Exploring the neutrino mass hierarchy with the world's largest liquid scintillator The JUNO experiment

Loïc-René Labit | IPHC Seminar 08/03/2024

JUNO

Content

Introduction

- Neutrino in the Standard Model
- Neutrino oscillation
- Neutrino Mass Ordering
- JUNO Detector
 - Essential features
 - Detector design
 - Installation status
- JUNO physics prospect
 - Neutrino Mass ordering determination
 - Precision measurement of oscillation parameters
 - Other physics goal

- Neutrinos in the SM:
 - No electric charge \rightarrow no electromagnetic interaction
 - No colour charge \rightarrow no strong interaction
 - Only weak interaction \rightarrow neutrinos are left handed antineutrinos are right handed \rightarrow tiny cross-section of interaction $(\sigma_{IBD} \sim 10^{-43} \text{ cm}^{-2})$
 - In principle, neutrinos are massless \bullet
- Neutrinos beyond the Standard Model:
 - **Experimental evidence for neutrino** oscillation (2015's Nobel prize) \rightarrow requires a massive neutrinos

BY DOMINIC WALLIMAN © 2021 | YOUTUBE | DOMAIN OF SCIENCE

Neutrino oscillation

• Interaction (or flavour) eigenstates (ν_e , ν_μ , ν_τ) do not match propagation (or mass) eigenstates (ν_1, ν_2, ν_3)

• Relation between flavour and mass eigenstates given by Pontecorvo-Maki-Nakagawa-Sakata matrix U_{PMNS}

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$U_{PMNS} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix}$$

$$\times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

with $s_{ii} = \sin \theta_{ii}, c_{ii} = \cos \theta_{ii}$, δ CP-violation phase, α, β Majorana phases (no effect in oscillation)

• Probability to measure a neutrino with flavour β when produced with flavour α is $\mathscr{P}_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum \sum U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} e^{-i \frac{\Delta m_{kj}^{2}}{2E} \cdot L}$

It is characterised by 3 mixing angle $heta_{12}$, $heta_{13}$, $heta_{23}$ and 2 mass splitting Δm^2_{12} , Δm^2_{31}

• δ and α , β are unknown

Neutrino Production

Neutrino Propagation

Neutrino Detection

- Weak interaction produces a neutrino in flavour eigenstate
- Neutrino propagates as coherent superposition of mass eigenstates
 - Mass difference creates a phase difference over the propagation
- Superposition of mass eigenstates has changed
 - Finite probability to detect a different flavour eigenstate

What to do in neutrino physics ?

- Neutrino as a probe to study:
 - help
- Open questions in neutrino physics:
 - Are there non standard interactions ?
 - How many neutrinos are there ? (Sterile neutrino states ?) \Rightarrow JUNO can help
 - Are neutrinos their own antiparticle (Dirac or Majorana fermion) \Rightarrow JUNO can help (in the future)
 - What is the absolute mass scale?
 - Neutrino mass hierarchy: is it normal or inverted ? \Rightarrow JUNO can tell

• The earth, the sun, the supernova, the Universe \rightarrow still in its infance \Rightarrow JUNO can

Neutrino Mass Ordering

m₅

m

m²

• Sign of Δm_{21}^2 known • Sign of Δm_{31}^2 unknown \rightarrow 2 possible mass ordering • How to determine NMO ? • With matter effect • With reactor neutrino

Mass ordering with matter effect

- When neutrinos travel through matter: additional potentials induced by neutral and charged current in matter
- Effective oscillation parameters given by: $\sin 2\theta$ $\sin 2\theta_{MSW} = \frac{1}{\sqrt{(A - \cos 2\theta) + \sin^2 2\theta}}$

 $\Delta m_{MSW}^2 = \Delta m^2 \sqrt{(A - \cos 2\theta)^2 + \sin^2 2\theta}$ with $A = \pm 2\sqrt{2}G_F N_e E/\Delta m^2$ + for ν - for $\bar{\nu}$

• Oscillation probability is modified by matter effect:

- If A and $\cos 2\theta$ have same sign \rightarrow oscillation probability enhanced
- If A and $\cos 2\theta$ have opposite sign \rightarrow oscillation probability is reduced
- Sign of A depends on the sign of Δm^2 and if ν or $\bar{\nu}$

L(a.u.)

ordering with reactor neutrino

Survival probability given by :

$$\mathcal{P}(\overline{\nu_e} \to \overline{\nu_e}) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 \times L}{4E_{\nu}}\right) - \sin^2 2\theta_{12} \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{21}^2 \times L}{4E_{\nu}}\right) \cos \left(\frac{2|\Delta m_{21}^2}{4E_{\nu}}\right) \cos \left(\frac{2|\Delta m_{21}^2}{4E_{\nu}}\right) \sin \left(\frac{2|\Delta m_{21}^2}{4E_{\nu$$

 Needs a very good energy resolution and understanding of the energy response

Strategy employed solely by JUNO

JUNO's essential features

• To resolve mass hierarchy's signature in the oscillated spectrum: **Optimised baseline** L Energy resolution of 3% at 1 MeV L Excellent understanding of the energy scale non-linearity **U** Precise knowledge of the antineutrino reactor spectrum Large statistics Low background

JUNO site

Optimised baseline

- \sim 52.5 km from Taishan and Yangjiang NPP as to optimise discrimination between normal and inverted ordering
- **Baseline spread between nuclear cores** D \leq 0.7 km to optimise discrimination between orderings

J. Phys. G, 43, 3 (2016) $\Delta \chi^2_{MH} = |\chi^2_{min}(N) - \chi^2_{min}(I)|$

JUNO sit

1 LS Storage tank

 Underground detector: 650 m overburden 1800 m.w.e $\rightarrow \sim$ 4 Hz of muons in LS

Detector design: Central Detector

- Large statistics
- Energy resolution of 3% at 1 MeV
- The world's largest liquid scintillator experiment:
 - 35.4 m diameter acrylic sphere
 - 20 kilotons of liquid scintillator : LAB + 2.5 g/L PPO + 3 mg/L bis-MSBHigh photon yield: 10000±10% photons/MeV Very transparent: attenuation length \sim 25m
 - 17 612 20-inch PMTs (LPMT) and 25 600 3-inch PMTs (SPMT) in water buffer High optical coverage: 75% LPMT + 3% SPMT High PMT quantum efficiency: $\sim 30\%$

D and **e**

Excellent understanding of the energy scale non-linearity

• 2 types of PMT:

 \rightarrow LPMT to collect maximum of photon to have excellent energy resolution but non-linearity for large signals

 \rightarrow SPMT collect few photons but excellent time spread

Operate in single photo-electron regime: use to constrain LPMT non-linearity

IN2P3 very involved in the SPMT subdetector

- Development of Front-end electronics hardware and firmware
- Myself L3 Co-manager of SPMT commissioning Some of my contributions:

 \rightarrow Test and validation of the Front-end card firmware a

 \rightarrow Coordination of the analysis of commissioning runs

				LPMT			\$	
				Hamam	natsu	NNV	т	
	Quantity			5000	0	1501	2	2
	Technology			Dyno	de	MC	D	D
The second se	Pł	noto-dete efficienc	ction v	28.5	%	30.1	%	
	M	ean dark i [kCounts	noise /s]	17.0)	31.2	2	
	Transit Time Spread [ns]		1.3		7.0			
	Photo-electron regime		[0,100] PE		[(
	Coverage			75 %				
		Reference		arXiv: 2205.08629			NIM.A 1	
		1000 0	0.05	Electro	tronic noise level SPMT 0.15 0.2 0.25 0.3			
<complex-block></complex-block>	Number of channels	1000 900 800 700 600 500 400 300 200 100 0 0			184 ch 72 cha	iannels	teste	ted in Jur ed in April Entrie Mear Std D Entrie Mear Std D
according to physics goals				1 600		کر		Q _{RN}

Detecto

- Low background
- 43.5 x 44 m cylinder:
 - Filled with 35 kilotons of ultra pure water seen by 2400 LPMT
 - Passive shielding against natural radioactivity from surrounding rock and fast neutrons from cosmic muons
 - Muon detection efficiency of 99.5 %

Detector design: Water Cherenkov

Detector design: Top Tracker

Low background

- 3 layers of plastic scintillator refurbished from OPERA Target Tracker
- 50 % coverage on the top
- 2.6 x 2.6 cm² granularity
- Muon track angular resolution of 0.2°
- Provide muon control sample to validate track reconstruction and study cosmogenic background

Detector design: Calibration system

Energy resolution of 3% at 1 MeV Excellent understanding of the energy scale non-linearity

• Various calibration system:

- 1D: Automatic Calibration Unit (ACU)
- 2D: Cable Loop System **Guide Tube Calibration system**
- 3D: Remotely Operated Vehicle
- Additional system: A Unit for Researching Online the LS tRAnsparency (AURORA)

Taishan Antineutrino Observatory

Precise knowledge of the antineutrino reactor spectrum

- TAO: satellite detector of JUNO
- 30 m from one of Taishan's reactor: high rate of non-oscillated neutrino
- 2.8 tons of Gd-doped liquid scintillator (1 ton fiducial volume)
- High collected photon yield: 4500 pe/MeV \rightarrow 94% coverage and 50% photo-detection efficiency of SiPM \rightarrow Very good energy resolution ~2% at 1 MeV

Precise measurement of reactor antineutrino spectrum \rightarrow identify some fine structure in the spectrum

Installation status

• Stainless steel structure completed Acrylic vessel up to the equator • Top hemisphere almost completely instrumented

Neutrino detection

 Reactor antineutrinos are observed by Inverse Beta Decay (IBD) resulting in a two fold signal:

 $\bar{\nu}_e + p \rightarrow e^+ + n$ $e^+ + e^- \rightarrow \gamma + \gamma$ (prompt) $n + p \rightarrow d + \gamma$ (delayed)

 Prompt signal: positron ionisation and annihilation with medium electron

• Delayed signal: neutron capture on hydrogen giving a 2.2 MeV γ

• Energy threshold for the IBD process is: $E(\bar{\nu_{e}}) > 1.8 MeV$ • The neutrino energy is given by: $E_{vis} = E(e^+) = E(\bar{\nu}_e) - 0.8$ MeV

thermalisation ~ 200 μ s

ionisation

• Visible energy spectrum from oscillated reactor $\overline{\nu_{\rho}}$

Selection cuts:

- Energy threshold: $E_{vis} > 0.7 MeV$
- Fiducial volume: R < 17.2 m
- Time correlation: $\Delta t_{p-d} < 1 ms$
- Spatial correlation: $\Delta R_{p-d} < 1.5 m$
- Muon veto (temporal \oplus spatial)

- After selection: \sim 47 signal events/day and ~4 background events/day
- Personal contribution on cosmogenic background ⁹Li and ⁸He: Study of the pulse shape discrimination of those isotopes \rightarrow discrimination power is small but possible to obtain pure sample to tune the veto strategy

Muon veto strateg

- 1ms veto on whole FV applied after μ passing through WCD or CD
- \Rightarrow suppress spallation neutrons and short lived radioisotopes
- For well reconstructed single μ tracks in CD:
 - a 600ms, 400ms, 100ms veto applied on a 1m, 2m, 4m cylindrical volume around the muon track

• For muon bundle tracks (closer than 3m and parallel tracks)

- single track reconstructed with larger dispersion
- veto applied with cylinder radius enlarged according to the track dispersion
- For events with no track reconstructed
 - Occurs when more than 2 muons pass through the CD
 - 500ms veto over FV
- 1.2s veto on a 3m radius sphere around neutron capture events
- Muon veto strategy has an IBD selection efficiency of 91.6% while removing 98.8% of cosmogenic background

Muon multiplicity	Proportion
1	91.9
2 (track separation > 3 m)	5.5
2 (track separation $< 3 \text{ m}$)	0.6
≥ 3	2.0

JUNO's physics prospect

Primary goal:

- Determination of the Neutrino Mass Ordering
- Precision measurement of the oscillation parameters
- Additional physics goal:
 - Solar neutrinos
 - Geoneutrinos
 - Supernovae detection
 - Diffuse supernova neutrino background
 - **Atmospheric neutrino**
 - Proton decay
 - $0\nu\beta\beta$ search

NMO sensitivity

- Main goal is to determine Neutrino Mass Ordering (normal or inverted) at 3σ level
- Combination of JUNO and TAO for spectrum shape
- 3σ sensitivity after 6 years of data taking
- Possibility to gain a bit of sensitivity by combining with atmospheric neutrino \rightarrow ongoing analysis

Precision measurement of oscillation arameters

- First simultaneous detection of Δm_{12}^2 and Δm_{13}^2
- Subpercent precision for 3 oscillation parameters before 6 years of data taking

	Central Value	PDG2020	100 days	6 years	20 ye
$\Delta m_{31}^2 \; (\times 10^{-3} \; \text{eV}^2)$	2.5283	$\pm 0.034~(1.3\%)$	$\pm 0.021 \ (0.8\%)$	$\pm 0.0047 \ (0.2\%)$	± 0.0029
$\Delta m_{21}^2 \; (\times 10^{-5} \; \text{eV}^2)$	7.53	$\pm 0.18~(2.4\%)$	± 0.074 (1.0%)	$\pm 0.024 \ (0.3\%)$	± 0.017
$\sin^2 \theta_{12}$	0.307	$\pm 0.013~(4.2\%)$	$\pm 0.0058~(1.9\%)$	$\pm 0.0016 \ (0.5\%)$	± 0.0010
$\sin^2 \theta_{13}$	0.0218	$\pm 0.0007~(3.2\%)$	$\pm 0.010~(47.9\%)$	± 0.0026 (12.1%)	± 0.0016

Solar neutrinos (88,78e, pep

- Large statistic from ${}^{8}B$ solar neutrinos: 60 000 events for 10 yr \rightarrow day-night asymmetry at 0.9%
 - \rightarrow Possible to constrain Δm_{21}^2 and $\sin^2 2\theta_{12}$ also from solar neutrinos
- Sensitivity to intermediate solar neutrinos energy for different radiopurity scenarii:
 - IBD: minimal requirement for NMO determination \rightarrow U/Th 10^{-15} g/g
 - Baseline: \rightarrow U/Th 10^{-16} g/g
 - Ideal: \rightarrow U/Th 10^{-17} g/g
- 'Be and pep \rightarrow Improve Borexino's measurement in few years in all radiopurity scenarii
- CNO \rightarrow Improve Borexino's measurement except in worst scenario

25

Geoneutrinos measurement

- Geoneutrinos from ²³⁸U and ²³²Th chains
 - \rightarrow ~400 /year \Rightarrow 2 times current world sample (KamLAND + Borexino ~200)
- Current rate uncertainty: 18% for neutrino emitted in the crust 100% for mantle neutrinos
- Local geological studies ongoing to constrain crustal contribution \rightarrow derive mantle contribution
- Measure Th/U ratio in crust and mantle to understand their contribution to terrestrial heat production

Supernovae detectio

- Core-Collapse Supernova (CCSN) release 99% of its energy by neutrino and antineutrino emission
- CCSN rate: 1.63 ± 0.46 CCSN/century (New Astronomy Vol. 83, 101498)
- Main goals:
 - Flavour content, time evolution of flux and energy spectrum
 - **Constrain of absolute neutrino mass**
 - Study of star physics: late-stage stellar evolution, SN hydrodynamic models
- Alert efficiency of 100 % up to distance > 100 kpc in various SN model and conditions
- **Personal contribution:** Study of the SPMT sub detector acceptance to close supernovae \rightarrow decision on final data format

Туре	Process	Nb of evts @10 kpc
CC (IBD)	$\overline{\nu_e} + p \rightarrow e^+ + n$	~5000
eES	$\nu + e \rightarrow \nu + e$	~300
pES	$\nu + p \rightarrow \nu + p$	~2000
NC	$\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$	~300
CC	$\begin{array}{l} \nu_e + {}^{12}C \rightarrow e^- + {}^{12}N \\ \nu_e + {}^{12}C \rightarrow e^- + {}^{12}B \end{array}$	~200

Diffuse supernovae neutrino

- Diffuse Supernova Neutrino Background (DSNB): neutrino signal integrated from all SN in the Universe
- Provide information on the average CCSN neutrino spectrum and history of supernova explosions throughout the universe
- Never observed before -> JUNO one of the best candidate to observe DSNB for the 1st time
- Challenging :
 - DSNB's IBD signal constrained by reactor's IBD at E < 10 MeV \bullet
 - **Constrained by atmospheric neutrinos at higher energy** D
 - **Optimal window [12-30] MeV with 2-4 events/year expected**
 - 5σ sensitivity to DSNB signal in ~10 years

28

Atmospheric neutrinos

- JUNO able to measure atmospheric neutrino spectrum
 - Uncertainties between 10 % and 25 % with 5 years of data
- Sensitivity to NMO by matter effect ~1.8 σ with 10 years of data
- Ongoing analysis to combine atmospherics and reactors

Proton decay

- Signature: 3 fold coincidence
- Disentangle pile up with excellent timing of SPMT
- Expected sensitivity : 9.6×10^{33} years (90% CL) after 10 years

N Nucl.

:	:	:	:	:	:	:	:	:	1
									ļ
									ļ
									l
									1
•	•	•	•	•	•	•	•	-	1
•	•	•	•	•	•	•	•	-	1
•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	-	1
	1	1		1			1	-	j
•	•	•	•	•	•	•	•	-	1
•	•	•	•	•	•	•	•	-	1
•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	-	1
•	•	•	•	•	•	•	•	-	1
•	•	•	•	•	•	•	•	-	1
•	•	•	•	•	•		•	-	j
1	1	:	:	1		1	į	-	j
			-		1		Ī	-	1
•	•	•	•	•	•	•	•	•	1
-	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	1
			ŀ			ł			
ĺ)							

H()

JUNO-0vßß upgrade

- After completion of NMO (>2030): 100-ton scale isotope loading (Tellurium, Xenon)
- Sensitivity to parameter space of Majorana neutrino in normal ordering
- Lot of R&D:

→ Loaded LS requirement: high light yield, transparency, radio purity

ium, Xenon) ajorana neutrinc

Conclusion

The JUNO experiment is a technical challenge
 → largest liquid scintillator ever built !

• The primary goal is the Neutrino Mass ordering determination in 6 years of data taking

- Rich physics program: Precision measurement, CCSN, DSNB, Solar, Geo, atmospherics, proton decay and $0\nu\beta\beta$

Stay tuned for a lot of physics results !

