

Multi-Messenger Modeling of Tidal Disruption Events with AM^3

Chengchao Yuan [\(yuan-cc.github.io](http://yuan-cc.github.io)) Deutsches Elektronen Synchrotron DESY, Germany

Paris Workshop on Numerical Multimessenger Modeling 2024/02/23

HELMHOLTZ

Tidal disruption events

When a massive star passes close enough to a SMBH

• The star can be ripped apart by the tidal force at tidal radius $1/2$ $-1/3$

$$
r_T = (M/m_\star)^{1/3} r_\star \simeq 5 \times 10^{12} \text{ cm} \left(\frac{M}{10^6 M_\odot}\right)^{1/3} \frac{r_\star}{r_\odot} \left(\frac{m_\star}{M_\odot}\right)
$$

- Should be larger than Schwarzschild radius of **SMBH**, $r_s = 2GM/c^2 \approx 3 \times 10^{11}$ cm M_6
- A theoretical up limit of SMBH mass in TDE $M < 3.6 \times 10^8 M_{\odot}$ m_{\star} M_{\odot}) $2-\frac{3}{2}$ 2 *ξ*

to disrupt a main sequence star of radius

 $r_{\star} = R_{\odot} (M_{\star}/M_{\odot})^{(1-\xi)}$

 $\xi \approx 0.4$ **for** $M_{\star} < 10 M_{\odot}$ (Kippenhahn & Weigert 1990)

Tidal disruption of stars by black holes of $10^6 - 10^8$ solar masses in nearby galaxies

ARTICLES

Martin J. Rees

NATURE VOL. 333 9 JUNE 1988

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed; the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years. Such phenomena are compatible with the presence of 10^6 - 10^8 M_{\o} holes in the nuclei of many nearby galaxies. Stellar disruption may have interesting consequences in our own Galactic Centre if $a \sim 10^6 M_{\odot}$ hole lurks there.

Tidal disruption events

When a massive star passes close enough to a SMBH

- \cdot \sim half of the star's mass remains bounded by the SMBH gravitational force
- Mass accretion -> months/year-long flare
- \bullet Energy to be reprocessed by accretion $\sim 10^{54}~{\rm erg}$
- Fallback rate $\propto t^{-5/3}$ (Phinney 1989)
- Thermal black body (bb) emissions in optical/UV (OUV) bands.
- Some (~1/4) TDEs are observed in X-ray and infrared ranges, e.g., $AT2019$ dsg (Stein et al. 2021)

Tidal disruption of stars by black holes of $10^6 - 10^8$ solar masses in nearby galaxies

ARTICLES

Martin J. Rees

NATURE VOL. 333 9 JUNE 1988

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed; the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years. Such phenomena are compatible with the presence of 10^6 - 10^8 M_{\o} holes in the nuclei of many nearby galaxies. Stellar disruption may have interesting consequences in our own Galactic Centre if $a \sim 10^6 M_{\odot}$ hole lurks there.

TDE observational signatures: universal

Radio

- A small fraction of TDEs exhibit luminous radio relativistic jet. Most are radio quiet.
- Delayed radio may come from jet propagating in wind density profile *ρ*(*r*) ∝ *r*−*^k* (1.5 ≲ *k* ≲ 2) (Metzger+ 2016)

AT2019dsg

- \bullet $z \sim 0.051$
- ZTF (optical: g, r) + Swift UVOT (UV)
- Swift-XRT/XMM-Newton: X-ray (0.3-10 keV)
- *Fermi* (0.1-800 GeV) and HAWC (0.3-100 TeV) up limits

• $t_v - t_{\text{pk}} = 150 \text{ d}$

Measured black body spectra:

- **X-ray**: $T_X = 72 \text{ eV}$, from hot accretion disk
- **OUV**: $T_{\text{OUV}} = 3.4 \text{ eV}$, from photosphere (nearly constant)

• IR:
$$
T_{\text{IR}} = 0.15 \text{ eV}
$$

AT2019fdr

- \bullet $z \sim 0.267$
- ZTF (optical: g, r) + Swift UVOT (UV) + IR
- Swift-XRT: X-ray (0.3-10 keV)
- Angular offset: 1.7 deg; $t_v t_{pk} = 393$ d
- *Fermi* up limit ✓

Reusch et al. (2022)

AT2019aalc

Questions for Neutrino-Coincident TDEs

- Where are radio, OUV, IR, X-ray (XRT, eROSITA, NICER), *γ*-ray and neutrino emissions produced?
- Temporal signatures? delayed infrared and neutrino emissions
- Multi-messenger implications, e.g., from X-ray/γ-ray up limits to neutrino constraints

What we have

- Thermal optical/ultraviolet, X-ray, and infrared spectra/light curves.
- Up limits from *γ*-ray flux by Fermi, HAWC etc
- Neutrino correlation: detection time, energy

What we need for existing observations

- Radiation sites: jet, wind, disk corona, etc
- CR acceleration/injection
- Theoretical/numerical modeling of interactions

TDE models

Disks - Hayashaki & Yamazaki 19 (HY19) **Wide angle winds** - Fang 20, Murase+ 20 **Stream-stream** - Dai + 15,, HY19, **Jets** - Wang + 11,Wang & Liu 16, Dai & Fang 17, Lunardini & Winter 17, Senno + 17

jet debris wind dissipati corona disk star unbound stream Murase+ 2020

- *γ*-rays, non-thermal X-rays: relativistic jet, sub relativistic wind
- **Thermal X-rays:** close to jet/funnel & hot disk corona
- **Optical/UV:** photosphere of hot disk corona (beyond which integrated optical depth < 1)
- **Infrared (IR):** dust-echo
- **Radio:** non-thermal (particle acceleration in disk, jet, outflow)

TDE models

- In addition to the EM signatures, neutrinos might be produced in the accretion disks, disk winds (outflows), or jets
- Three TDEs may be associated with IceCube neutrino events

1. AT2019dsg (IC191001A) 2. AT2019fdr (IC200530A)

3. AT2019aalc (IC191119A) - Less complete

Focus of this work

-ray/X-ray constraints *γ*

• Three TDE candidates with luminous jets (no association reported) *modeling on agenda! ν*

X-ray/OUV photons heat the dust torus

- -> thermal IR emission
- could explain delayed IR emission
- feeds IR photons back to the wind/outflow envelope
- temperature T_{IR} ≲ T_{sub} ~ 0.16 eV (sublimation temp.)
- \bullet IR luminosity can be obtained by convolving $L_{\rm OUV}$ with a time spreading function $f(T)$, e.g., (Reusch et al. 2022, Winter & Lunardini 2022)

$$
L_{\rm IR}(t) \propto \int L_{\rm OUV}(t') f(t-t') dt'
$$

f(T) reflects the dust distributions

Dust radius $(R_{\rm IR})$ can be inferred from IR time **delay w.r.t OUV emissions.**

 $R_{\text{IR}} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

Dust radius $(R_{\rm IR})$ can be inferred from IR time **delay w.r.t OUV emissions.**

 $R_{\text{IR}} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

Dust radius $(R_{\rm IR})$ can be inferred from IR time **delay w.r.t OUV emissions.**

 $R_{\text{IR}} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

Dust radius $(R_{\rm IR})$ can be inferred from IR time **delay w.r.t OUV emissions.**

 $R_{\text{IR}} = c\Delta T/2$

One simplest normalized box function is

 $f(t) = 1/\Delta T$, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

$L_{\text{IR}}(t) = \epsilon_{\Omega} \epsilon_{\text{IR}} \left[L_{\text{OUV}}(t') f(t-t') dt' \right]$ $\epsilon_\Omega^{} = \Omega_{\rm dust}^{} / (4\pi)$: solid angle coverage $\epsilon_{\rm IR}$: re-emitting efficiency To fit IR light curves for AT2019dsg/fdr/aalc, $\epsilon_{\Omega} \epsilon_{\text{IR}} \sim 0.3 - 0.5$ **IR light curve fitting**

Production of High-Energy Astrophysical Neutrinos

Photo-pion/meson ($pγ$ **) process**

 $p + \gamma \rightarrow \Delta^+ \rightarrow \pi^{\pm}/\pi^0 + X$

Ingredients: dense (low-energy) target photons [thermal IR/OUV/X-ray photons in TDE winds] + CRs $m_{\pi}(2m_{p} + m_{\pi})c^{2}$ Delta resonance proton energy: *Ep* ≳ 4*εγ* 1000 $\boxed{t_{pp}^{-1} \simeq c n_w \sigma_{pp} \sim \frac{1}{4\pi} \sigma_{pp} \beta_w^{-1} \eta_w \frac{\dot{M}}{R^2 m_p}} \begin{array}{c} \text{so} \\ \text{PDG data} \end{array} \begin{array}{c} \text{with the number of terms of the right and right.} \\ \text{Fil-formula} \\ \text{Fit-formula} \end{array}$ Δ -resonance direct (µbam) total cross section 100 10 $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}), \ \mu^{\pm} \rightarrow e^{\pm} + \bar{\nu}_{\mu}(\nu_{\mu}) + \nu_{e}(\bar{\nu}_{e})$
 $\pi^{0} \rightarrow \gamma + \gamma$ 0.1 1000 10 100 (GeV) ε [']

Hadronuclear (*pp*) process

$$
p + p \to \pi^+ / \pi^0 + X
$$

Ingredients: dense thermal/rest target protons [outflows/winds in TDEs] + CRs

In TDE wind, depends on the wind params. subdominant even in optimistic cases

 $\sigma_{\sf inel}$ [mb]

40

່ 30

20

 $10¹$

 10^{-1}

 $10⁰$

 $10¹$

 10^7

proton kinetic energy in the rest frame of the target proton

 10^2

Kafexhiu+ 2014

Tp [GeV]

 10^3 10^4 10^5 10^6

Proton injection

Four parameters: $E_{p,\text{min}} \sim 1 \text{ GeV}$, spectra index $p = 2$, $E_{p,\text{max}}$ (free-param), normalization factor

We use four parameters to determine the proton injection (do not specify the accelerator) AT2019dsg 10^{47} · $\dot{Q}(E_p) = L_p/(4\pi R^3/3)$ \Box Normalization $\Big]\,dE_{p}E_{p}$ $\frac{1}{2}t_{v}$ $X-ray$ 10^{46} IR. .
/ OUV $\dot{M}_\star(t)c^2$ • $L_p(t) = \varepsilon_{\text{diss}}$ 10^{45} S^{-1} **Assumptions** $\frac{5}{4}$ 10⁴⁴ .
/ $M_{\star}(t)/L_{\text{OUV}}(t) = \text{const}$
M /*M* · 2 ² few • • $\hat{M}_{\star,\rm peak}/\hat{M}_{\rm Edd} \sim$ a few (Dai+, 2018) 10^{43} \bullet Efficient energy dissipation to CRs: $\varepsilon_{\mathrm{diss}} \simeq 0.2$ **P** $\frac{1}{20^{42}}$ **P** $\frac{1}{200}$ **P** $\frac{1}{20$ • Proton diffusion in Bohm regime $D = R_Ic$ $t-t_{\rm pk}$ [d]

Numerical Method: AM^3 (Astrophysical Multi-Messenger Modeling)

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

$$
\partial_t n_i = Q_{i,ext} + \sum_k Q_{int, k \to i} - \partial_E (\dot{E} \cdot n_i) - (\alpha_{i,esc} + \alpha_{i,adv}) n_i
$$

Injection k **Coordinates Cooling Escape/Advection**

TDE model

Radius, magnetic field Particle injection External photon field

AM3

Interactions, target particle density, interaction rates, particle maximum energy

Time step: $\Delta t = 0.001t_{\rm fs} - 0.01t_{\rm fs}$

Running time (1CPU) for calculation up to t_{ν} :

- \sim 2 min for extended radiation zone $R \gtrsim 10^{17} \; \mathrm{cm}$
- 30-40 min for compact region $R \lesssim 10^{16}~\mathrm{cm}$

 10^{-2} **Interaction rates** 10^{-3} 10^{-4} 10^{-5} t^{-1} [s⁻¹] 10^{-6} lts. 10^{-7} 10^{-8} 10^{-9} Yuan & Winter 2023 ApJ **956:30** 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} *pγ* time scale ($t_{pγ}$) determines the time to develop EM cascade ($\gamma\gamma$ and secondary

AT2019dsg, t_v

EM cascade spectra of AT2019dsg: IR target photons

*p***/** optically thin $t_{p\gamma}^{-1}/t_{\rm fs}^{-1} < 1$: ($\pi^\pm \to e^\pm \to {\rm SY/IC}$) + ($\gamma\gamma \to e^\pm \to {\rm SY/IC}$)

Parameters: $\varepsilon_{\text{diss}} = 0.2$

 $10⁹$

 10^{10}

AT2019dsg Temporal signatures

Dust echo IR scenario: $\varepsilon_{\rm diss} = 0.2, B = 0.1\,$ G, $R = 5 \times 10^{16}$ cm, $E_{p, \rm max} = 5 \times 10^{9}\,$ GeV

Rapid (exponential) decay of early Xray light curve:

- Cannot be explained by our model
- Accretion disk cooling?

Fermi-LAT up limits

ded Data Fig. 7 | Gamma-ray energy flux upper-limits for AT2019dsg. The values are derived assuming a point-source with power-law index $\Gamma = 2.0$ at the position of AT2019dsg, integrated over the analysis energy range 0.1-800 GeV. Stein et al. 2021

~50 days time delay is compatible with *pγ* interaction time $t_{p\gamma} \sim 10-100 \, \, \mathrm{d}$

Yuan & Winter 2023 ApJ 956:30

Compact region close to disk corona (OUV photon dominant, M-OUV)

*p*γ optically thick $t_{p\gamma}^{-1}/t_{\rm fs}^{-1}>1$: EM cascade light curves follows OUV light curve, no significant time delay

B = 0.1 G, $R \sim 10^{15}$ cm, $E_{p,\text{max}} = 1 \times 10^8$ GeV

Cascade emission peaks in LAT energy

range -> overshoots the *γ*-ray limits

Constraints on $E_{p,\text{max}}$ **, R and neutrino rates Expected Gamma-ray Follow Up (GFU) neutrino number**

$$
\mathcal{N}_{\nu}(\mathrm{GFU})=\int\!dE_{\nu}\int^{t_{\nu}}dt F_{\nu}(E_{\nu},t)A_{\mathrm{eff}}(E_{\nu})
$$

AT2019dsq: $B = 0.1$ G

To avoid violating Fermi UL (red curve)

- An extended radiation zone is preferred (exclude M-OUV scenario)
- Neutrino number is constrained to be 0.01-0.1 for AT2019dsg
- Expected neutrino number from AT2019dsg, 0.008-0.76 (Stein+ 2021), is consistent with Fermi UL

Above blue dashed line -> pg optically thick -> no significant time delay; otherwise a time delay of $t_{p\gamma} \sim 10 - 100$ d is expected

Constraints on $E_{p,\text{max}}$, R and neutrino rates: impact of B

- CRs are more strongly confined with a stronger magnetic field, which enables a less compact region to be a promising neutrino emitter. (Easier to overshoot *γ*-ray up limits)
- Conclusions do not change significantly

Test lepton (e^{\pm}) injections

Electron injection spectra

- $dN_e/d\gamma_e \propto \gamma_e^{-2}$
- $\gamma_{e,\text{min}} = 300, \, \gamma_{e,\text{max}} = 10^5$ (AGNs)
- Magnetic field 0.1 G
- Lepton loading factor L_e/L_p varies from 10^{-4} to 1 (magenta to blue dashed lines).

Cascade emission dominates if $L_e/L_p < 10^{-2}$

(Supported by the absence of radio signals accompanying OUV/IR)

Caveat: leptonic contribution depends on electron minimum energy and magnetic field strengths

AT2019dsg: M-IR $(t_v, \gamma_{e, min} = 300, \gamma_{e, max} = 10^5, B = 0.1 \text{ G})$

- EM cascade processes in TDE winds can produce detectable (hard) X-ray/γ-ray emissions. The model can be tested/constrained by future observations or current upper limits.
- Significant (~10-100 days) time delay is expected in the $p\gamma$ optically thin regime. Time-dependent analyses are needed (steady state may not be achieved with some source parameters).
- To be an efficient neutrino emitter, the accompanying cascade emission would overshoot the Xray/γ-ray constraints. Fermi upper limits implies ≲ 0.1 neutrinos per TDE! (Hidden jets? *γ-*ray obscured/hidden models? Off-axis jet?)
- The conclusions are not sensitive to the classification of these objects. It's constructed on the IR/ OUV/X-ray spectral and temporal signatures.

- EM cascade processes in TDE winds can produce detectable (hard) X-ray/γ-ray emissions. The model can be tested/constrained by future observations or current upper limits.
- Significant (~10-100 days) time delay is expected in the $p\gamma$ optically thin regime. Time-dependent analyses are needed (steady state may not be achieved with some source parameters).
- To be an efficient neutrino emitter, the accompanying cascade emission would overshoot the Xray/γ-ray constraints. Fermi upper limits implies ≲ 0.1 neutrinos per TDE! (Hidden jets? *γ-*ray obscured/hidden models? Off-axis jet?)
- The conclusions are not sensitive to the classification of these objects. It's constructed on the IR/ OUV/X-ray spectral and temporal signatures.

Future Imaging Air Cherenkov Telescopes (IACTs) touch down to in 50 GeV - 50 TeV 10−¹³ erg/s/cm² *range. TDE cascade emissions would be interesting targets.*

- AT2021lwx (ZTF20abrbeie; aka "Barbie" Subrayan+ 2023)
- Very far away: $z = 0.995$ (0.05 for AT2019dsg, 0.26 for AT2019fdr, 0.04 for aalc)
- Super bright —- peak (IR-corrected) OUV bolometric luminosity: > 10^{46} $\rm erg\;s^{-1}$
- SMBH mass ~ $10^8 M_\odot, \, M_\star \sim 14 M_\odot$ (Subrayan+ 2023)
- Potential correlation with neutrino IC220405B: angular deviation ~ 2.6 deg; neutrino time delay in SMBH frame: 185 d
- **Similarities with other 3 TDEs:** bright thermal OUV emission; \overline{T} strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame

Caveat:

AT2021lwx is not uniquely identified as TDEs of very large star mass; could be produced by the accretion of a giant molecular cloud onto a SMBH of $10^8 - 10^9 M_{\odot}$ (Wiseman+ 2023)

- **Similarities with other 3 TDEs:** bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame
- Neutrino fluences (time-integrated) and luminosities also share some similarities

DESY. 27 | Multimessenger Modelling of TDEs | Chengchao Yuan, 2024/02/23

- **Similarities with other 3 TDEs:** bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame
- Neutrino fluences and luminosities also share some similarities Extended IR observation will test our dust model

-
- Our model provides one generic and comprehensive template for interpreting more to-be-unveiled IRneutrino correlations

Acceleration rate : $t_{\rm acc}^{-1}$ $\eta_{\rm acc} = \eta_{\rm acc} c / R_L = \eta_{\rm acc} e B c / E_p$ Larger η_{acc} -> more efficient acceleration

E_max is achievable for a reasonable $\eta_{\rm acc} \sim 0.3 - 1$ by balancing acc. rate (blue lines) to energy loss rate (red curves), similar to AT2019dsg/fdr/aalc

Open questions and on-going works

- Distinguishing TDEs from impostors
- Months to years time delay of neutrino coincidence (AT2019dsg/fdr/aalc) common for TDEs?
- Multi-messenger modeling of TDE jets/winds with time-dependent energy inputs *(Yuan et al. in prep.)*
- Can TDEs be promising (VHE) $γ$ -ray emitters? origin of UHECRs *(Plotko, Yuan, Winter & Lunardini, in prep.)*? Contribute to diffuse neutrino flux?
- Cosmological TDE rate? *ν*-coincident rate?

On going work on TDEs

UHECRs from TDEs

EPOS, Parameters the same; best fit; chi $2=51.2$; Ir=51.2; rad=3.41e+18, Rmax= 3.68e9

- TDE CR modeling: *NeuCosmA*
- CR propagation: *PRINCE*
- Implications on: local rate, TDE CR composition

 10^3 dsq aald 10^{-} $+$ HESE **PAO 2019 C** 9 year $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 10^{-8} \end{bmatrix}$ sr^{-1} ٦, \vec{L} cm^{-2} cm^{-2} 10^{-9} $A = 1$ 10 $2 \leq A \leq 4$ E^3 J [GeV² $5 \leq A \leq 14$ **Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction Property** $15 \leq A \leq 28$ 10 $29 \leq A \leq 56$ dsg fdr Total Auger 2019 aalc 10^{-1} 10^{10} $10⁹$ $10⁹$ $10⁷$ 10^{8} 10^{10} E [GeV] E [GeV] 900 + Auger 2019 He^{π} 60 -
He $\frac{\pi}{4}$ $\sqrt{2}$ 850 50 ϵ 800 $\overline{\omega}$ \mathbf{S} 40 \mathfrak{B} 750 g
50 $\frac{8}{6}$ $\frac{30}{20}$ $\mathcal{\check{S}}_{700}$ $10\,$ 650 10^{10} 10^{10} 10^{11} $10⁹$ 10^{11} E [GeV] E [GeV] *Plotko, Yuan, Winter & Lunardini, in prep.*

Jetted TDE modeling

- TDE accretion physics
- Dynamics of outflows with time-dependent power/ mass injection
- Multi-zone, time-dependent data fitting (spectra + light curves)
- Lepto-hadronic modeling: AM3

Backup Slides

CR acceleration with $B = 0.1$ **G**

 $t_{\rm acc}^{-1}$ $\eta_{\rm acc} = \eta_{\rm acc} c / R_L = \eta_{\rm acc} e B c / E_p$

Larger η_{acc} implies efficient CR acceleration; E_{max} depends on B $B = 0.1 - 1~\mathrm{G}$ is conservative for M-OUV cases ($R \sim 10^{15}~\mathrm{cm}$, acceleration sites are close to hot corona, B can be much larger, e.g., $\;\sim$ kG)

Table 1. Observational and TDE modeling parameters for AT2019dsg and AT2019fdr. In all scenarios, the universal values of energy dissipation efficiency $\varepsilon_{\text{diss}} = 0.2$ and magnetic field strength $B = 0.1$ G are used.

^aAT2019dsg data references: redshift z, expected neutrino number via IceCube GFU searches N_{ν} (GFU), T_{OUV} and T_{X} (Stein et al. 2021); SMBH mass M (van Velzen et al. 2021b); peak time of OUV light curve $t_{\rm pk}$ (Stein et al. 2021); Neutrino energy E_{ν} (IceCube Collaboration 2019a); T_{IR} (Winter & Lunardini 2023).

^bAT2019fdr data references: z, $t_{\rm pk}$, N_ν (GFU), $T_{\rm OUV}$, $T_{\rm X}$ and $T_{\rm IR}$ (Reusch et al. 2022); M (van Velzen et al. 2021b); E_ν (IceCube Collaboration 2019b).

^cExpected neutrino number from IceCube gamma-ray follow up (GFU) searches.

Table 1. Observational and Model Parameters for AT2021lwx

AT2021lwx

• Parameters and EM cascade SEDs

Radiation processes

Primary e^\pm injections are not considered in this calculation (will be **discussed in later slides)**

Neutrino production: $p\gamma / pp \rightarrow \pi^{\pm} \rightarrow \nu_e \bar{\nu}_e \nu_\mu \bar{\nu}_\mu$

p **Proton synchrotron:**

$$
p \xrightarrow{\text{B}} \gamma + p'
$$

magnetic field

*π*⁰ → 2*γ* **Cascade processes:**

Particle cooling: $p \rightarrow p'$ $(e^{\pm}) \rightarrow (e^{\pm})' \rightarrow (e^{\pm})''$ $(\mu^{\pm}) \rightarrow (\mu^{\pm})'$

$$
p\gamma_{bb}/pp \to \pi^{\pm} \to (\mu^{\pm})(e^{\pm}) \xrightarrow{B} (\mu^{\pm})'(e^{\pm})' + \gamma, (e^{\pm})' + \gamma \to (e^{\pm})'' + \gamma'
$$

$$
\gamma\gamma \to (e^{\pm}) \xrightarrow{\qquad B} (e^{\pm})' + \gamma, (e^{\pm})' + \gamma \to (e^{\pm})'' + \gamma'
$$

 $p\gamma_{bb}\to p'(e^\pm) \stackrel{B}{\longrightarrow} (e^\pm)' + \gamma, \ (e^\pm)' + \gamma \to (e^\pm)'' + \gamma'$ magnetic field

EM cascade spectra of AT2019dsg: M-OUV

*p***/** optically thick $t_{p\gamma}^{-1}/t_{\rm fs}^{-1} > 1$: ($\pi^{\pm} \to e^{\pm} \to {\rm SY/IC}$) + ($\gamma\gamma \to e^{\pm} \to {\rm SY/IC}$)

Parameters: $\varepsilon_{\text{diss}} = 0.2$ $R_{IR} \gg R$ -> IR subdominant ($n \propto L_{IR}R^{-2}c^{-1}$) $B = 0.1$ G, $R = 5 \times 10^{14}$ cm, $E_{p, \text{max}} = 1 \times 10^8$ GeV

EM cascade spectra of AT2019dsg: M-OUV

*p***/** optically thick $t_{p\gamma}^{-1}/t_{\rm fs}^{-1} > 1$: ($\pi^{\pm} \to e^{\pm} \to {\rm SY/IC}$) + ($\gamma\gamma \to e^{\pm} \to {\rm SY/IC}$)

Parameters: $\varepsilon_{\text{diss}} = 0.2$ $R_{IR} \gg R$ -> IR subdominant ($n \propto L_{IR}R^{-2}c^{-1}$) $B = 0.1$ G, $R = 5 \times 10^{14}$ cm, $E_{p, \text{max}} = 1 \times 10^8$ GeV

 \bullet Small R leads to fast proton escape

•
$$
E_{p\gamma,\text{min}} \sim 10^{6-7} \text{ GeV}
$$

- Synchrotron peak energy $\,>\,\,\mathrm{GeV}$
- Attenuated before reaching the peak -> spikes
- Promising neutrino emitter in the neutrino energy range

AT2019dsg Temporal signatures: M-OUV

Compact region: $\varepsilon_{\rm diss} = 0.2, B = 0.1 \; {\rm G},\, R = 5 \times 10^{14} \; {\rm cm},\, E_{p, {\rm max}} = 1 \times 10^8 \; {\rm GeV}$

In this compact and dense region, interactions occur very fast

- *pγ* optically thick: $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$
- Cascade emissions follows OUV light curve (no significant time delay)
- Cascade emission peaks in LAT energy

range -> overshooting the *γ*-ray limits

A Fourth Candidate for a Neutrino-Coincident TDE??

- AT2021lwx (ZTF20abrbeie; aka "Barbie" Subrayan+ 2023)
- Very far away: $z = 0.995$ (0.05 for AT2019dsg, 0.26 for AT2019fdr, 0.04 for aalc)
- Super bright —- peak (IR-corrected) OUV bolometric luminosity: > 10^{46} $\rm erg\,\,s^{-1}$ (nearly super-Eddington)
- SMBH mass ~ $10^8 M_{\odot}$, $M_{\star} \sim 14 M_{\odot}$ (Subrayan+ 2023)
- Potential correlation with neutrino IC220405B: angular deviation ~ 2.6 deg; neutrino time delay in SMBH frame: 185 d
- **Similarities with other 3 TDEs:** bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame

Caveat:

AT2021lwx is not uniquely identified as TDEs of very large star mass; could be produced by the accretion of a giant molecular cloud onto a SMBH of $10^8 - 10^9 M_{\odot}$ (Wiseman+ 2023)