Composition of the First Solid Cumulates in a Deep Pyrolitic Magma Ocean

Héloïse Gendre¹, James Badro¹, Charles-Édouard Boukaré¹, Sebastian Cozma², Hui Chen², Pau Torruella Besa², Cécile Hébert², Duncan Alexander², Stephan Borensztajn¹, Nicolas Wehr¹

¹ Université Paris Cité, Institut de Physique du Globe de Paris (IPGP) ² École Polytechnique Fédérale de Lausanne (EPFL)

CDD theme: Communicating Earth and universe sciences to society

Earth's formation as described for kids

Credit: Et la Terre fut..., Il était une fois l'homme

... A very simplified version!

CDD theme: *Communicating Earth and universe sciences to society*

Earth's formation as described for kids

Credit: Et la Terre fut..., Il était une fois l'homme

... A very simplified version!

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Terrestrial Magma Ocean (MO) - Formation

Credit: Et la Terre fut..., Il était une fois l'homme

CDD 2024 - H. Gendre

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Terrestrial Magma Ocean (MO) - Formation

Artistic view of a magma ocean Credit: ESA/Hubble, M. Kornmesser

3D smoothed particle hydrodynamics of a giant impact Kegerreis *et al.* (2020)

• Earth extensively molten after the Moon forming impact (Nakajima and Stevenson, 2015; Piet *et al.*, 2017): its surface is covered by a global **magma ocean** that could have extended down to the core-mantle boundary

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Terrestrial Magma Ocean (MO) - Crystallization

Credit: Et la Terre fut..., Il était une fois l'homme

Formation of a basal magma ocean Caracas et *al*. (2019)

- Earth extensively molten after the Moon forming impact (Nakajima and Stevenson, 2015; Piet *et al.*, 2017): its surface is covered by a global **magma ocean** that could have extended down to the core-mantle boundary
- As the Earth cools down, this magma ocean starts **crystallizing**
- Different scenarios of Earth magma ocean crystallization:

"Bottom-up" (surface magma ocean) (Solomatov and Stevenson, 1993)

"Top-down" (Labrosse et al., 2007; Caracas et al., 2019) with formation of a basal magma ocean

Terrestrial Magma Ocean (MO) - Crystallization

- What is the composition of the first solid cumulates that form at depth in a crystallising pyrolitic magma ocean?

- How do these minerals behave in the magma ocean: Do they float, sink, remelt?

Influences the properties and behaviour of the crystallizing magma ocean

This study:

- High-pressure high-temperature experiments in laser-heated diamond anvil cells (LH-DAC) that reproduce the crystallization of the primitive terrestrial magma ocean

• Terrestrial Magma Ocean

Experimental and Analytical Methods

• Conclusions

• Crystallization experiments in laser-heated diamond anvil cells (LH-DAC)

of the Earth's mantle

Terrestrial Magma Ocean

Experimental and Analytical Methods

Conclusions

•

• Crystallization experiments in laser-heated diamond anvil cells (LH-DAC)

٠

The starting material (pyrolite) is loaded in a Re gasket and further compressed in a diamond anvil cell (DAC) to reach lower mantle pressures. Once pressurized, the DAC is heated using a laser to melt the sample. CDD 2024 - H. Gendre

Terrestrial Magma Ocean

Experimental and Analytical Methods

Crystallization Sequences

Conclusions

•

• Crystallization experiments in laser-heated diamond anvil cells (LH-DAC)

Optical setup used to heat the samples. The position of the DAC is identified with a blue rectangle. The two red arrows illustrate the laser beam. CDD 2024 - H. Gendre

Terrestrial Magma Ocean

Experimental and Analytical Methods

Conclusions

•

- Crystallization experiments in laser-heated diamond anvil cells (LH-DAC)
- Focused ion beam (FIB) preparation of the recovered samples for further analysis

A FIB thin section is further extracted out of each sample to further analyse the structure and composition of the various phases in a transmission electron microscope (TEM).

• Terrestrial Magma Ocean

Experimental and Analytical Methods

- Crystallization experiments in laser-heated diamond anvil cells (LH-DAC)
- Focused ion beam (FIB) preparation of the recovered samples for further analysis
- STEM-EDXS analysis (structure and composition) of the specimens at EPFL (Lausanne, Switzerland)

- a) Secondary electrons picture (STEM) of one of the FIB thin sections.
- b) STEM-EDXS chemical map of the thin section. Fe-rich regions appear in red, Mg-rich in blue and Si-rich in green.

• Terrestrial Magma Ocean

Experimental and Analytical Methods

- Crystallization experiments in laser-heated diamond anvil cells (LH-DAC)
- Focused ion beam (FIB) preparation of the recovered samples for further analysis
- STEM-EDXS analysis (structure and composition) of the specimens at EPFL (Lausanne, Switzerland)

- a) Secondary electrons picture (STEM) of one of the FIB thin sections.
- b) STEM-EDXS chemical map of the thin section. Fe-rich regions appear in red, Mg-rich in blue and Si-rich in green.

Crystallization

Terrestrial Magma Ocean

Experimental and Analytical Methods

- Crystallization experiments in laser-heated diamond anvil cells (LH-DAC)
- Focused ion beam (FIB) preparation of the recovered samples for further analysis
- STEM-EDXS analysis (structure and composition) of the specimens at EPFL (Lausanne, Switzerland)

Crystallization

- a) Secondary electrons picture (STEM) of one of the FIB thin sections.
- b) STEM-EDXS chemical map of the thin section. Fe-rich regions appear in red, Mg-rich in blue and Si-rich in green. From left to right: crystallization sequence of a deep pyrolitic magma ocean in which bridgmanite (green areas) is the first mineral to crystallize followed by ferropericlase (purple rays). The residual melt (red pocket) corresponds to the region of the sample that is still molten once quenching.

Confronting experimental results with thermodynamics

How to read a ternary diagram

Confronting experimental results with thermodynamics

How to read a ternary diagram

Confronting experimental results with thermodynamics

How to read a ternary diagram

Confronting experimental results with thermodynamics

Confronting experimental results with thermodynamics

• Terrestrial Magma Ocean

Confronting experimental results with thermodynamics

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Confronting experimental results with thermodynamics

After being fully molten in the DAC (through laserheating), the sample is slowly being cooled down. As temperature decreases the pyrolitic melt L_0^{Pyr} reaches the liquidus and starts crystallizing bridgmanite $S_{0,brg}^{Pyr}$.

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Confronting experimental results with thermodynamics

After being fully molten in the DAC (through laserheating), the sample is slowly being cooled down. As temperature decreases the pyrolitic melt L_0^{Pyr} reaches the liquidus and starts crystallizing bridgmanite $S_{0,brg}^{Pyr}$.

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Confronting experimental results with thermodynamics

Focus on a pyrolitic fractional crystallization sequence

i. As crystallization proceeds, the liquid finally reaches the cotectic (L_1^{Pyr}) and a second solid starts forming: ferropericlase $(S_{1,fp}^{Pyr})$ along with bridgmanite that keeps forming $(S_{1,brg}^{Pyr})$.

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Confronting experimental results with thermodynamics

Focus on a pyrolitic fractional crystallization sequence

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Confronting experimental results with thermodynamics

Focus on a pyrolitic fractional crystallization sequence

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Confronting experimental results with thermodynamics

Focus on a pyrolitic fractional crystallization sequence

- Terrestrial Magma Ocean
- Experimental and Analytical Methods
- Crystallization Sequences

Confronting experimental results with thermodynamics

Focus on a pyrolitic fractional crystallization sequence

• Terrestrial Magma Ocean

•

Crystallization

• Terrestrial Magma Ocean

• Experimental and Analytical Methods

Main conclusions

- High-pressure high-temperature experiments in **diamond anvil cells** at 4 different pressures (55, 87, 107, 130 GPa) to constrain terrestrial magma ocean crystallization
- Bridgmanite is the 1st mineral to form in a deep pyrolitic magma ocean followed by ferropericlase
- Residual melts, which correspond to the final remnants of the magma ocean, are very enriched in Fe
- Determining the melting phase diagram allows to simulate the full crystallization sequence of the magma ocean, at all depths

Did This Really Happen?!

1.Did this really happen?!. 2018. *Did this really happen?!*. [ONLINE] Available at: <u>https://didthisreallyhappen.net/</u>. [29th March 2024]. 2.Alice Adenis. 2018. *Entrelacs*. [ONLINE] Available at: <u>https://entrelacsbd.wordpress.com/</u>. [29th March 2024].