

Quantifying the impacts of an exogenous dust input to the soil and stream chemistry of an upland Mediterranean watershed using a reactive transport modeling framework

Dust impacting ecosystems

Source: https://swiftfoundation.org/saharan-desert-dust-feeds-amazon-tropical-rainforest-nasa-finds/

https://murciaplaza.com/los-cielos-de-murcia-se-tinen-de-nara nja-por-particulas-de-polvo-en-suspension-del-sahara

Dust impacting ecosystems

Introduction	Methods	Results	Discussion	Conclusions
--------------	---------	---------	------------	-------------

Dust impacting ecosystems

(Chadwick et al., 1999; Pett-Ridge et al., 2009a; Aciego et al. 2017)

llts 🔶 Discus

Conclusions

Field site: Sapine watershed, Mont Lozère

Characteristics:

- Average annual precipitation of 2000 mm.
- ET estimate of 600 mm.
- Average temperature of 8°C.
- Vegetation: beech, kept for the past 70 years.
- Stream is perennial.
- Located in corridor of Saharan dust imports.

Location: 44°37'N; 3°82'W, Mont Lozère, Parc National des Cevénnes, south of France. Mediterranean Hydrometeorological Observatory Cévennes-Vivarais (OHMCV), part of the French Network of Critical Zone Observatories (OZCAR).

Discus:

Field site: Sapine, Mont Lozère

Characteristics:

- Average annual precipitation of 2000 mm.
- ET estimate of 600 mm.
- Average temperature of 8°C.
- Vegetation: beech, kept for the past 70 years.
- Stream is perennial.
- Located in corridor of Saharan dust imports.

Location: 44°37'N; 3°82'W, Mont Lozère, Parc National des Cevénnes, south of France. Mediterranean Hydrometeorological Observatory Cévennes-Vivarais (OHMCV), part of the French Network of Critical Zone Observatories (OZCAR).

Saharan dust plume, February 2021. Source: <u>severe-weather.eu</u>

Introduction Methods	B Results Discus	ssion > Conclusions
Field-based analyses		
Geochemical analyses with ICP-QMS	Mass-transfer coefficients	Strontium (Sr) and neodymium (Nd) isotopes
Stream and rain water samples Soil and bedrock samples Plant litter and leaves	Measure of elemental gain or loss of soil compared to its parent material (usually bedrock)	Radiogenic Sr and Nd isotopes are good source tracers
	$\tau_{j,s} = \frac{C_{j,s}C_{i,r}}{C_{j,r}C_{i,s}} - 1$	1.Chemical separation of Sr and Nd using column chemistry
	j: mobile element i: immobile element (Ti, Zr, or Nb)	
	s: soil r: bedrock C: concentration [M M ⁻¹]	2. Isotope measurements (⁸⁶ Sr, ⁸⁷ Sr, ¹⁴³ Nd and ¹⁴⁴ Nd) with MC-ICP-MS

(Brimhall & Dietrich 1987; Anderson et al. 2002)

7

Mass-transfer coefficients

Mass-transfer coefficients

Mass-transfer coefficients

Introduction	\rightarrow	Methods	Results	Discussion	Conclusions
Ca/Na mola	ar ratio	S			

	Methods	Results	Discussion	Conclusions
Ca/Na molar	ration			

Ca/Na molar ratios

Introduction	Methods	Results	Discussion	Conclusions
--------------	---------	---------	------------	-------------

Strontium (Sr) and Neodymium (Nd) isotopes

Sr and Nd isotopes

Sr and Nd isotopes

Sr and Nd isotopes

• Gained solid-phase calcium (mass-transfer coefficients)

- Gained solid-phase calcium (mass-transfer coefficients)
- Episodically increased Ca/Na molar ratios in stream water

- Gained solid-phase calcium (mass-transfer coefficients)
- Episodically increased Ca/Na molar ratios in stream water
- Departure from bedrock Sr and Nd signatures

- Gained solid-phase calcium (mass-transfer coefficients)
- Episodically increased Ca/Na molar ratios in stream water
- Departure from bedrock Sr and Nd signatures

Question: How does this exogenous source of mass affect the geochemistry of the system?

Introduction	Methods	Results	Discussion	Conclusions
--------------	---------	---------	------------	-------------

Reactive transport model

Abd, A. S., & Abushaikha, A. S. (2021).

Discussion

Dust implementation into a reactive transport framework

In the distributed version of CrunchTope, all minerals travel collectively at a constant rate in the same direction

Dust implementation into a reactive transport framework

In our new version of the code, each mineral can be assigned a velocity individually:

- upwards for uplift
- downwards for burial

modified from Golla et al. (2024)

Discussion

Dust implementation into a reactive transport framework

In our new version of the code, each mineral can be assigned a velocity individually:

- upwards for uplift
- downwards for burial

We use this capability to implement dust to the actively weathering and uplifting profile in Sapine.

Discussion

Conclusions

Sapine model results: mass transfer coefficients

Sapine model results: depth of dust transport

Discussion

Conclusions

Slow down of reaction rates

Introduction Methods Results		Conclusions
------------------------------	--	-------------

Conclusions

	Methods	Results	Discussion	Conclusions
--	---------	---------	------------	-------------

Questions?

References

- Abd, A. S., & Abushaikha, A. S. (2021). Reactive transport in porous media: a review of recent mathematical efforts in modeling geochemical reactions in petroleum subsurface reservoirs. In SN Applied Sciences (Vol. 3, Issue 4). Springer Nature. https://doi.org/10.1007/s42452-021-04396-9
- Aciego, S.M., C.S. Riebe, S.C. Hart, M.A. Blakowski, C.J. Carey, et al. 2017. Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nat Commun 8. doi: 10.1038/ncomms14800.
- Anderson, S.P., W.E. Dietrich, and G.H. Brimhall. 2002. Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. GSA Bulletin 114(9): 1143–1158. doi: 10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2.
- Brimhall, G.H., and W.E. Dietrich. 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim Cosmochim Acta 51(3): 567–587. doi: 10.1016/0016-7037(87)90070-6.
- Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., & Hedin, L. O. (1999). Changing sources of nutrients during four million years of ecosystem development. Nature, 397(6719), 491–497. <u>https://doi.org/10.1038/17276</u>
- Golla, J.K.K, Bouchez, J., Kuessner, M.K., Ayral, PA., Druhan, J. (2024) Weathering incongruence in mountainous Mediterranean climates recorded by stream lithium isotope ratios.
- Guinoiseau, D., S.P. Singh, S.J.G. Galer, W. Abouchami, R. Bhattacharyya, et al. 2022. Characterization of Saharan and Sahelian dust sources based on geochemical and radiogenic isotope signatures. Quat Sci Rev 293. doi: 10.1016/j.quascirev.2022.107729.
- Pett-Ridge, J. C., Derry, L. A., & Barrows, J. K. (2009). Ca/Sr and 87Sr/86Sr ratios as tracers of Ca and Sr cycling in the Rio Icacos watershed, Luquillo Mountains, Puerto Rico. Chemical Geology, 267(1–2), 32–45. https://doi.org/10.1016/j.chemgeo.2008.11.022
- Vincent, J., B. Laurent, E.B. Nguyen, B. Nguyen, J. Vincent, R. Losno, et al. 2015. Variability of mineral dust deposition in the western Mediterranean basin and South-East of France PEACETIME : ProcEss studies at the Air-sEa Interface after dust deposition in the MEditerranean sea View project Variability of mineral dust deposition in the western Mediterranean basin and south-east of France. Atmos. Chem. Phys 16: 8749–8766. doi: 10.5194/acpd-15-34673-2015.