the
pre-eruptive state.
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Thank you for your attention
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Artificial intelligence

evelopment of smart systems and machines that ca
carry out tasks that typically require human
intelligence

Machine learning

Algorithms that can learn from given data
and make decisions based on patterns observed.

Deep learning

Machine learning algorithms with
brain-like logical structure of algorithms
called artificial neural network.

https://www.scs.org.sg/articles/machine-learning-vs-deep-learning & https://levity.ai/blog/difference-machine-learning-deep-learning



Machine learning (ML) is a field of Artificial Intelligence (Al) based on mathematics and
informatics to solve problems without having a human to explicitly create a program for it.
Thus, the algorithms will have to ‘find’ the relation between the observable.

Observables
Xandy

>

\\\\\\\\\\\\\\\\\

Unknown
function

>

f being the ML algorithm

PUPPY v.s
KITTEN

Number and center of
blobs

Stock and prices
predictions

27


https://commons.wikimedia.org/w/index.php?title=User:Tdunning&action=edit&redlink=1
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Under, good and overfitting:

Under = The model did not
learn

Good = The model learned the
x and y relation and is able to
generalize to unseen samples.

Over = The model only
memorized the given samples

Your model is what it eat !
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https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
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Artificial neural networks:
Simple neuron:
A type of machine learning algorithm that associate X data with y, observables, thus

approximating an unknown function fsuch as f(X) =y_~y,

Neuron = function f(x) =y




Artificial neural networks:

artificial neural networks = Several functions aggregated in network F(..., f(x), ...) =y_
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Methods 32/8

Unsupervised anomaly detection Supervised signal classification
1) Data dimension’s reduction
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