Exploring the physical origin of blazar flares with a time-dependent one-zone model

l'Observatoire PSL

P. Thevenet, A. Zech, C. Boisson LUTh - Observatoire de Paris, PSL Université Université Paris Cité, CNRS

> Workshop on Numerical Multi-Messenger Modeling APC Laboratory, February 22nd 2024

Introduction: blazar emission variability

Example of multiwavelength (MWL) light curves of 3C 279 covering the 2013–2014 active period. Adapted from Hayashida et al. 2015

2

Credit: Marscher et al., Wolfgang Steffen, NRAO/AUI/NSF

Introduction: blazar emission variability

Problem: lack of a general picture of the physical origin of blazar flares

Objective: simulate isolated short-term blazar flares from different scenarios with a **leptonic single-zone SSC model** and identify characteristic signatures in the light curves

Example of multiwavelength (MWL) light curves of 3C 279 covering the 2013–2014 active period. Adapted from Hayashida et al. 2015

Introduction: blazar emission variability

Problem: lack of a general picture of the physical origin of blazar flares

Objective: simulate isolated short-term blazar flares from different scenarios with a **leptonic single-zone SSC model** and identify characteristic signatures in the light curves

- Systematic study of particle injection/acceleration flares
- Comparison of different scenarios

Example of multiwavelength (MWL) light curves of 3C 279 covering the 2013–2014 active period. Adapted from Hayashida et al. 2015

1. Radiative model

Fokker-Planck equation solved in the EMBLEM code, Dmytriiev et al. (2021):

$$\frac{\text{Cooling terms}}{\partial t} = \frac{\partial}{\partial \gamma} [(b_c(\gamma, t)\gamma^2 + \frac{1}{t_{ad}}\gamma - a(t)\gamma - \frac{2}{\gamma}D_{F_{II}}(\gamma, t))N_e(\gamma, t)] + \frac{\partial}{\partial \gamma} \left(D_{F_{II}}(\gamma, t)\frac{\partial N_e(\gamma, t)}{\partial \gamma}\right) \\ - N_e(\gamma, t) \left(\frac{1}{t_{esc}} + \frac{3}{t_{ad}}\right) + Q_{inj}(\gamma, t)$$

Injection term

1. Radiative model

Fokker-Planck equation solved in the EMBLEM code, Dmytriiev et al. (2021):

 $t_{F_{II}} = \frac{1}{\beta_A^2} \left(\frac{\delta B}{B}\right)^{-2} \frac{\lambda_{max}}{c} \left(\frac{r_L}{\lambda_{max}}\right)^{2-q}$

6

- Escape:
$$t_{esc}^{(turb)} = \left(\frac{R_t}{c}\right)^2 \left(\frac{\delta B}{B}\right)^2 \frac{c}{\lambda_{max}} \left(\frac{r_L}{\lambda_{max}}\right)^{q-2}$$

2. Scenarios studied

Quiescent steady-state injection:

$$Q_{inj}(\gamma) = N_{inj} \left(\frac{\gamma}{\gamma_{inj,pivot}}\right)^{\alpha_{inj}} \exp\left(-\frac{\gamma}{\gamma_{inj,cut}}\right)$$

Parameter	Variable	Value	Unit	
Source				
Initial magnetic field	B_0	0.04	Gauss	
Initial blob radius	R_0	2.8e16	cm	
Blob Doppler factor	δ	29	-	
Redshift	z	0.0308	-	
Continuous injection spectrum				
Spectrum normalization	N _{inj}	1.86e-14	$\mathrm{cm}^{-3}\mathrm{s}^{-1}$	
Spectrum slope	α_{inj}	-2.23	-	
Pivot Lorentz factor	$\gamma_{inj,pivot}$	1.0e5	-	
Cutoff Lorentz factor	$\gamma_{inj,cut}$	5.8e5	-	
Minimal injected Lorentz factor	$\gamma_{inj,min}$	800	-	

Parameters based on the study of Mrk421,

Dmytriiev et al. (2021)

2. Scenarios studied

Quiescent steady-state injection:

$$Q_{inj}(\gamma) = N_{inj} \left(\frac{\gamma}{\gamma_{inj,pivot}}\right)^{\alpha_{inj}} \exp\left(-\frac{\gamma}{\gamma_{inj,cut}}\right)$$

Parameter	Variable	Value	Unit	
Source				
Initial magnetic field	B_0	0.04	Gauss	
Initial blob radius	R_0	2.8e16	cm	
Blob Doppler factor	δ	29	-	
Redshift	z	0.0308	-	
Continuous injection spectrum				
Spectrum normalization	N _{inj}	1.86e-14	$\mathrm{cm}^{-3}\mathrm{s}^{-1}$	
Spectrum slope	α_{inj}	-2.23	-	
Pivot Lorentz factor	$\gamma_{inj,pivot}$	1.0e5	-	
Cutoff Lorentz factor	$\gamma_{inj,cut}$	5.8e5	-	
Minimal injected Lorentz factor	$\gamma_{inj,min}$	800	-	

Parameters based on the study of Mrk421,

Dmytriiev et al. (2021)

Flares resulting from a perturbation of the steady-state:

- Simple particle injection
- Particle injection and adiabatic expansion
- Diffusive shock acceleration (Fermi I)
- Stochastic acceleration (Fermi II)

2. Scenarios studied: simple particle injection

Power law with exponential cutoff:

$$Q_{add}(\gamma) = N_{add} \left(\frac{\gamma}{\gamma_{add,pivot}}\right)^{\alpha_{add}} \exp\left(-\frac{\gamma}{\gamma_{add,cut}}\right)$$

\rightarrow We vary the additional injection rate

Flaring injection spectrum					
Spectrum slope	α_{add}	-2.23	-		
Pivot Lorentz factor	$\gamma_{add,pivot}$	1.0e5			
Cutoff Lorentz factor	$\gamma_{add,cut}$	5.8e5	=		
Minimal injected Lorentz factor	$\gamma_{add,min}$	800			

Parameters of the flaring injection phase

Sketch of a one-zone flaring scenario by particle injection

2. Scenarios studied: simple particle injection

Spectral Energy Distribution (SED)

2. Scenarios studied: simple particle injection

2. Scenarios studied: injection and adiabatic expansion

Power law with exponential cutoff:
$$Q_{add}(\gamma) = N_{add} \left(\frac{\gamma}{\gamma_{add,pivot}}\right)^{\alpha_{add}} \exp\left(-\frac{\gamma}{\gamma_{add,cut}}\right)$$

Intrinsic opening angle of the jet leading to the blob's adiabatic expansion, Tramacere et al. (2022):

$$t_{ad}(t) = \frac{R(t)}{\beta_{exp}c}$$
$$\beta_{exp} = \beta_{jet} \tan(\alpha)$$

Opening angle from best-fit value ρ ~0.26 rad based on VLBI observations, Pushkarev et al. (2009)

$$\alpha = \rho/\Gamma$$

Chosen opening angle: $\alpha \simeq 0.44^{\circ}$

 \rightarrow We vary the additional injection rate

Sketch of a one-zone flaring scenario by particle injection with adiabatic expansion

2. Scenarios studied: injection and adiabatic expansion

2. Scenarios studied: Fermi I acceleration

Equivalent to an additional injection, Kirk et al. (1998):

- Power law with exponential cutoff
- Time-dependent cutoff and maximum Lorentz factor

$$Q_{add}(\gamma) = N_{add} \left(\frac{\gamma}{\gamma_{add,pivot}}\right)^{\alpha_{add}} \exp\left(-\frac{\gamma}{\gamma_{add,cut}}\right)$$
$$\gamma_{add,cut} = \left\lfloor \frac{1}{t_{max}} + \left(\frac{1}{\gamma_{add,min}} - \frac{1}{\gamma_{max}}\right) e^{-t/t_{shock}} \right\rfloor^{-1}$$

$$\gamma_{max} = (\beta_s t_{shock})^{-1}$$
$$\beta_s = \frac{4\sigma_T}{3m_e c} \left(\frac{B^2}{2\mu_0}\right)$$

 \rightarrow Fixed injection rate \rightarrow We vary the shock timescale

Sketch of a one-zone flaring scenario by Fermi I acceleration

2. Scenarios studied: Fermi I acceleration

 \Rightarrow Different rise and plateau times, shift in peak maximum with the acceleration timescale

2. Scenarios studied: Fermi II acceleration

We study three turbulence regimes:

- Hard-sphere: q=2
- Kolmogorov: q=5/3
- Kraichnan: q=3/2

Constraints on the parameters:

$$r_L < \lambda_{max} < R$$
$$0 < \frac{\delta B}{B} < 1$$

Sketch of a one-zone flaring scenario by Fermi II acceleration

2. Scenarios studied: hard-sphere Fermi II acceleration

⇒ Shift of the peak maximum and peak time with the acceleration timescale

3. Comparison: Fermi I and Fermi II acceleration

 \Rightarrow Differences in asymmetry, variability amplitude, rise and plateau times

3. Comparison: all four scenarios

⇒ Differences in asymmetry, plateau reaching time, variability amplitude

X-rays

VHE y-rays

Conclusion

- Recognizable patterns between flares by injection, injection and expansion, Fermi I and Fermi II acceleration using different energy bands:
 Rise time, relative variability amplitude, asymmetry, possible plateau phases
- Short timescale Fermi II flares → high Compton dominance flares described without external photon field
- Kolmogorov and Kraichnan turbulence: same flare shapes as in the high Compton dominance hard-sphere regime

Conclusion

- Recognizable patterns between flares by injection, injection and expansion, Fermi I and Fermi II acceleration using different energy bands:
 Rise time, relative variability amplitude, asymmetry, possible plateau phases
- Short timescale Fermi II flares → high Compton dominance flares described without external photon field
- Kolmogorov and Kraichnan turbulence: same flare shapes as in the high Compton dominance hard-sphere regime

Outlook:

- Compare the observed behaviour with SEDs in the Thomson regime
- Determine a method to constrain the emission mechanism of observed MWL rapid flares
- Simulate LCs including external photon fields

Extra slides

2. Extra - Different flaring spectrum injection

Electron Distribution

Spectral Energy Distribution (SED)

Extra - Particle injection

Compton dominance: ratio of the flux at the IC peak to the flux at the Synchrotron peak

SED, 0.0 R/c SED, 4.0 R/c SED, 8.0 R/c SED, 12.0 R/c SED, 16.0 R/c -8 SED, 20.0 R/c Synchrotron peak SED, 24.0 R/c Inverse Compton peak SED, 28.0 R/c radio X-rays γ-rays -10VHE y-rays ц -12 -14-1611 12 13 -6 -5 -4 -3 -2 ġ. 10 Ε

Spectral Energy Distribution

Extra - Injection with adiabatic expansion

Electron Distribution

Extra - Injection with adiabatic expansion

Spectral Energy Distribution

Electron Distribution

Spectral Energy Distribution (SED)

 \Rightarrow IC cooling dominates for high energies and short acceleration timescales

 \Rightarrow Known variability amplitude and peak shift behaviour, possible parametrization of the flares

Extra - Fermi II acceleration: Kolmogorov regime

 \Rightarrow Same shapes as high CD hard-sphere turbulence

Extra - Fermi II acceleration: Kraichnan regime

 \Rightarrow Same shapes as high CD hard-sphere turbulence

Extra - Fermi I acceleration

Electron Distribution

Extra - Fermi I acceleration

