Journée SFP 2024 – lumière sur la matière noire Paris21 Mars 2024

Ondes gravitationnelles et Matière noire

Viola Sordini – IP2I Lyon CNRS – IN2P3

Wilden Bid His Ist is I will Will

AUL

Gravitational Waves

Ripples in the spacetime metric generated by the acceleration of masses, propagating at the speed of light

- GW cause the the space itself to stretch/compress
- Predicted by Einstein's General Relativity (1916) first direct observation 2015 (LIGO)
- Probe gravity in unprecedented conditions, new messenger from the Universe
- Possible sources of detectable GW are some of the most violent events in the Universe involving massive and compact objects in relativistic regime

GW terrestrial detectors

- Michelson interferometers with Fabry-Pérot cavities in the arms, operating on dark fringe
- Observable: h(t) "strain". $\delta L=hL \rightarrow km$ -long arms (h~10⁻²¹)
- Sensitive in the ~10Hz ~kHz frequency band

GW terrestrial detectors

LIGO-Virgo-KAGRA (LVK) network, evolving to IGWN

The LVK network

- All results and data available on <u>GWOSC</u>
- O4 ongoing since May 2023, until February 2025
- Alerts for CBC events include early warning searches on <u>GraceDB</u> and distributed through <u>GCN</u> and <u>SCiMMA</u> (all explanations <u>here</u>)

🕪 GraceDB Public Alerts - Latest Search Notifications Pipelines Documentation Logout

LIGO/Virgo/KAGRA Public Alerts

More details about public alerts are provided in the LIGO/Virgo/KAGRA Alerts User Guide.

- Retractions are marked in red. Retraction means that the candidate was manually vetted and is no longer considered a candidate of interest.
- Less-significant events are marked in grey, and are not manually vetted. Consult the LVK Alerts User Guide for more information on significance in O4.
- Less-significant events are not shown by default. Press "Show All Public Events" to show significant and less-significant events.

O4 Significant Detection Candidates: 55 (64 Total - 9 Retracted)

O4 Low Significance Detection Candidates: 1150 (Total)

Show All Public Events Page 1 of 5. next last > SORT: EVENT ID (A-Z)									
	Possible Source (Probability)								
S231020bw	BBH (>99%)	Yes	Oct. 20, 2023 18:05:09 UTC	GCN Circular Query Notices VOE	· · · · · · · ·	1 per 91.785 years		ΩH1 ΩL1 ΩV1	
S231020ba	BBH (91%), NSBH (8%)	Yes	Oct. 20, 2023 14:29:47 UTC	GCN Circular Query Notices VOE		1 per 25.01 years		ΩH1 ΩL1 ΩV1	

3G GW ground-based detectors

- Next generation ground-based detectors (data taking ~2040s?)
- Impressive event rate and reach
- Transition projects with LIGO and Virgo infrastructure are also under study

Laser Interferometer Space Antenna

- Space-based GW observatory sensitive in mHz band (launch mid-2030s), arms 2.5M km
- Sensitive to merger of supermassive BH
- Dominated by signals (many long-lived), main background from unresolved GW
- Data analysis challenge!

Pulsar Timing Arrays

- Network of telescopes observing pulsars signals in radio frequencies over time
- Sensitivity in the nHz band, SGWB from SMBHB •
- Signal is correlated (can predict correlation pattern, depending on pulsars angular separation)

GW spectrum

• Different facilities are complementary!

GW science

- Since the first detection in 2015, now ~hundreds of observations
- LVK mostly BBH, but also NSBH, BNS (one multi-messenger), but keep looking for other signatures (continuous GW emission, non-modeled transients, GWB)
- PTA Evidence of signal (SGWB from SMBHB most likely interpretation)
- These observations are interesting for
 - Understanding gravity (test beyond GR theories)
 - Astrophysics understand the objects that generated the GW signal and the possible associated multi-messenger observations
 - Explore extremely dense nuclear matter
 - Cosmology understand the history of the Universe
 - ...how exciting if we could say something about Dark Matter ?

GW and DM

- GW can help probing Dark Matter in many ways
- From GW observations often polluted by astrophysical unknowns
- Using GW detectors for direct searches
- In this talk some results, ideas, links
- By no means a complete review! Apologies for the omissions

Primordial black holes

- PBH formed from the collapse of large overdensities in the primordial Universe, wide range of masses (10^{-16} to 10^{6} M_{\odot}) and different mass spectra.
- Candidates to form (a fraction) of DM
- Popular in late 90's after microlensing observation claims by MACHO survey, then more stringent limits from EROS/OGLE. Since GW detection, CMB limits less stringent, microlensing constraints are re-considered ([1], [2],[3],[4],[5]) → renewed attention in the region [1-100]M_☉, relevant for LVK
- LISA would be sensitive to PBH coalescences if M 10^3 - 10^4 M $_{\odot}$, PBH induced secondary SGWB, EMRI, down to asteroid-mass PBH
- PTA experiments sensitive to PBH SGWB, PBH galactic DM structures

Inspired from [6]

Primordial black holes

- Many models of PBH formation, with different phenomenology
- Mass spectrum influenced by QCD phase transition
- PBH can undergo accretion and can form DM halos
- Early PBH binaries (before matter-radiation equality), rate suppressed by binary disruption from multi-body PBH interaction, matter fluctuation or early clustering
- Late PBH binaries from dynamical capture in dense environments, with possible rate enhancement. Similar rate as early binaries for ~1M_{\odot}, with peak around 30-100 M $_{\odot}$
- If we observe something how do we know it's primordial?
 - Focus on two regions: sub-solar mass and high redshift (z> ~40) 3G detectors
 - Solar mass region interpreted as NS, but needs tidal effects measurement ([1], [2]) or EM-counterpart.. (and we do observe subsolar NS [3])
 - GW-LSS correlation can be different wrt stellar origin BH

Sub-solar mass search (LVK)

- Compact binary coalescences involving sub-solar mass objects (SSM-SSM, SSM-NS, SSM-BH)
- ISCO frequencies ~kHz, mostly sensitive to inspiral → Inspire-only waveforms, with phase terms up to 3.5PN and no amplitude corrections
- Effectively, as the CBC signals the LVK knows and loves, just longer time in band: duration up to ~450s (~100 in standard BNS search)
- Probed parameter-space in the O3 analysis 1

 $\begin{array}{l} 0.2 < m_1 < 10 \\ 0.2 < m_2 < 1 \\ 1 < \frac{m_1}{m_2} < 20 \\ |\chi_i| < 0.1(0.9) \mbox{ if } m_i < 0.5 \mbox{ (otherwise)} \end{array}$

Sub-solar mass search (LVK)

- Different searches have analysed the data collected during O3, finding no significant detection → we can set limits on the merger rate
- 1. Inject simulated signals in the data, covering the searched parameters space
- 2. Perform the search to determine the pipelines detection efficiencies
- 3. Sensitive volume associate limits on rate are evaluated differentially

$$\mathcal{R}_{90}(\mathrm{Gpc}^{-3}\mathrm{yr}^{-1})$$

- Dissipative DM model from [1]
- Two dark fermions + 1 massless dark photon, DM can form bound states and dissipate energy by radiation and collapse to form a BH
- Power-law distribution for BH masses (unknown cutoff M_{min})
- Upper limit (function of M_{min}) on the fraction of DM that ends up in BH

- Phenomenological model where PBH produced at a single mass, and randomly distributed in space
- Update in merger rates for early [1] and late
 [2] binaries separately
- Importance of suppression factor, dependence of the results on the formations scenarios
- Merger rate depends on the abundance of PBH, parametrised as a fraction of the dark matter density

- Phenomenological model where PBH produced at a single mass, and randomly distributed in space
- Update in merger rates for early [1] and late
 [2] binaries separately
- Importance of suppression factor, dependence of the results on the formations scenarios
- Merger rate depends on the abundance of PBH, parametrised as a fraction of the dark matter density

- Phenomenological model where PBH produced at a single mass, and randomly distributed in space
- Update in merger rates for early [1] and late
 [2] binaries separately
- Importance of suppression factor, dependence of the results on the formations scenarios
- Merger rate depends on the abundance of PBH, parametrised as a fraction of the dark matter density

Planetary mass PBH - LVK

- Search for inspiraling planetary-mass PBH binaries in LVK O3 data ([1]).
- Generalized frequency-Hough maps points in the time/frequency plane of the detector to lines in the frequency/chirp mass plane of the source. No eccentricity.

- Chirp mass in 10⁻⁴-10⁻² range, sensitive to binary PBHs within [0.1,100] kpc (depending on chirp mass), no significant candidate
- Equal-mass PBH binaries: f_{PBH} < [1, 0.04] for m_{PBH} ∈ [2 10⁻³, 10⁻²]M_☉, respectively (if no rate suppression and monochromatic mass functions).
- Asymmetric systems, if $m_1=2.5$, $f_{PBH}=0.1$ and $m_2>\sim 1.5 \ 10^{-5}$, then $f(m_2)<0.1$

Exotic objects

- Exotic Compact Objects made of ultra-light bosonic particles
- Proca star complex bosonic field oscillating at a typical frequency determining mass and compactness of the star
- <u>GW190521</u> high-mass high-spin candidate from O3
- Interpretation of the GW190521 LVK observation as a head-on collision of Proca stars (BH head-on merger discarded) [1]

Waveform model	$\log \mathcal{B}$	$\log \mathcal{L}_{\max}$
Quasi-circular Binary Black Hole	80.1	105.2
Head-on Equal-mass Proca Stars	80.9	106.7
Head-on Unequal-mass Proca Stars	82.0	106.5
Head-on Binary Black Hole	75.9	103.2

Environemental effects

- Bosonic (non-axisymmetric) cloud around BH extracts energy and angular momentum (superradiance)→time-varying quadrupole moment
- Long-lasting, monochromatic GWs (frequency related to the boson mass)
- Semi-coherent all-sky search (Band Sampled Data) of O3 data from LVK [1]
- Outliers in peakmap followed up with more scrutiny → none significant
- Exclusion limits derived for different distances and spin hypotheses

Direct searches – LIGO-Virgo

- Analysis of O3 LIGO-Virgo data [1]
- Ultralight dark photon dark matter is expected to cause time-dependent oscillations in the mirrors of the interferometers, which would lead to a differential strain in the detector
- Not a GW signature a direct detection with GW interferometers!
- Cross-correlation between two detectors in stretches of 1800s, Band Samples Data with variable FFT lengths → look for outlier in frequency bins
- No significant candidates, set upper limits on dark-photon/baryon coupling

Similar DM candidates constrained by GR equivalence principle tests, axion-to-photon conversion in strong magnetic field in a resonant cavity

Direct searches LISA (pathfinder)

- Similar analysis on LISA pathfinder data in [1]
- Weaker constrains, but promising proof-of-concept for LISA!

Direct searches - KAGRA

- Dark photons interact via coupling to baryon or baryon-lepton number
- KAGRA employs sapphire for cryogenic test masses and fused silica for room temperature auxiliary mirrors. Difference in the materials charge-to-mass ratios → mirrors respond differently to the vector field
- ~2 weeks of 2020 KAGRA data analysed in [1] (recent result!)
- Search for periodic signal at specific frequencies in data chunks, vetoing experimental effects and non-persistent signals
- Derive upper limits on the coupling strength incorporating the stochastic nature of the DM
- More data are needed, but promising results

Prospects for direct searches

• From the methods paper [1]

PTA and ULDM

- ULDM as ultra-light scalar field would lead to periodic displacement in TOAs of pulsars signals
 - If ULDM coherence length >> distance Earth-pulsars \rightarrow signals correlated.
 - PTA searches complementary to other constraints (CMB, measurements of the Lyman-α forest, galactic subhalo mass functions, stellar kinematics)
 - PTA searches for ULDM in the 10^{-23} eV mf 10^{-20} eV window
- PTA data can also be affected by DM substructures (galactic PBH population?)
 - Doppler signal (shift in the pulsar spin frequency, generated by the acceleration induced by the gravitational pull of a PBH).
 - Shapiro signal (shifts in the TOAs caused by metric perturbations along the photon geodesic from PBHs along the observer's line of sight).

EPTA constraints on ULDM

• UL scalar field with negligible self-interaction and no interaction with SM leads to periodic displacement in TOA of pulsars signals. EPTA results from [1] (superseding [2])

• Ultralight particles with masses $10^{-24.0} \text{ eV} \lesssim m \lesssim 10^{-23.3} \text{ eV}$ cannot constitute 100% of DM, but can have at most local DM density $\rho \lesssim 0.3 \text{ GeV/cm}^3$.

NANOgrav constrains on ULDM

- NANOGrav analysis [1]
 - ULDM different searches (metric fluctuations, Doppler–U(1) forces, pulsars spin fluctuations, reference clock shifts)
 - Analysis of 15 yr dataset only slight excess ULDM signal with frequency f ~4 nHz. Corresponding ULDM masses, mf ~ 2 × 10⁻²³ eV in tension with other astrophysical bounds → derive constraints

Assume monochromatic PBH (on top of GWB fitted on data jointly), no significant signal \rightarrow constrain f_{PBH}

Conclusion

- GW are a new messenger from the Universe and can constrain DM models
- GW detectors can also be used for direct DM searches
- For the moment no DM evidence, but constrains are complementary (and in some cases competitive) with other 'classic' observables
- More data is being collected and new, more sensitive, experiments are foreseen in the next ~decade
- Stay tuned for more exciting science!

