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Status of (cold) dark matter

CDM at the core of structure formation theory
+ daily used in th. predictions + simulations without asking ... what is it made of?

Not devoid of “tensions’ on small scales

- subhkalepb (long solved from baryonic physics)
- core/cusp pb (e.g. de Blok’10) and its declension
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Halo mass
density

o(R) Mass density profiles of galactic halos:

Cored halo - predicted cuspy down to very inner parts
(NFW, Einsato)
- 1-parameter model (mass), given redshift.
The core-cusp

problers ... but found cored in significant fraction of

galaxies (not always).
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Status of (cold) dark matter

Regularity problem
Diversity problem * Total acceleration correlates with baryonic
=t - Halo mass acceleration
Halos of similar masses (Vma) have a large density (Mass Discrepancy Acceleration Relation).

scatter in central properties (Vi) p(R)
(NB: predicted by MOND)

® Observafions Cored halo

— CDMonly 2693 points

— Hydro sims ;
Tulin+18 (Oman+15) o The core-cusp Miﬁ%ﬁgm

Diversity problem P problem
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Potential solutions to core/cusp < diversity pb

Dark matter properties

Self-interacting dark matter (SIDM)
[Spergel & Steinhardt’00]

— heats the cusps away

Baryonic physics Ultra-light [bosonic] dark matter (ULDM)
[Hu+°00]
[Must be investigated anyway]| —s solitonic cores
OR/AND
")

Come with different properties on small scales
[e.g. subhalos or not, possible collapse or not]




Potential solutions to core/cusp < diversity pb

The formation of cores in galaxies across cosmic time - the existence of
cores is not in tension with the ACDM paradigm

R. A. Jackson,!:>** S. Kaviraj,> S. K. Yi,? S. Peirani,* Y. Dubois,” G. Martin,®”-8
J. E. G. Devriendt.? A. Slyz.? C. Pichon.>!° M. Volonteri.? T. Kimm? and K. Kraljic!!

The Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold
Dark Matter Halos

Aaron D. Ludlow,” Alejandro Benitez-I.lambay, Matthieu Schaller, Tom Theuns, Carlos S. Frenk, and Richard Bower

Joop Schaye @ Robert A. Crain

Julio E Navarro,” Azadeh Fattahi, and Kyle A. Oman

MIND THE GAP: IS THE TOO BIG TO FAIL PROBLEM RESOLVED?

JEREMIAH P. OsTRIKER!?, ENA CHoI', ANTHONY CHOW'!, KUNDAN GUHA'

Baryonic solutions already found — many studies ongoing
[Caveats: controled subgrid physics? Same baryonic recipe for all pbs?]




DM on small scales: connecting fundamental unknowns

Origin of cosmological perturbations

— Primordial power spectrum (PS)

(on scales much lower than CMB+LSS can touch)

Nature and origin of dark matter

— DM responds to primordial perturbations (matter PS)
— Imprints its own features (interactions, etc.)
— Might even generate additional perturbations

— Smallest dark structures carry invaluable information




DM on small scales: connecting fundamental unknowns

Origin of cosmological perturbations
— Primordial power spectrum (PS)

(on scales much lower than CMB+LSS can touch)

The realm of
Particle DM

 Standard inflation

101.
Gow+’20

Planck 2018 TT

Planck 2018 EE % o le

Planck 2018 ¢ " Nature and origin of dark matter
DES Y1 cosmic shear i

SDSS DR7 LRG

eBOSS DR14 Ly-a forest

— DM responds to primordial perturbations (matter PS)
— Imprints its own features (interactions, etc.)
— Might even generate additional perturbations
e . — Smallest dark structures carry invaluable information

0
Chabanier+’19 Wavenumber k [h/Mpc]
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DM on small scales: connecting fundamental unknowns

Origin of cosmological perturbations
— Primordial power spectrum (PS)

(on scales much lower than CMB+LSS can touch)

The realm of
Particle DM
. Standard inflation
101.

Gow+’20

Warm DM:
mp=6keV

Nature and origin of dark matter

dn/dIinM [Mpc/h]
dn/dinM [Mpc/h] 8

— DM responds to primordial perturbations (matter PS)
— Imprints its own features (interactions, etc.)
— Might even generate additional perturbations

— Smallest dark structures carry invaluable information

Cold DM
107

M [M /] Schneider’18 MM /h]




Setting scales in cosmological structures
1 : before structure formation

On small
X \ / x ; Scales
Thermal DM (incl. rh neutrinos) _
[1 keV - 100 TeV] Dark e
Elastic interactions with matter Sector > SIDM
SM, SM, X /

Kinetic decoupling
=> 2" moment of Boltzmann eq.
++ acoustic damping if ate decoupling or
strong self-interactions

C Free-streaming vs collisional damping )

Slower <=> shorter mfp <=> colder

o(t)
— R Ukd(axd/Geq)/Heq

Faster <=> larger mfp <=> warmer



Setting scales in cosmological structures
1 : before structure formation

Axion Field ¢

[Marsh’16]

1F

Equation of State w

“ |

= Exact Density | \

Approx. Densitl

101 102

Scale Factor a/a;

10°

10 10?
Scale Factor a/a;

Axions or axion-like
[1 peV —1 meV]
[1022 eV for ALPs beyond QCD-axion]
Absence of CP violation in QCD

\___ (misalignment or string decays) /

10!
ScaleFactor a/a;

O + 2Hbq + (K2c2 (g /a® — 471G pg)d, = 0

CDM / axion clusters/stars
ULDM
Solitons of different sizes




Setting scales in cosmological structures
1 : before structure formation

Axion Field ¢

[Marsh’16]
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Equation of State w
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Scale Factor a/a;

10°

10t 10*
Scale Factor a/a;

Axions or axion-like
[1 peV —1 meV]
[1022 eV for ALPs beyond QCD-axion]
Absence of CP violation in QCD

\___ (misalignment or string decays) /

107 BT
Wavenumber k [Mpc™]

O + 2Hbq + (K2c2 (g /a® — 471G pg)d, = 0

CDM / axion clusters/stars
ULDM
Solitons of different sizes




Setting scales in cosmological structures
1 : before structure formation

Linear matter power spectrum

Clusters

10°%

10!

::_c:_‘ . nea - _— WIMP QCD
=10 - 2 axions

<]
103

10747

1077

1072
[Ferreira’20]

WDM

Fuzzy DM



Setting scales in structures
2. after structure formation

Fuzzy, wave, ULS, etc. DM Schive+’14
Reviews in Ferreira’20, | [ W .
- Niemeyer’20, Hui’21 6 e ggt??chrgn
k" -y === NFW

£ )

g=0 => fuzzy DM
g<0 => ULA (attractive)
g>0 ULDM (repulsive)

Pl P

K&~  9kpch _)|'

¥;% 4 gas
- = FDM with baryons
) 4 o _5_. CDM with baryons
? ° == FDM only

- Z
B
o 0
c
<
i z=1.07 £
Veltmaat+’18 9 2.5 Mpc/h ©

1 _ _ R

[ i, —imt f % _imt
p = —— ("Q._! e +vre )
V2ma® ’

: : M c e 107 0°2eV [ Mpao \'°
C Scaling relations ) Mootiton ~ 6.7 x 107 ) _ (W)
V2P = 47CG (p — p) )

Extensive analytical work by Chavanis




Setting scales in structures
2. after structure formation

On small
Y Y scales
Self-interacting DM Dark C S orslatencd )
[e.g. Tulin&Yu’18, Adhikari+’22] Sector

X-/ g
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Self-interacting DM
e.g. Tulin&Yu’18, Adhikari+’22]

Setting scales in structures
2. after structure formation

X X
\ . /
Sector

0.1 1

. TNFWr =r,
— = TNFW r, = 3r,
— NFW

Core collapse!

100
Nishikawa+’19

Gravothermal
catastrophe
possible

Seeds for
SMBH
formation?



Some constraints (ULDM & SIDM)

7 Many constraints, for example: N
- Lyman-alpha power spectrum
- Rotation curves
- Dynamics/survival of dwarf galaxies

Armengaud+17 - Counting of satellites
(Fuzzy DM) - Cluster collisions (SIDM)
' - Stability / core collapse
N - Etc. 81/,

—
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[ird

Excluded: EFENRERS 10721 eV at 95 % CL

(ov)/m

10 500 1000 5000

Kaplinghat+16
(SIDM)




Solar Masses

An elephant in the room
LIGO+VIRGO “15-16

i § T T
| LIGO Hanford Data Predicted

Did LIGO detect dark matter?

)

% Simeon Bird,* Ilias Cholis, Julian B. Munoz, Yacine Ali-Haimoud, Marc
3 Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess!
I }IGowigmnDatL = “7 1Depa.-rt-m_ent ofTPh" sics and As my, Johns Hop

ﬁ'o_ osl Ak “ Lo 3400 N. C , Baltimore, MD 212

% 00 ¥l nl AV AVAY \j“ “t;"“‘r”r.“wmi arXiv: 1603 00464 (PRL)

& ol o

| LIGO Hanford Data (shifted

Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914

Strain (10%")
(=]
o

Misao Sasaki,' Teruaki SLI}-‘EHTIH.E Takahiro Tanaka,' and Shuichiro Yoluu\_\,-';-111'13‘L
arXiv:1603.08338 (PRL)

L]GO Lrvmgston Data
1
0.. 30 0.. 35 [x] 0.45
Time (sec)

Masses |n the Stellar Graveyard

EM Neutron Star

The clustering of massive Primordial Black Holes as Dark Matter:
measuring their mass distribution with Advanced LIGO

Sébastien Clesse!* and Juan Garcia-Bellido?: T
arXiv:1603.05234 (PDU)

GO-Virgo-KAG Aarg eller | Northwes

LIGO/VIRGO/KAGRA (03)
arXiv:2111.03606 — 2111.03634
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1 Geller | Northwe:

An elephant in the room

Did LIGO detect dark matter?

Simeon Bird,* Ilias Cholis, Julian B. Munoz, Yacine Ali-Haimoud, Marc

Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess!

! Department of Physi a.'n.d Astronomy, Johns Hopkins U
3400 N. C S , Baltimore, MD 212

arXiv:1603.00464 (PRL)

Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914

Misao Sasaki,' Teruaki SLI}-‘EHTIH.E Takahiro Tanaka,' and Shuichiro Yoluu\_\,-';-111'13‘L
arXiv:1603.08338 (PRL)

The clustering of massive Primordial Black Holes as Dark Matter:
measuring their mass distribution with Advanced LIGO

Sébastien Clesse!* and Juan Garcia-Bellido?: T
arXiv:1603.05234 (PDU)

NB: Merger rate has now turned to a constraint on PBH DM

(clustering effects difficult to work out)
[Hiitsi+, Ali-Haimoud+, Jedamzik, etc.]



PBH links to power spectrum and constraints

Critical threshold
[Zeldovich, Novikov, Hawking, Carr]

Courtesy

Anne Green
o(MH) (mass variance)

typical size of fluctuations - PBH forming
fluctuations

Determined by amplitude
of primordial power spectrum

B(M) N/ P(8(Mz)) do( My ) A

Js. spectrum

Mass fraction in PBHs strongly

On CMB suppressed in standard inflation.

scales

o(My) ~107°

Caution: PBHs could also form
out of phase transitions,
topological defects, etc.



Favored mass windows for PBHs

Critical threshold
[Zeldovich, Novikov, Hawking, Carr]

(5 2 (SG ~ W = Z—) —
P

0.32FW/Z bosons

pions

electrons

2
0.28

0.26 Drops of pressure in early universe
[Jedamzik ‘97]

0.24

Quarks — hadrons

0.22
107 1072 10°

Iguaz+ ‘22 — see also Jedamzik’97
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PBH links to power spectrum and constraints
Constraints on PBH DM fraction
MM,
10]0 1015 1020E

10" 10 10

Primordial power spectrum

10772

Currently least
constrained

{1 Large amplitude => PBHs

i/
Range for PBH DM

(requires boosted amplitude) ]

Caution: Extended mass functionjallowed

7] |
] Carr+’20
Flagp (see also Greent+’21)
T B S RN R . L P BT A B
1025 1030 1035 1040 1045 1050 1055
Mlg]

~scale-invariant inflation
1020

0™

Gow+’20
1015

1002

Current LSS constraints
[e.g. Ly-alpha]

Current CMB constraints
[Planck—+"18]




PBH links to power spectrum and constraints
Constraints on PBH DM fraction
MM,
10]0 1015

10" 10 10

Primordial power spectrum

10772

{1 Large amplitude => PBHs

i/

¥,
o

Range for PBH DM
(requires boosted amplitude)

~scale-invariant inflation
101.
Gow+720

1002

Current LSS constraints
[e.g. Ly-alpha]

Current CMB constraints
[Planck—+"18]

Some activity in France, e.g. LPENS, IAP, etc.

10—10

1020

105 1 10°
| T T T T | T T T T | T I\ T T ‘ T E

10—15

T II T | T

‘.
)

| Garcia-Bellido’22

) ) f ]
1000.0 107
/ :

1055

0.1 I
1045 1050

.
1078

Megy  (Mo)
1025 1030 1035 1040
Mlg]

Models exist that give f~1
e.g. Critical Higgs inflation
[e.g. Bezrukov+’14, Ezquiaga+’17]
— Subsolar BH mergers expected!
++ Clusters of PBHs

.
10*

1020




Coexistence of particle/wave DM and (P)BHs

DM impact on inspiral: dynamical friction shortens coalescences time DM accumulates as dense spikes around PBHs in radiation-dominated universe
[Edat+ “13] [Dokuchaev+’03, Ricotti’07, Mck+’07, Eroshenko’16]

2 _ -8 7
Vacuum ] — 10 M@, bb
Static DM spike, v, = 2.3 ]
Dynamic DM spike, 7, = 2.3

———- Dynamic DM spike, 7 = 2.2
Dynamic DM spike, 75, = 1.5

my, = 1.4 x 104MO
ma = 1.4 M@

Prospects for LISA

G

Kavanagh+’23 i ) . m l
Lacroix, JL, Poulin, Salati, Scarcella, Stref, 1n>f)r p.

Q: Impact of 3" body + baryons + degeneracies? => small fraction of PBHs may have dramatic impact
on s-wave annihilation WIMP scenario!
[See also Eroschenko’16, Boucenna+’18,Carr+°21, Boudaud+’21, Gines+’22]




Coexistence of particle/wave DM and (P)BHs

DM impact on inspiral: dynamical friction shortens coalescences time

DM accumulates as dense spikes around PBHs in radiation-dominated universe
[Eda+ “13]

[Dokuchaev+’03, Ricotti’07, Mck+’07, Eroshenko’16]

o102 T T
LISA - MBBH | s Tka =107, Mpy = 107" Mo, bb

9
=
v
=
o
g

10-17 10~ 101 10-% 105
Boudon+’23 mDM [@V]

102

103

. o m, [GeV]
Lacroix, JL, Poulin, Salati, Scarcella, Stref, in"prep.

Active field also in France (e.g. IPhT group) => small fraction of PBHs may have dramatic impact
on s-wave annihilation WIMP scenario!
[See also Eroschenko’16, Boucenna+’18,Carr+°21, Boudaud+’21, Gines+’22]



Modified gravity as effective dark matter?

Two main approaches

Effective CDM

(scalar field-like) MOND as NR limit

Not easy to tell apart Many tests available
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Modified gravity as effective dark matter?

MOND case: Some recent successes ...

— ACDM

((L+1) ~TT —— Cosh: Ky =05, Qg = 0.1, Ky = 7.5 x 10, Z5 = 10-2

2r ¢ Higes: K =03, Qo =1, K
=== Exp: Ky =01, Qp =107%,
} Planck 2018

Skordis & Zlosnik’20

Residuals

500 1000 1500 2000 2500

but also growing issues

Strong constraints on the gravitational law from Gaia DR3 wide
binaries

Indranil Banik'*, Charalambos Pittordis?, Will Sutherland?, Benoit Famaey®,

Rodrigo Ibata?®, Steffen Mieske! and Hongsheng Zhao!

to the stars in each WB. We interpolate between the Newtonian and Milgromian predn tions using the ]:naramn»tn-r
w1th 0 indicating Nu“.tcnruan Era&'t u ’nd 1 indicating M()ND Directly o

¢ with Newtonian E,Ta\"lt\
tordis and Sutherland using a

For now:
CMB passed ... but ...
Structure formation a challenge + pbs on small scales
(solutions become involved: screening, etc.)



Summary

- Origin of DM still unknown: several motivated candidates with specific theory/parameter spaces

- Issues on small scales prompted new perspectives: Ultra-light DM and Self-Interacting DM (or both)
++ LHC? WIMPs/FIMPs not fashionable anymore? (caveat: fashion is not science)

- Baryonic physics? (must be better understood irrespective of DM)

- Structuring on small scales: can tell candidates apart, tests with gravitational/dynamical probes
=> Important theoretical + observational work expected (e.g. Gaia, LSST, etc.)

++ Small scales connect physics of inflation + nature of DM

- GWs revived interest in PBHs: direct links to inflation and/or phase transitions

- Active research on BH/DM interactions

- Modified gravity vs. particle/wave/BH dark matter still debated

- Structure formation a challenge to modified gravity asymptoting to MOND
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