

Convolutional Neural Network and Soprano:
computing numerically expensive models in

the blink of an eye.

Damien Bégué

Bar Ilan University

With
Narek Sahakyan, Hüsne Dereli-Bégué, Sargis

Gasparyan, Asaf Pe’er

Paris, 21st-23rd of February 2024

Goal

Goal

Your favorite model
with many parameters taking

time to compute.

Goal

Parameter posterior
distribution

Your favorite model
with many parameters taking

time to compute.

Goal

Parameter posterior
distribution

Your favorite model
with many parameters taking

time to compute.

Detailed data
treatment

Goal

Parameter posterior
distribution

PPC

Your favorite model
with many parameters taking

time to compute.

Detailed data
treatment

Goal

Parameter posterior
distribution

PPC Model
comparison

Your favorite model
with many parameters taking

time to compute.

Detailed data
treatment

Goal

Parameter posterior
distribution

PPC Model
comparison

Your favorite model
with many parameters taking

time to compute.

Detailed data
treatment

Disclamer !

1.My talk is not about physics (although I would be happy to discuss it separately).

Disclamer !

1.My talk is not about physics (although I would be happy to discuss it separately).

2.My talk is not about data/observations.

Disclamer !

1.My talk is not about physics (although I would be happy to discuss it separately).

2.My talk is not about data/observations.

3.My talk is not about numerical modeling (my favorite part of the problem).

Disclamer !

1.My talk is not about physics (although I would be happy to discuss it separately).

2.My talk is not about data/observations.

3.My talk is not about numerical modeling (my favorite part of the problem).

4.My talk is about what happens at the intersection of
 physics/numerical modeling and data.

Goal

Your favorite model
with many parameters taking

time to compute.

1) Give up.

• Keep throwing a single line throught the data, one parameter set
explains the data, no uncertainty, no inference, no data exploitation, no
model exploration.

Strategies

1) Give up.

• Keep throwing a single line throught the data, one parameter set
explains the data, no uncertainty, no inference, no data exploitation, no
model exploration.

2) Put the model in a fitting engine and hope.

• After waiting for a very long time, get an answer. If it works good, but if
not, it is too expensive to redo it. Even though, limited to a couple of
dataset.

Strategies

1) Give up.

• Keep throwing a single line throught the data, one parameter set
explains the data, no uncertainty, no inference, no data exploitation, no
model exploration.

2) Put the model in a fitting engine and hope.

• After waiting for a very long time, get an answer. If it works good, but if
not, it is too expensive to redo it. Even though, limited to a couple of
dataset.

3) Table model.

• Interpolate between sampled parameter sets.

Strategies

1) Give up.

• Keep throwing a single line throught the data, one parameter set explains
the data, no uncertainty, no inference, no data exploitation, no model
exploration.

2) Put the model in a fitting engine and hope.

• After waiting for a very long time, get an answer. If it works good, but if not,
it is too expensive to redo it. Even though, limited to a couple of dataset.

3) Table model.

• Interpolate between sampled parameter sets.

4) Machine learning approach.

Strategies

1) Give up.

• Keep throwing a single line throught the data, one parameter set explains
the data, no uncertainty, no inference, no data exploitation, no model
exploration.

2) Put the model in a fitting engine and hope.

• After waiting for a very long time, get an answer. If it works good, but if not,
it is too expensive to redo it. Even though, limited to a couple of dataset.

3) Table model.

• Interpolate between sampled parameter sets.

4) Machine learning approach.

The model needs to be
computed many times

Strategies

1) Give up.

• Keep throwing a single line throught the data, one parameter set explains
the data, no uncertainty, no inference, no data exploitation, no model
exploration.

2) Put the model in a fitting engine and hope.

• After waiting for a very long time, get an answer. If it works good, but if not,
it is too expensive to redo it. Even though, limited to a couple of dataset.

3) Table model.

• Interpolate between sampled parameter sets.

4) Machine learning approach.

The model needs to be
computed many times

But that computation needs
to be done only once !

Strategies

The model needs to be computed many times ...

How many times ?

The model needs to be computed many times ...

How many times ?

● For a bayesian fit: ~103 - 105 times. Non re-usable !?

The model needs to be computed many times ...

How many times ?

● For a bayesian fit: ~103 - 105 times. Non re-usable !?

● Table model: Strongly dependent on the number of parameters. SSC:
106-107 times.

The model needs to be computed many times ...

How many times ?

● For a bayesian fit: ~103 - 105 times. Non re-usable !?

● Table model: Strongly dependent on the number of parameters. SSC:
106-107 times.

● Requires equidistant sampling = curse of dimensionality.
● Unfailable numeric code.

The model needs to be computed many times ...

How many times ?

● For a bayesian fit: ~103 - 105 times. Non re-usable !?

● Table model: Strongly dependent on the number of parameters. SSC:
106-107 times.

● Requires equidistant sampling = curse of dimensionality.
● Unfailable numeric code.

● Machine learning: 105-106 depending on the number of parameters and
the model complexity.

The model needs to be computed many times ...

How many times ?

● For a bayesian fit: ~103 - 105 times. Non re-usable !?

● Table model: Strongly dependent on the number of parameters. SSC:
106-107 times.

● Requires equidistant sampling = curse of dimensionality.
● Unfailable numeric code.

● Machine learning: 105-106 depending on the number of parameters and
the model complexity.

● Smaller impact of curse of dimensionality,
● Sample can be non-equidistant.

So the model needs to be computed many times. But
for which parameter combinations?

 “Square parameter space”

p1

p2

So the model needs to be computed many times. But
for which parameter combinations?

 “Square parameter space”
Table model/parameter scan:

N=N p1
∗N p2

∗N p3
...

p1

p2

So the model needs to be computed many times. But
for which parameter combinations?

 “Square parameter space”
Table model/parameter scan:

N=N p1
∗N p2

∗N p3
...

p1

p2

So the model needs to be computed many times. But
for which parameter combinations?

 “Square parameter space”
Table model/parameter scan:

Machine learning:

N=N p1
∗N p2

∗N p3
...

p1

p2

So the model needs to be computed many times. But
for which parameter combinations?

 “Square parameter space”
Table model/parameter scan:

Machine learning:
- equal spacing is NOT required
 Latin hypercube sampling

Viana (2016): A tutorial on Latin hypercube design of experiments

N=N p1
∗N p2

∗N p3
...

p1

p2

So the model needs to be computed many times. But
for which parameter combinations?

 “Square parameter space”
Table model/parameter scan:

Machine learning:
- equal spacing is NOT required
 Latin hypercube sampling

Viana (2016): A tutorial on Latin hypercube design of experiments

N=N p1
∗N p2

∗N p3
...

p1

p2

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

https://github.com/grburgess/ronswanson

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

https://github.com/grburgess/ronswanson

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

You have to know in advance:
1) required ressources (memory, number of cores),

https://github.com/grburgess/ronswanson

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

You have to know in advance:
1) required ressources (memory, number of cores),
2) an estimate of total compute time,

https://github.com/grburgess/ronswanson

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

You have to know in advance:
1) required ressources (memory, number of cores),
2) an estimate of total compute time,
3) an estimate of compute time per job/model estimation,

https://github.com/grburgess/ronswanson

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

You have to know in advance:
1) required ressources (memory, number of cores),
2) an estimate of total compute time,
3) an estimate of compute time per job/model estimation,
4) track a performance status for each job,

https://github.com/grburgess/ronswanson

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

You have to know in advance:
1) required ressources (memory, number of cores),
2) an estimate of total compute time,
3) an estimate of compute time per job/model estimation,
4) track a performance status for each job,
5) track compute status (slurm interuption).

https://github.com/grburgess/ronswanson

Parameter sampling done, computation of the
corresponding models

 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

You have to know in advance:
1) required ressources (memory, number of cores),
2) an estimate of total compute time,
3) an estimate of compute time per job/model estimation,
4) track a performance status for each job,
5) track compute status (slurm interuption).

Run successive
job fractions:
0.1%, 1%,

 Maybe 10%.

https://github.com/grburgess/ronswanson

Run successive job fractions

Run successive
job fractions:
0.1%, 1%,

 maybe 10%

1) evaluate the performances of the parameter space:

Run successive job fractions

Run successive
job fractions:
0.1%, 1%,

 maybe 10%

1) evaluate the performances of the parameter space:
● It is still time to change it (parameter bounds)

Run successive job fractions

Run successive
job fractions:
0.1%, 1%,

 maybe 10%

1) evaluate the performances of the parameter space:
● It is still time to change it (parameter bounds)

2) understand where the numerical bottlenecks are and why.
● evaluate average compute time,
● total compute time,
● identify code failures and reasons.

Run successive job fractions

Run successive
job fractions:
0.1%, 1%,

 maybe 10%

1) evaluate the performances of the parameter space:
● It is still time to change it (parameter bounds)

2) understand where the numerical bottlenecks are and why.
● evaluate average compute time,
● total compute time,
● identify code failures and reasons.

3) test the neural network with smaller training set
● Smaller sample, faster training,

© Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Scalable
• From 1 job to 20 million jobs in queue

Small, Quick
• Small memory footprint
• Speed: clocked up to 70k+ tasks/second

Feature Rich
• Full-cycle scheduler
• Cost-driven job placement
• Workload analysis (via simulation)
• Prediction of job duration + job size
• PMIx support (evolution of MPI)
• SAGA (storage-aware scheduling)
• Rapid Scaling in cloud

FNC is the synthesis of
decades of experience
with jobs schedulers

PBS + Grid Engine + Accelerator

Contact: casotto@altair.com

Use of monitoring data

Metadata for SSC model: 2x105 spectra

Building the neural network

P1
P2
P3
P4
P5
P6
...

f(P1, P2, P3 ...)

Data preprocessing

Data preprocessing

Step 1: log the data

Data preprocessing

Data preprocessing

Data preprocessing

Step 1: log the data
Step 2: remove the mean

Data preprocessing

Step 1: log the data
Step 2: remove the mean
(Step 3: detrend)

Data preprocessing

Step 1: log the data
Step 2: remove the mean
(Step 3: detrend)
Step 4: normalise amplitude to]-1,1[

Data preprocessing

Step 1: log the data
Step 2: remove the mean
(Step 3: detrend)
Step 4: normalise amplitude to]-1,1[

Steps 2, 3 and 4 must be done for all data, not per energy bin.

Data preprocessing

Step 1: log the data
Step 2: remove the mean
(Step 3: detrend)
Step 4: normalise amplitude to]-1,1[

Steps 2, 3 and 4 must be done for all data, not per energy bin.

Any different treatment is producing oscillations in the resulting
spectrum

Data preprocessing

Data preprocessing

The resulting spectrum is NOT smooth !

Data preprocessing

The resulting spectrum is NOT smooth !

The neural network

Input
Independent outputs

The neural network

Input

Hidden Layers
Independent outputs

The neural network

Input
Independent outputs

Hidden Layers

The neural network

i

The neural network

i l1 = NL(L(i))

L NL

The neural network

i l1 = NL(L(i)) l2 = NL(L(l1)) l3 = NL(L(l2)) o = NL(L(l3))

L NL

Construction of a neural network

To be specified:

1)The number of layers
● Too many: strong risk of over fitting
● Too few: results are not accurate

Construction of a neural network

To be specified:

1)The number of layers
● Too many: strong risk of over fitting
● Too few: results are not accurate

2)The type of layers:
● Fully connected (linear)

Construction of a neural network

To be specified:

1)The number of layers
● Too many: strong risk of over fitting
● Too few: results are not accurate

2)The type of layers:
● Fully connected (linear)

The size of the linear layers:
● Too large: risk of over fitting
● Too small: results are not accurate

Construction of a neural network

To be specified:

1)The number of layers
● Too many: strong risk of over fitting
● Too few: results are not accurate

2)The type of layers:
● Fully connected (linear)

● Convolutional layers (filter)

The size of the linear layers:
● Too large: risk of over fitting
● Too small: results are not accurate

Construction of a neural network

To be specified:

1)The number of layers
● Too many: strong risk of over fitting
● Too few: results are not accurate

2)The type of layers:
● Fully connected (linear)

● Convolutional layers (filter)

The size of the linear layers:
● Too large: risk of over fitting
● Too small: results are not accurate

Many options: padding, offset, size ...

Construction of a neural network

To be specified:

1)The number of layers
● Too many: strong risk of over fitting
● Too few: results are not accurate

2)The type of layers:
● Fully connected (linear)

● Convolutional layers (filter)
3)The type of activation layer (non-linearity):

● ReLu
● atan

The size of the linear layers:
● Too large: risk of over fitting
● Too small: results are not accurate

Many options: padding, offset, size ...

The neural network we are using

7 inputs (SSC)
11 inputs (EC) 150

independent
outputs

L NL

F
ro

m
 2

D
 t

o
1D

C CNL NL

L NL

How to produce dependent ouputs?

How to produce dependent ouputs?

Si+1−Si−1

How to produce dependent ouputs?

−Si−2

12
+

4 Si−1

3
−

4Si
2

+
4 f i+1

3
−
f i+2

12

The neural network we are using

7 inputs (SSC)
11 inputs (EC) 150

independent
outputs

L NL

C NL

L NL

The neural network we are using

7 inputs (SSC)
11 inputs (EC) 150

independent
outputs

L NL

C NL

L NL
L

The neural network we are using

7 inputs (SSC)
11 inputs (EC) 150

independent
outputs

L NL

C NL

L NL
L

150
independent

outputs
+

146 links

Model implementation and training

Model implementation and training

Model implemented in Pytorch: easy and straightforward.

Model implementation and training

Model implemented in Pytorch: easy and straightforward.

Several trainings:
1)different batch size
2)different training sets
3)different fractions between training set/validation set.

Model implementation and training

Model implemented in Pytorch: easy and straightforward.

Several trainings:
1)different batch size
2)different training sets
3)different fractions between training set/validation set.

Best model chosen using final metrics (R2,MSE, ME)

Model implementation and training

Model implemented in Pytorch: easy and straightforward.

Several trainings:
1)different batch size
2)different training sets
3)different fractions between training set/validation set.

Best model chosen using final metrics (R2,MSE, ME)

Large compute load. Done on 4 A100 GPUs,
2 training setup at a time per GPUs

Final result

10 20

6

8

10

12

14

16
Sp

ec
tru

m
Training
Original

10 20
19

20

21

22

23

10 20
5

0

5

10

15

Validation
Original

10 20
17
18
19
20
21
22
23
24

10 20
19

20

21

22

23

Sp
ec

tru
m

10 20
17

18

19

20

21

10 20
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5

10 20
20

21

22

23

24

25

10 20
19

20

21

22

23

24

Sp
ec

tru
m

10 20
12
13
14
15
16
17
18
19

10 20
23

24

25

26

27

28

10 20

18

20

22

24

26

10 20
Frequency

15

16

17

18

19

Sp
ec

tru
m

10 20
Frequency

15
16
17
18
19
20
21
22

10 20
Frequency

17

18

19

20

21

22

23

10 20
Frequency

19

20

21

22

23

24

CNNSummary

We created and trained a convolutional neural network which computes
the spectrum from an input parameter set.

CNNSummary

We created and trained a convolutional neural network which computes
the spectrum from an input parameter set.

It required to:

1) Efficiently sampled the parameter space.

CNNSummary

We created and trained a convolutional neural network which computes
the spectrum from an input parameter set.

It required to:

1) Efficiently sampled the parameter space.

2) Compute a large number of spectra.

CNNSummary

We created and trained a convolutional neural network which computes
the spectrum from an input parameter set.

It required to:

1) Efficiently sampled the parameter space.

2) Compute a large number of spectra.

3) Solve the oscillation problem in the resulting spectra, by training on
the derivative.

CNNSummary

We created and trained a convolutional neural network which computes
the spectrum from an input parameter set.

It required to:

1) Efficiently sampled the parameter space.

2) Compute a large number of spectra.

3) Solve the oscillation problem in the resulting spectra, by training on
the derivative.

As of today, we have two models: synchrotron self-Compton and external
Compton.

So much effort, what for ?

So much effort for what ?

We have a black box which compute a spectrum from a parameter set
in ~1 ms.

So much effort, what for ?

So much effort for what ?

We have a black box which compute a spectrum from a parameter set
in ~1 ms.

Put this black box in your favorite fitting engine and have fun.

So much effort, what for ?

So much effort for what ?

We have a black box which compute a spectrum from a parameter set
in ~1 ms.

Put this black box in your favorite fitting engine and have fun.

Additional possibilities: restrictive models

So much effort, what for ?

So much effort for what ?

We have a black box which compute a spectrum from a parameter set
in ~1 ms.

Put this black box in your favorite fitting engine and have fun.

Additional possibilities: restrictive models

➢Link parameters t var=
R
cƔ

So much effort, what for ?

So much effort for what ?

We have a black box which compute a spectrum from a parameter set
in ~1 ms.

Put this black box in your favorite fitting engine and have fun.

Additional possibilities: restrictive models

➢Link parameters

➢Set parameters

t var=
R
cƔ

Perspectives

1) Improvement of the SSC model (larger parameter set).

Perspectives

1) Improvement of the SSC model (larger parameter set).

2) More flexible EC model (for the external field).

Perspectives

1) Improvement of the SSC model (larger parameter set).

2) More flexible EC model (for the external field).

3) Hadronic models in association with neutrino production (with and
without external field).

Perspectives

1) Improvement of the SSC model (larger parameter set).

2) More flexible EC model (for the external field).

3) Hadronic models in association with neutrino production (with and
without external field).

4) Time dependent models for flares.

Perspectives

1) Improvement of the SSC model (larger parameter set).

2) More flexible EC model (for the external field).

3) Hadronic models in association with neutrino production (with and
without external field).

4) Time dependent models for flares.

5) New type of CNN to derive the posterior distribution directly from the
data (remove entirely the fit procedure).

Perspectives

1) Improvement of the SSC model (larger parameter set).

2) More flexible EC model (for the external field).

3) Hadronic models in association with neutrino production (with and
without external field).

4) Time dependent models for flares.

5) New type of CNN to derive the posterior distribution directly from the
data (remove entirely the fit procedure).
➢Requires many fit results to train the network.... will be feasible

when we will have done many many fits.

109 1012 1015 1018 1021 1024 1027

 [Hz]

10 14

10 13

10 12

10 11

10 10

10 9

F(
) (

er
g

cm
2 s

1)

Mrk 421

42
.9

43
.2

43
.5

43
.8

lo
g(

L e
)

4.7
5

5.0
0

5.2
5

lo
g(

m

ax
)

2.0
2.5
3.0

lo
g(

m

in
)

16
.0

16
.8

17
.6

lo
g(

R)

20
30
40

2.4 1.8 1.2 0.6
log(B)

2.1
0

2.2
5

2.4
0

p
42

.9
43

.2
43

.5
43

.8
log(Le) 4.7

5
5.0

0
5.2

5
log(max)

2.0 2.5 3.0
log(min) 16

.0
16

.8
17

.6
log(R)

20 30 40 2.1
0

2.2
5

2.4
0

p

See Husne’s and Narek’s talks

Thank you

109 1012 1015 1018 1021 1024 1027

 [Hz]

10 14

10 13

10 12

10 11

10 10

10 9

F(
) (

er
g

cm
2 s

1)

Mrk 421

42
.9

43
.2

43
.5

43
.8

lo
g(

L e
)

4.7
5

5.0
0

5.2
5

lo
g(

m

ax
)

2.0
2.5
3.0

lo
g(

m

in
)

16
.0

16
.8

17
.6

lo
g(

R)

20
30
40

2.4 1.8 1.2 0.6
log(B)

2.1
0

2.2
5

2.4
0

p
42

.9
43

.2
43

.5
43

.8
log(Le) 4.7

5
5.0

0
5.2

5
log(max)

2.0 2.5 3.0
log(min) 16

.0
16

.8
17

.6
log(R)

20 30 40 2.1
0

2.2
5

2.4
0

p

See Husne’s and Narek’s talks

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 2 (6)
	Slide: 3
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 5
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 7 (6)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 10 (5)
	Slide: 10 (6)
	Slide: 10 (7)
	Slide: 10 (8)
	Slide: 10 (9)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 18 (4)
	Slide: 18 (5)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 21
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 22 (3)
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 23 (4)
	Slide: 23 (5)
	Slide: 23 (6)
	Slide: 24
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 26
	Slide: 27 (1)
	Slide: 27 (2)
	Slide: 27 (3)
	Slide: 28 (1)
	Slide: 28 (2)
	Slide: 28 (3)
	Slide: 28 (4)
	Slide: 28 (5)
	Slide: 29
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 30 (3)
	Slide: 30 (4)
	Slide: 30 (5)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 31 (4)
	Slide: 31 (5)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 32 (3)
	Slide: 32 (4)
	Slide: 32 (5)
	Slide: 32 (6)
	Slide: 33 (1)
	Slide: 33 (2)

