cea irfu universite PARIS-SACLAY

Recherche directe de matière noire auprès des collisionneurs

Matthias Saimpert (CEA Irfu/DPhP)

Journée SFP Champs & Particules 2024

Jeudi 21 Mars 2024

Models for Dark Matter

ATLAS EXOTIC results, ATLAS SUSY results, CMS public results

- Cosmological evidence for dark matter (DM), but no experimental hints on its nature
- Searching for weakly-interating massive particles (WIMP) w/ minimal assumptions is one of the main approaches pursued w/ the ATLAS & CMS detectors at the LHC → focus of this talk

No Vor

1. Models & Signatures at the LHC

2. Results on simplified models (ATLAS & CMS)

3. Other models & Experiments

Models & Signatures at the LHC

■ WIMP abundance set by thermal freeze-out ■ weak interaction ($< \sigma v > \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$) $M_{\chi} \sim 1\text{-}1000 \text{ GeV} \rightarrow \Omega_c h^2 \sim 0.12$

WIMP hunting at colliders

- WIMP abundance set by thermal freeze-out
 - weak interaction (< σv >~ $10^{-26} \text{ cm}^3 \text{s}^{-1}$)

 $M_\chi \sim$ 1-1000 GeV $ightarrow \Omega_c h^2 \sim 0.12$

"mono-X" signatures at LHC

- proton collisions (quarks & gluons)
- **X** = jet, γ , Z, W, ... \rightarrow visible recoil
- missing momentum in transverse plane (E^{miss})

Common benchmark 'simplified' models at the LHC

Phys.Dark Univ. 27 (2020) 100371

WIMP DM + mediator

- free parameters: m_{ϕ} , m_{χ} , g_{SM} , g_{DM} , Γ_{ϕ}
- already rich phenomenology
- models classified w.r.t spin/CP of mediator and DM, → special case: mediator = Higgs boson

Common benchmark 'simplified' models at the LHC

Phys.Dark Univ. 27 (2020) 100371

- WIMP DM + mediator
 - free parameters: m_{ϕ} , m_{χ} , g_{SM} , g_{DM} , Γ_{ϕ}
 - already rich phenomenology
 - models classified w.r.t spin/CP of mediator and DM, → special case: mediator = Higgs boson
- "Less simplified" model: 2 Higgs Doublet + a PDU 27 (2020) 100351
- Under development: DM + t-channel mediator EPJC 80 (2020) 5, 409

Common benchmark 'simplified' models at the LHC

Phys.Dark Univ. 27 (2020) 100371

- WIMP DM + mediator
 - free parameters: m_{ϕ} , m_{χ} , g_{SM} , g_{DM} , Γ_{ϕ}
 - already rich phenomenology
 - models classified w.r.t spin/CP of mediator and DM, → special case: mediator = Higgs boson
- "Less simplified" model: 2 Higgs Doublet + a PDU 27 (2020) 100351
- Under development: DM + t-channel mediator EPJC 80 (2020) 5, 409
- Other (non-WIMP) simplified models:
 - dark higgs
 - unconventional signatures. e.g. strongly-interacting dark sectors
 - dark photons, axion-like particles, ...

JHEP 04 (2017) 143,

- JHEP 11 (2017) 196

The ATLAS & CMS detectors at the LHC

ATLAS detector overview

Particle identification at CMS

- Results shown today based on LHC proton-proton collisions at \sqrt{s} = 13 TeV
- Very large dataset collected by ATLAS/CMS during Run 2 (2015-2018) → 139 fb⁻¹
 - 7.7M Higgs, 275M top quarks, 2800M Z bosons, ...
- Multi-purpose, high efficiency/acceptance detectors
 - excellent online/offline reconstruction performance

The ATLAS & CMS detectors at the LHC

- Results shown today based on LHC proton-proton collisions at $\sqrt{s} = 13$ TeV
- Very large dataset collected by ATLAS/CMS during Run 2 (2015-2018) → 139 fb⁻¹
 - 7.7M Higgs, 275M top quarks, 2800M Z bosons, ...

Multi-purpose, high efficiency/acceptance detectors

excellent online/offline reconstruction performance

E_T^{miss} reconstruction at the LHC

ATLAS: arXiv:2402.05858 CMS: JINST 14 (2019) P07004

$$\begin{split} \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} &= (E_x^{\mathrm{miss}}, E_y^{\mathrm{miss}})\,, \\ E_{\mathrm{T}}^{\mathrm{miss}} &= |\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}| = \sqrt{(E_x^{\mathrm{miss}})^2 + (E_y^{\mathrm{miss}})^2}\,, \\ \phi^{\mathrm{miss}} &= \tan^{-1}(E_y^{\mathrm{miss}}/E_x^{\mathrm{miss}})\,. \end{split}$$

- Proxy to undetected particle kinematics based on the conservation of the momentum in the transverse plane
- Uses all the reconstructed high-level objects in the events + non-associated tracks (ATLAS) or particle-flow object (CMS)
 - resolution depends on event topology
- Online E^{miss}_T also available for event triggering

2 Results on simplified models (ATLAS & CMS)

Mono-jet search

ATLAS: Phys. Rev. D 103 (2021) 112006 - 'precision search'

- Signal region (SR) selection
 - $\blacksquare E_T^{miss} > 200 \text{ GeV} E_T^{miss} \text{ trigger}$
 - up to 4 jets well separated from E_T^{miss}
 - leading jet pT > 150 GeV, no lepton

SR: no excess over background predictions

Visible recoil X here is: up to 4 jets

Mono-jet search

ATLAS: Phys. Rev. D 103 (2021) 112006 - 'precision search'

- Signal region (SR) selection
 - $\blacksquare E_T^{miss} > 200 \text{ GeV} E_T^{miss} \text{ trigger}$
 - up to 4 jets well separated from E_T^{miss}
 - leading jet pT > 150 GeV, no lepton

SR: no excess over background predictions

- Background: $Z(\rightarrow \nu \nu)$, $W(\rightarrow \ell \nu)$ + jets
 - constrained in control regions (CR) w/ leptons

No W.

- use of state-of-the-art W/Z+jets predictions EPJC 77, 829 (2017)
- total background uncertainty: 2-4%,

example of CR for $Z
ightarrow \mu \mu$

ATLAS mono-jet event display

other mono-X (ATLAS): mono-γ, mono-V, mono-Z, ... similar analyses were performed by CMS. No excess found.

ATLAS mono-jet search results

ATLAS: Phys. Rev. D 103 (2021) 112006 CMS: JHEP 11 (2021) 153 - 'precision search'

Various interpretations:

- **D**M mediated by axial vector $Z_A \rightarrow$ comparison w/ direct detection
- **SUSY**, e.g. squark pair production with $\tilde{q} \rightarrow q + \tilde{\chi}^0$
- other dark sector models: ATL-PHYS-PUB-2021-020

ATLAS mono-jet search results

ATLAS: Phys. Rev. D 103 (2021) 112006 CMS: JHEP 11 (2021) 153 - 'precision search'

Various interpretations:

- **D**M mediated by axial vector $Z_A \rightarrow$ comparison w/ direct detection
- **SUSY**, e.g. squark pair production with $\tilde{q} \rightarrow q + \tilde{\chi}^0$
- other dark sector models: ATL-PHYS-PUB-2021-020

axial vector mediator interpretation

ATLAS mono-jet search results

ATLAS: Phys. Rev. D 103 (2021) 112006 CMS: JHEP 11 (2021) 153 - 'precision search'

Various interpretations:

- **DM** mediated by axial vector $Z_A \rightarrow$ comparison w/ direct detection
- **SUSY**, e.g. squark pair production with $\tilde{q} \rightarrow q + \tilde{\chi}^0$
- other dark sector models: ATL-PHYS-PUB-2021-020

axial vector mediator interpretation

(model-dependent) comparison w/ direct detection

Matthias Saimpert (CEA Irfu/DPhP)

Interplay w/ resonant searches

ATLAS DM Summary plots: ATL-PHYS-PUB-2023-018

- Resonant search for mediator particle
- Look for bump in mass spectra: jj, ll, ...
- Sensitivity at 'low' mass typically limited by trigger threshold (for dijet, m < 2 TeV)</p>

mono-jet search vs resonant search

Interplay w/ resonant searches

ATLAS DM Summary plots: ATL-PHYS-PUB-2023-018

Resonant search for mediator particle

- Look for bump in mass spectra: jj, ll, ...
- Sensitivity at 'low' mass typically limited by trigger threshold (for dijet, m < 2 TeV)

Complementarity with mono-X searches

 Z_A w/ large coupling to quarks

 Z_V w/ small coupling to guarks and leptons

Matthias Saimpert (CEA Irfu/DPhP)

Dark matter searches w/ third generation

ATLAS: arXiv:2402.16561 (2024), EPJC 83 (2023) 603, EPJC 83 (2023) 503, JHEP 05 (2021) 093

- **spin-0 mediator** under minimal flavour violation hypothesis \rightarrow Yukawa-like couplings \propto fermion mass
- leading channels: $b\bar{b} + E_T^{miss}$, $t\bar{t} + E_T^{miss}$ and $t(W) + E_T^{miss}$

Dark matter searches w/ third generation

ATLAS: arXiv:2402.16561 (2024), EPJC 83 (2023) 603, EPJC 83 (2023) 503, JHEP 05 (2021) 093

- **spin-0 mediator** under minimal flavour violation hypothesis \rightarrow Yukawa-like couplings \propto fermion mass
- leading channels: $b\bar{b} + E_T^{miss}$, $t\bar{t} + E_T^{miss}$ and $t(W) + E_T^{miss}$

- Signal region (SR) selection in $t\bar{t} + E_T^{\text{miss}}$ searches
 - large *E*^{miss}, 2 *b*-tagged jets, & 0, 1 or 2 leptons
 - additional cuts to remove main backgrounds

Main backgrounds

• 0-lepton: $t\bar{t}$ incl. a top quark decay w/ an undetected lepton

- 2-lepton: irreducible $t\bar{t}Z(\rightarrow \nu\nu)$
- 1-lepton: mix

Dark matter searches w/ third generation

ATLAS: arXiv:2402.16561 (2024), EPJC 83 (2023) 603, EPJC 83 (2023) 503, JHEP 05 (2021) 093

- **spin-0 mediator** under minimal flavour violation hypothesis \rightarrow Yukawa-like couplings \propto fermion mass
- leading channels: $b\bar{b} + E_T^{miss}$, $t\bar{t} + E_T^{miss}$ and $t(W) + E_T^{miss}$

(one of) main challenge in 0-lepton analysis: rejection of top quark decays with an undetected lepton

Dark matter with spin 0 mediator - results

ATLAS: EPJC 83 (2023) 503, ATL-PHYS-PUB-2023-018

[CMS equivalent: EPJC 81 (2021) 11, 970]

tt + E^{miss} searches drive the sensitivity to spin 0 mediators w/ Yukawa-like couplings, no excess found.

- $m_{\phi} > 370 \text{ GeV}$ for coupling g = 1
- coupling g < 0.17 if m_{ϕ} = 10 GeV
- results for both scalar and pseudo-scalar mediators available
 - 2-lepton channel dominates the sensitivity and is statistically-limited

XX7

Searches for $H{\rightarrow}$ invisible decays

ATLAS: Nature 607, 52 (2022) CMS: Nature 607, 60 (2022)

- SM Higgs boson as spin 0 mediator
- SM Higgs production (Yukawa-like + HVV couplings) is assumed
- Enter global Higgs measurement combination

Searches for $H \rightarrow$ invisible decays

ATLAS: Nature 607, 52 (2022) CMS: Nature 607, 60 (2022)

- SM Higgs boson as spin 0 mediator
- SM Higgs production (Yukawa-like + HVV couplings) is assumed
- Enter global Higgs measurement combination

Most sensitive channel: "vector boson fusion" (VBF) + E_{T}^{miss}

Signal region (SR) selection

- **2** jets with large $\Delta \eta$ and m_{ii}
- \blacksquare $E_{\rm T}^{\rm miss} > 160 \, {\rm GeV} E_{\rm T}^{\rm miss}$ trigger
- no lepton

NV WY

Vatthias Saimpert (CEA Irfu/DPhP)

VBF + *E*^{miss} analysis

ATLAS: JHEP 08 (2022) 104 CMS: PRD 105 (2022) 9, 092007

Background: $Z(\rightarrow \nu \nu)$, $W(\rightarrow \ell \nu)$ + 2 jets

- constrained in control regions w/ leptons
- use of dedicated W/Z + 2 jets predictions in VBF phase space (ATLAS) JHEP 01 (2023) 070
- total background uncertainty: ~ 5%,

example SR

V+jets theory uncertainties (ATLAS)

Journée SFP 2024 21/03/2024 17 / 27

cez

CMS VBF + *E*^{miss} event display

interactive version

$\textbf{H} \rightarrow \textbf{invisible results}$

ATLAS: PLB 842 (2023) 137963

CMS: EPJC 83 (2023) 933

- Sensitivity to BR($H \rightarrow$ inv.) > 10%, driven by VBF + E_T^{miss} and V + E_T^{miss}
 - stable if best fitted Higgs couplings (κ_F, κ_V) assumed instead of SM
- $t\bar{t} + E_T^{\text{miss}}$ subleading but still statistically-limited
- Complementary to direct detection experiments

3 Other models & Experiments

New generation of signal models at the LHC

ATLAS DM Summary plots: ATL-PHYS-PUB-2023-018

- **2HDM+a model:** pseudo-scalar mediator UV-complete extension
 - new signatures: mono-H, $t(W) + E_T^{miss}$, ...
- Secluded dark sector: dark photons, dark Higgs, sterile neutrino, ALP

 b-sinvisible 139 fb⁻¹ — Combination

- new signatures: VV + E_T^{miss} , ...
- Unconventional signatures: strongly-interacting dark sector JHEP 06 (2022) 156 : PLB 848 (2024) 138324
 - new signatures: semi-visible jets, displaced jet/leptons, ...

700

m, [GeV]

800

600

Dark Higgs

CEBN-I PCC-2018-02

200 Vatthias Saimpert (CEA Irfu/DPhP)

300 400 500

400

200

100

JHEP 04 (2017) 143

Less simplified: "2 Higgs doublet + a" Model (2HDM+a)

- Next-to-simplest simplified pseudoscalar model being gauge-invariant and renormalisable
- New particles: *H*, *H*[±] (scalars), *A*, *a* (pseudoscalars)
- Additional contributions via H/H^{\pm} resonant diag.
- New signatures via A resonant diagrams

new signature: mono-H channel

additional contributions to mono-Z and mono-top

Less simplified: "2 Higgs doublet + a" Model (2HDM+a) *

ATLAS DM Summary plots: ATL-PHYS-PUB-2023-018

Toward the intensity frontier: secluded dark sector

- DM is not a single particle but a sector incl. many several states
- Limited number (usually one) dark sector particles interact with SM via kinetic mixing
- 4 Portals defined in JPG 47 (2020) 1, 010501
 - dark photon
 - dark Higgs
 - sterile neutrino
 - axion-like particles

dark photon model

← Portals to the dark sector Symmetry 2022, 14(7), 1299

LHCb highlights

RPP 85 (2022) 2, 024201

- 5.5 fb⁻¹ of proton-proton collisions at 13 TeV with low pileup
- asymmetric detector to study CPV and rare decays of heavy flavor hadrons
- DM search program incl. light DM or mediators (0.1-50 GeV) coupled to 2nd/3rd generation

dark photon to $\mu\mu$ decays: PRL 124 (2020) 4, 041801 JHEP 10 (2020) 156

Full reconstruction in the trigger \rightarrow no data prescale factors

Belle 2 highlights

Belle 2 Physics Book: PTEP 2019 (2019) 12, 123C01

Z' search: PRL 130 (2023) 23, 231801

- Asymmetric e^+e^- collision near the Υ (4S) peak B-factory, $\sqrt{s} = 10.58$ GeV, unprecedented luminosity
- DM search program incl. light DM or mediators (0.1-10 GeV) coupled to 2nd/3rd generation
- More results to come

 \leftarrow long-lived scalar in $b \rightarrow s$ transitions: PRD 108 (2023) L111104 similar models probed by LHCb

26 / 27

X = dark

 $e^+e^- \rightarrow \mu^+\mu^- Z'; Z' \rightarrow invisible$

Summary

DM searches at colliders mostly guided by WIMP simplified models

- single mediator → mono-X
- $\blacksquare Higgs portal \longrightarrow H to invisible$
- toward UV-completion → 2HDM+a

Large parameter space explored, no hint so far

- sensitivity model-dependent but complementary to direct detection
- In parallel, models beyond the WIMP paradigm also explored
 - dark higgs, dark photon, axion-like particles, strongly-interacting dark sectors, ...
- Possible focus for the LHC Run 3: t-channel simplified mediator models

Merci pour votre attention

CEA SACLAY 91 191 Gif-sur-Yvette Cedex France matthias.saimpert@cea.fr