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Open questions :

➢ Dynamics of the plasma around a 
spinning BH (SANE / MAD).

➢ Role of magnetic field in driving the 
accretion (MRI) and launching the jet.

➢ Disk/jet connection.

➢ Emission mechanisms and properties. The Event Horizon Telescope Collaboration 
(April 10, 2019). 
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Numerical GR MHD

Study the motion of magnetized plasma in the close 
vicinity of a black-hole

We need a GR-MHD code

Conservation of gas density

Energy and momentum conservation

Maxwell Equations
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Numerical motivations

Code specificities:
➢ Conservative, shock-capturing code 

➢ Piece-wise linear / PPM reconstruction

➢ Constrained transport to maintain div B = 0

We started from harm [harmpi] (Gammie et al 2003):

➢ Well tested

➢ Used by many groups

➢ Original experience with this code (see e.g. O’Riordan, Pe’er, McKinney 
2016, 2017, 2018).
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Numerical motivations: GPU acceleration

● Why GPUs ?

➢ Very efficient at repeating the same (non-divergent) 
instruction.

● Grid method for pdes :

➢ Split the domain in cells.

➢ On each cell independently apply the “same” operation(s).

➢ In principle, little memory transfer required.

Very good for GPUs



  

Numerical motivations: Why GPUs ?

https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/
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cuHARM in a nutshell
● 3D GR-MHD code:

➢ Finite volume

➢ Flux-CT to preserve div B = 0

● Programming language CUDA-C / openMP / MPI

● Designed for multi-GPUs node:
➢  ~120 000 000 cell updates per second on a A100

➢ Depends on the problem, number of cell per cards …. 

➢ Two versions: highly optimized vs easily modifiable



  

cuHARM in a nutshell

A100 H100 
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Numerical study of SANE/MAD accretion disks

SANE: MAD:

Standard And Normal Evolution Magnetically Arrested Disk 

Magnetic field does not regulate the accretion Magnetic field does regulate the accretion

Why SANE ?
➢ Numerically simpler than MAD
➢ Well-studied
➢ EHT code comparison paper: 

we can check our results.

Why MAD ?
➢ More interesting phenomenology,
➢ Produces powerful jets,
➢ More relevant for EHT results,
➢ Role of magnetic fields not fully 

understood.
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Initial setup:

Fishbone and Moncrief (1976)

Polar cut
Toroidal field

Equatorial cut
Poloidal velocity

Matter density

Jets

Turbulence



  

SANE accretion mode

The video shown on this slide can be found on youtube:

https://youtu.be/FBabQZNcyhE

https://youtu.be/FBabQZNcyhE


  

MAD accretion mode

The video shown on this slide can be found on youtube:

https://youtu.be/PS2sjELxULs
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Spin dependence for MAD

Predicted =  Tchekhovskoy et al. (2010)Bégué, Pe’er et al. (2023)
Zhang, Bégué et al. (2024)
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General relativistic radiation MHD

All the physics is hidden in the definition of the radiation stress energy 
tensor.

Energy density

Flux

Pressure

Sadowski et al. (2013) ; McKinney et al. (2014)
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General relativistic radiation MHD

All the physics is hidden in the definition of the radiation stress energy 
tensor.

In the comoving frame:

Questions:

What did we gain?
● relative simplicity

What did we lose:
● accurate description of the anistropy of the 

radiation field
● averaged emissivity and absorption factor
● the use of a closure relation.

Why not solve for the evolution of I
ν 
?
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What it takes to solve for I
ν 
?

We have to resolve everywhere in space, an angular and 
frequency dependent quantity I

ν
.

N tot=N x1
N x2
N x3
N frequencyN angle

Frequency grid: between E
min

 and E
max

Angular grid: geodesic grid 

Randall et al. (2000, 2002)

Grid level 2:  162 exagons and pentagons
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What it takes to solve for I
ν 
?

We also need an evolutionary equation:

Davis and Gammie (2000), White et al. (2023).

Interaction termTransport term

Gravitational
Redshift

Change of direction
with the coordinate
systemSame as MHD

Same as MHD
on a different

grid

Different/hard

Similar to
Soprano
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Conclusions

➢ We wrote a 3D GR MHD code.

➢ It uses GPUs for accelerating the computation.

➢ We have tested the code on many test problems, including 
accretion in both SANE and MAD regime.

➢ We used it to study SANE and MAD accretion regimes.

➢ We are in the process of adding the radiation sector:

➢ Requires new algorythms for the angular discretization

➢ The interaction part is the next (and last) large bottleneck. 
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