Some cosmological aspects of Dark Matter and their links to (exotic?) candidates

Julien Lavalle CNRS – LUPM – Montpellier

Journée SFP, Paris-Jussieu, March 21, 2024

Menu

A few words on:

- * Status of (cold) dark matter paradigm
- * Setting scales for structure formation
- * Some candidates
- * (P)BHs and their co-existence with other candidates
- * My two cents on modified gravity
- * Conclusion and perspectives

CDM at the core of structure formation theory + daily used in th. predictions + simulations without asking ... what is it made of?

Not devoid of "tensions" on small scales

- subhalo pb (long solved from baryonic physics)

- core/cusp pb (e.g. de Blok'10) and its declension

CDM at the core of structure formation theory + daily used in th. predictions + simulations without asking ... what is it made of?

Not devoid of "**tensions**" on small scales - subhalo pb (long solved from baryonic physics) - core/cusp pb (e.g. de Blok'10) and its declension

predicted cuspy down to very inner parts (NFW, Einsato)
1-parameter model (mass), given redshift.

... but found cored in significant fraction of galaxies (not always).

Potential solutions to core/cusp \leftrightarrow diversity pb

Dark matter properties

Self-interacting dark matter (SIDM) [Spergel & Steinhardt'00] → heats the cusps away

Ultra-light [bosonic] dark matter (ULDM) [Hu+'00] → solitonic cores

OR/AND

Baryonic physics

[Must be investigated anyway]

Come with different properties on small scales [e.g. subhalos or not, possible collapse or not]

Potential solutions to core/cusp \leftrightarrow diversity pb

The formation of cores in galaxies across cosmic time - the existence of cores is not in tension with the Λ CDM paradigm

R. A. Jackson,^{1,2,3}* S. Kaviraj,² S. K. Yi,³ S. Peirani,^{4,5} Y. Dubois,⁵ G. Martin,^{6,7,8} J. E. G. Devriendt,⁹ A. Slyz,⁹ C. Pichon,^{5,10} M. Volonteri,⁵ T. Kimm³ and K. Kraljic¹¹

The Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos

Aaron D. Ludlow,* Alejandro Benítez-Llambay, Matthieu Schaller, Tom Theuns, Carlos S. Frenk, and Richard Bower

Joop Schaye Robert A. Crain

Julio F. Navarro,[†] Azadeh Fattahi, and Kyle A. Oman

MIND THE GAP: IS THE TOO BIG TO FAIL PROBLEM RESOLVED?

JEREMIAH P. OSTRIKER^{1,2}, ENA CHOI¹, ANTHONY CHOW¹, KUNDAN GUHA¹

Baryonic solutions already found – many studies ongoing [Caveats: controled subgrid physics? Same baryonic recipe for all pbs?]

DM on small scales: connecting fundamental unknowns

Origin of cosmological perturbations

 \rightarrow Primordial power spectrum (PS)

(on scales much lower than CMB+LSS can touch)

Nature and origin of dark matter

→ DM responds to primordial perturbations (matter PS)
 → Imprints its own features (interactions, etc.)
 → Might even generate additional perturbations
 → Smallest dark structures carry invaluable information

DM on small scales: connecting fundamental unknowns

 \rightarrow Primordial power spectrum (PS)

(on scales much lower than CMB+LSS can touch)

Nature and origin of dark matter

→ DM responds to primordial perturbations (matter PS)
 → Imprints its own features (interactions, etc.)
 → Might even generate additional perturbations
 → Smallest dark structures carry invaluable information

DM on small scales: connecting fundamental unknowns

Nature and origin of dark matter

→ DM responds to primordial perturbations (matter PS)
 → Imprints its own features (interactions, etc.)
 → Might even generate additional perturbations
 → Smallest dark structures carry invaluable information

Linear matter power spectrum

Setting scales in structures 2: after structure formation

Setting scales in structures 2: after structure formation

Setting scales in structures 2: after structure formation

Some constraints (ULDM & SIDM)

Many constraints, for example: - Lyman-alpha power spectrum - Rotation curves - Dynamics/survival of dwarf galaxies - Counting of satellites - Cluster collisions (SIDM) - Stability / core collapse - Etc.

An elephant in the room

LIGO+VIRGO '15-16

Did LIGO detect dark matter?

Simeon Bird,* Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess¹ ¹Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA

arXiv:1603.00464 (PRL)

Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914

Misao Sasaki,¹ Teruaki Suyama,² Takahiro Tanaka,^{3,1} and Shuichiro Yokoyama⁴ arXiv:1603.08338 (PRL)

The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO

Sébastien Clesse^{1, *} and Juan García-Bellido^{2, †}

arXiv:1603.05234 (PDU)

An elephant in the room

LIGO+VIRGO '15-16

Did LIGO detect dark matter?

Simeon Bird,* Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess¹ ¹Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA

arXiv:1603.00464 (PRL)

Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914

Misao Sasaki,¹ Teruaki Suyama,² Takahiro Tanaka,^{3,1} and Shuichiro Yokoyama⁴ arXiv:1603.08338 (PRL)

The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO

Sébastien Clesse^{1, *} and Juan García-Bellido^{2, †}

arXiv:1603.05234 (PDU)

NB: Merger rate has now turned to a constraint on PBH DM (clustering effects difficult to work out) [Hütsi+, Ali-Haïmoud+, Jedamzik, etc.]

PBH links to power spectrum and constraints

[Zeldovich, Novikov, Hawking, Carr]

$$\delta \ge \delta_{\rm c} \sim w = \frac{p}{\rho} = \frac{1}{3}$$

$$M_{\rm H} \sim 10^{15} \,\mathrm{g} \left(\frac{t}{10^{-23} \,\mathrm{s}}\right)$$

Critical threads al

Caution: PBHs could also form out of phase transitions, topological defects, etc.

Favored mass windows for PBHs

PBH links to power spectrum and constraints

Constraints on PBH DM fraction

PBH links to power spectrum and constraints

Constraints on PBH DM fraction M/M_{\odot} 10^{15} 10^{-5} 10^{5} 10^{10} 10^{20} RS CMB ′GC $\alpha_s = 0$ $n_s = 0.975$ $n_{\rm s} = 0.965$ Garcia-Bellido'22 10-5 0.1 1000.0 10⁷ M_{PBH} (M_{Θ}) 10^{30} 10^{35} 10^{40} 10⁵⁰ 10^{25} 1055 10^{45} M[g]

> Models exist that give *f*~1 e.g. Critical Higgs inflation [e.g. Bezrukov+'14, Ezquiaga+'17] → Subsolar BH mergers expected! ++ Clusters of PBHs

Coexistence of particle/wave DM and (P)BHs

DM impact on inspiral: dynamical friction shortens coalescences time [Eda+ '13]

Q: Impact of 3rd body + baryons + degeneracies?

DM accumulates as dense spikes around PBHs in radiation-dominated universe [Dokuchaev+'03, Ricotti'07, Mck+'07, Eroshenko'16]

=> small fraction of PBHs may have dramatic impact on s-wave annihilation WIMP scenario! [See also Eroschenko'16, Boucenna+'18,Carr+'21, Boudaud+'21, Gines+'22]

Coexistence of particle/wave DM and (P)BHs

DM impact on inspiral: dynamical friction shortens coalescences time [Eda+ '13]

Active field also in France (e.g. IPhT group)

DM accumulates as dense spikes around PBHs in radiation-dominated universe [Dokuchaev+'03, Ricotti'07, Mck+'07, Eroshenko'16]

=> small fraction of PBHs may have dramatic impact on s-wave annihilation WIMP scenario! [See also Eroschenko'16, Boucenna+'18,Carr+'21, Boudaud+'21, Gines+'22]

Modified gravity as effective dark matter?

Two main approaches

Effective CDM (scalar field-like)

Not easy to tell apart

MOND as NR limit

Many tests available

Modified gravity as effective dark matter?

MOND case: Some recent successes ... but also growing issues

Strong constraints on the gravitational law from Gaia DR3 wide binaries

Indranil Banik^{1*}, Charalambos Pittordis², Will Sutherland², Benoit Famaey³, Rodrigo Ibata³, Steffen Mieske⁴ and Hongsheng Zhao¹

to the stars in each WB. We interpolate between the Newtonian and Milgromian predictions using the parameter $\alpha_{\rm grav}$, with 0 indicating Newtonian gravity and 1 indicating MOND. Directly comparing the best Newtonian and Milgromian models reveals that Newtonian dynamics is preferred at 19 σ confidence. Using a complementary Markov Chain Monte Carlo analysis, we find that $\alpha_{\rm grav} = -0.021^{+0.065}_{-0.045}$, which is fully consistent with Newtonian gravity but excludes MOND at 16 σ confidence. This is in line with the similar result of Pittordis and Sutherland using a

For now: CMB passed ... but ... Structure formation a challenge + pbs on small scales (solutions become involved: screening, etc.)

Summary

- Origin of DM still unknown: several motivated candidates with specific theory/parameter spaces

- Issues on small scales prompted new perspectives: Ultra-light DM and Self-Interacting DM (or both) ++ LHC? WIMPs/FIMPs not fashionable anymore? (caveat: fashion is not science)

- Baryonic physics? (must be better understood irrespective of DM)

Structuring on small scales: can tell candidates apart, tests with gravitational/dynamical probes
 Important theoretical + observational work expected (e.g. Gaia, LSST, etc.)
 ++ Small scales connect physics of inflation + nature of DM

- GWs revived interest in PBHs: direct links to inflation and/or phase transitions

- Active research on BH/DM interactions
- Modified gravity vs. particle/wave/BH dark matter still debated

- Structure formation a challenge to modified gravity asymptoting to MOND

BACKUP