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Disclamer !

1.My talk is not about physics (although I would be happy to discuss it separately).

2.My talk is not about data/observations.

3.My talk is not about numerical modeling (my favorite part of the problem).

4.My talk is about what happens at the intersection of                                    
                   physics/numerical modeling and data. 
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1)  Give up.

• Keep throwing a single line throught the data, one parameter set explains 
the data, no uncertainty, no inference, no data exploitation, no model 
exploration.

2)  Put the model in a fitting engine and hope.

• After waiting for a very long time, get an answer. If it works good, but if not, 
it is too expensive to redo it. Even though, limited to a couple of dataset.

3)  Table model.

•  Interpolate between sampled parameter sets.

4)  Machine learning approach.

The model needs to be
computed many times

But that computation needs
to be done only once !

Strategies
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The model needs to be computed many times ... 

How many times ?

● For a bayesian fit: ~103 - 105 times. Non re-usable !?

● Table model: Strongly dependent on the number of parameters. SSC: 
106-107 times.

● Requires equidistant sampling = curse of dimensionality. 
● Unfailable numeric code. 

● Machine learning: 105-106 depending on the number of parameters and 
the model complexity.

● Smaller impact of curse of dimensionality,
● Sample can be non-equidistant.
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 Embarrassingly parallel problem: read a parameter set based on a simulation index.

1) slurm (< 50k) or slurm array.

2) distribution layer + slurm (ronswanson: https://github.com/grburgess/ronswanson).

3) FNC (few millions jobs).

You have to know in advance:
1) required ressources (memory, number of cores),
2) an estimate of total compute time,
3) an estimate of compute time per job/model estimation,
4) track a performance status for each job, 
5) track compute status (slurm interuption).

Run successive
job fractions:
0.1%, 1%,

 Maybe 10%.
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Run successive job fractions

Run successive
job fractions:
0.1%, 1%,

 maybe 10%

1) evaluate the performances of the parameter space:
● It is still time to change it (parameter bounds)

2) understand where the numerical bottlenecks are and why.
● evaluate average compute time,
● total compute time,
● identify code failures and reasons.

3) test the neural network with smaller training set
● Smaller sample, faster training, 



© Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Scalable  
• From 1 job to 20 million jobs in queue

Small, Quick
• Small memory footprint
• Speed: clocked up to 70k+ tasks/second

Feature Rich
• Full-cycle scheduler 
• Cost-driven job placement
• Workload analysis (via simulation)
• Prediction of job duration + job size 
• PMIx support (evolution of MPI)
• SAGA (storage-aware scheduling) 
• Rapid Scaling in cloud

FNC is the synthesis of 
decades of experience 
with jobs schedulers

PBS + Grid Engine + Accelerator

Contact: casotto@altair.com



  

Use of monitoring data

Metadata for SSC model: 2x105 spectra



  

Building the neural network

P1
P2
P3
P4
P5
P6
...

f(P1, P2, P3 ...)
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Data preprocessing

Step 1: log the data
Step 2: remove the mean
(Step 3: detrend)
Step 4: normalise amplitude to ]-1,1[

Steps 2, 3 and 4 must be done for all data, not per energy bin.

Any different treatment is producing oscillations in the resulting 
spectrum
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Construction of a neural network

To be specified:

1)The number of layers
● Too many: strong risk of over fitting
● Too few: results are not accurate

2)The type of layers:
● Fully connected (linear)

● Convolutional layers (filter)
3)The type of activation layer (non-linearity):

● ReLu
● atan

The size of the linear layers:
● Too large: risk of over fitting
● Too small: results are not accurate

Many options: padding, offset, size ...



  

The neural network we are using

7 inputs (SSC)
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7 inputs (SSC)
11 inputs (EC) 150 
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Model implementation and training

Model implemented in Pytorch: easy and straightforward.

Several trainings:
1)different batch size
2)different training sets
3)different fractions between training set/validation set.

Best model chosen using final metrics (R2,MSE, ME)

Large compute load. Done on 4 A100 GPUs,
2 training setup at a time per GPUs



  

Final result
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CNNSummary

We created and trained a convolutional neural network which computes 
the spectrum from an input parameter set.

It required to:

1)  Efficiently sampled the parameter space.

2)  Compute a large number of spectra.

3)  Solve the oscillation problem in the resulting spectra, by training on 
the derivative.

As of today, we have two models: synchrotron self-Compton and external 
Compton.
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So much effort, what for ?

So much effort .... for what ?

We have a black box which compute a spectrum from a parameter set 
in ~1 ms.

Put this black box in your favorite fitting engine and have fun.

Additional possibilities: restrictive models

➢Link parameters

➢Set parameters

t var=
R
cƔ
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Perspectives

1) Improvement of the SSC model (larger parameter set).

2) More flexible EC model (for the external field). 

3) Hadronic models in association with neutrino production (with and 
without external field).

4) Time dependent models for flares.

5) New type of CNN to derive the posterior distribution directly from the 
data (remove entirely the fit procedure).
➢Requires many fit results to train the network....  will be feasible 

when we will have done many many fits. 
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