

Multi-Messenger Modeling of Tidal Disruption Events with $AM^{3}\,$

Chengchao Yuan (<u>yuan-cc.github.io</u>)

Deutsches Elektronen Synchrotron DESY, Germany

Paris Workshop on Numerical Multimessenger Modeling 2024/02/23

HELMHOLTZ

When a massive star passes close enough to a SMBH

The star can be ripped apart by the tidal force at tidal radius

$$r_T = (M/m_{\star})^{1/3} r_{\star} \simeq 5 \times 10^{12} \text{ cm} \left(\frac{M}{10^6 M_{\odot}}\right)^{1/3} \frac{r_{\star}}{r_{\odot}} \left(\frac{m_{\star}}{M_{\odot}}\right)^{-1/3}$$

- Should be larger than Schwarzschild radius of SMBH, $r_s = 2GM/c^2 \simeq 3 \times 10^{11} \text{ cm } M_6$
- A theoretical up limit of SMBH mass in TDE

$$M < 3.6 \times 10^8 M_{\odot} \left(\frac{m_{\star}}{M_{\odot}}\right)^{2 - \frac{3}{2}\xi}$$

to disrupt a main sequence star of radius

$$r_{\star} = R_{\odot} (M_{\star}/M_{\odot})^{(1-\xi)}$$

 $\xi \approx 0.4$ for $M_{\star} < 10 M_{\odot}$ (Kippenhahn & Weigert 1990)

NATURE VOL. 333 9 JUNE 1988 ARTICLES

Tidal disruption of stars by black holes of 10⁶–10⁸ solar masses in nearby galaxies

Martin J. Rees

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed; the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years. Such phenomena are compatible with the presence of 10^6 – $10^8~M_{\odot}$ holes in the nuclei of many nearby galaxies. Stellar disruption may have interesting consequences in our own Galactic Centre if a $\sim 10^6~M_{\odot}$ hole lurks there.

Martin J. Rees, Nature 1988

Tidal disruption events

When a massive star passes close enough to a SMBH

- ~ half of the star's mass remains bounded by the SMBH gravitational force
- Mass accretion -> months/year-long flare
- Energy to be reprocessed by accretion $\sim 10^{54}~{\rm erg}$
- Fallback rate $\propto t^{-5/3}$ (Phinney 1989)
- Thermal black body (bb) emissions in optical/UV (OUV) bands.
- Some (~1/4) TDEs are observed in X-ray and infrared (IR) ranges, e.g., AT2019dsg (Stein et al. 2021)

NATURE VOL. 333 9 JUNE 1988 ARTICLES

Tidal disruption of stars by black holes of 10⁶–10⁸ solar masses in nearby galaxies

Martin J. Rees

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed; the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years. Such phenomena are compatible with the presence of 10^6 – $10^8~M_{\odot}$ holes in the nuclei of many nearby galaxies. Stellar disruption may have interesting consequences in our own Galactic Centre if a $\sim 10^6~M_{\odot}$ hole lurks there.

Martin J. Rees, Nature 1988

TDE observational signatures: universal

Van Velzen et al, 2021

Radio

- A small fraction of TDEs exhibit luminous radio relativistic jet.
 Most are radio quiet.
- Delayed radio may come from jet propagating in wind density profile $\rho(r) \propto r^{-k} \ (1.5 \lesssim k \lesssim 2)$ (Metzger+ 2016)

AT2019dsg

- *z* ~ 0.051
- ZTF (optical: g, r) + Swift UVOT (UV)
- Swift-XRT/XMM-Newton: X-ray (0.3-10 keV)
- Fermi (0.1-800 GeV) and HAWC (0.3-100 TeV) up limits

- Angular offset: 1.3 deg
- $t_{\nu} t_{\rm pk} = 150 \, \rm d$

Measured black body spectra:

- **X-ray**: $T_X = 72 \text{ eV}$, from hot accretion disk
- OUV: $T_{OUV} = 3.4 \text{ eV}$, from photosphere (nearly constant)
- IR: $T_{IR} = 0.15 \text{ eV}$

AT2019fdr

- *z* ~ 0.267
- ZTF (optical: g, r) + Swift UVOT (UV) + IR
- Swift-XRT: X-ray (0.3-10 keV)
- Angular offset: 1.7 deg; $t_{\nu} t_{\rm pk} = 393$ d
- Fermi up limit ✓

Reusch et al. (2022)

AT2019aalc

ZTF: q-band

Luminosity (×10⁴³ e

Another TDE candidate with potential neutrino correlation and strong delayed IR emission.

- Angular offset: 1.9 deg
- $t_{\nu} t_{\rm pk} = 148 \, \rm d$
- Significance of neu correlation: 3.6 sigma (van Velzen+ 2021)

Caveat: AT2019fdr/aalc are not exclusively identified as TDEs

Questions for Neutrino-Coincident TDEs

- Where are radio, OUV, IR, X-ray (XRT, eROSITA, NICER), γ -ray and neutrino emissions produced?
- Temporal signatures? delayed infrared and neutrino emissions
- Multi-messenger implications, e.g., from X-ray/ γ -ray up limits to neutrino constraints

What we have

- Thermal optical/ultraviolet, X-ray, and infrared spectra/light curves.
- Up limits from γ -ray flux by Fermi, HAWC etc
- Neutrino correlation: detection time, energy

What we need for existing observations

- Radiation sites: jet, wind, disk corona, etc
- CR acceleration/injection
- Theoretical/numerical modeling of interactions

TDE models

- γ-rays, non-thermal X-rays: relativistic jet,
 sub relativistic wind
- Thermal X-rays: close to jet/funnel & hot disk corona
- Optical/UV: photosphere of hot disk corona (beyond which integrated optical depth < 1)
- Infrared (IR): dust-echo
- Radio: non-thermal (particle acceleration in disk, jet, outflow)

Disks - Hayashaki & Yamazaki 19 (HY19)
Wide angle winds - Fang 20, Murase+ 20
Stream-stream - Dai + 15,, HY19,
Jets - Wang + 11, Wang & Liu 16, Dai &
Fang 17, Lunardini & Winter 17, Senno + 17

TDE models

- In addition to the EM signatures, neutrinos might be produced in the accretion disks, disk winds (outflows), or jets
- Three TDEs may be associated with IceCube neutrino events

1. AT2019dsg (IC191001A)

Focus of this work

- 2. AT2019fdr (IC200530A)
- 3. AT2019aalc (IC191119A) Less complete γ -ray/X-ray constraints
- Three TDE candidates with luminous jets (no ν association reported) modeling on agenda!

X-ray/OUV photons heat the dust torus

- -> thermal IR emission
- could explain delayed IR emission
- feeds IR photons back to the wind/outflow envelope
- temperature $T_{\rm IR} \lesssim T_{\rm sub} \sim 0.16~{\rm eV}$ (sublimation temp.)
- IR luminosity can be obtained by convolving $L_{\rm OUV}$ with a time spreading function f(T), e.g., (Reusch et al. 2022, Winter & Lunardini 2022)

$$L_{\rm IR}(t) \propto \int L_{\rm OUV}(t') f(t-t') dt'$$

f(T) reflects the dust distributions

Dust radius ($R_{\rm IR}$) can be inferred from IR time delay w.r.t OUV emissions.

$$R_{\rm IR} = c\Delta T/2$$

One simplest normalized box function is

$$f(t) = 1/\Delta T$$
, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

IR light curve fitting

$$L_{\rm IR}(t) = \epsilon_{\Omega} \epsilon_{\rm IR} \int L_{\rm OUV}(t') f(t-t') dt'$$

 $\epsilon_{\Omega} = \Omega_{\rm dust}/(4\pi)$: solid angle coverage

 $\epsilon_{\rm IR}$: re-emitting efficiency

$$\epsilon_{\Omega}\epsilon_{\rm IR} \sim 0.3 - 0.5$$

Dust radius ($R_{\rm IR}$) can be inferred from IR time delay w.r.t OUV emissions.

$$R_{\rm IR} = c\Delta T/2$$

One simplest normalized box function is

$$f(t) = 1/\Delta T$$
, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

IR light curve fitting

$$L_{\rm IR}(t) = \epsilon_{\Omega} \epsilon_{\rm IR} \int L_{\rm OUV}(t') f(t-t') dt'$$

 $\epsilon_{\Omega} = \Omega_{\rm dust}/(4\pi)$: solid angle coverage

 $\epsilon_{
m IR}$: re-emitting efficiency

$$\epsilon_{\Omega}\epsilon_{\rm IR} \sim 0.3 - 0.5$$

Dust radius ($R_{\rm IR}$) can be inferred from IR time delay w.r.t OUV emissions.

$$R_{\rm IR} = c\Delta T/2$$

One simplest normalized box function is

$$f(t) = 1/\Delta T$$
, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

IR light curve fitting

$$L_{\rm IR}(t) = \epsilon_{\Omega} \epsilon_{\rm IR} \int L_{\rm OUV}(t') f(t-t') dt'$$

 $\epsilon_{\Omega} = \Omega_{\rm dust}/(4\pi)$: solid angle coverage

 $\epsilon_{\rm IR}$: re-emitting efficiency

$$\epsilon_{\Omega}\epsilon_{\rm IR} \sim 0.3 - 0.5$$

Dust radius ($R_{\rm IR}$) can be inferred from IR time delay w.r.t OUV emissions.

$$R_{\rm IR} = c\Delta T/2$$

One simplest normalized box function is

$$f(t) = 1/\Delta T$$
, if $0 < t < \Delta T$. Otherwise, $f(t) = 0$

IR light curve fitting

$$L_{\rm IR}(t) = \epsilon_{\Omega} \epsilon_{\rm IR} \int L_{\rm OUV}(t') f(t-t') dt'$$

 $\epsilon_{\Omega} = \Omega_{\rm dust}/(4\pi)$: solid angle coverage

 $\epsilon_{
m IR}$: re-emitting efficiency

$$\epsilon_{\Omega}\epsilon_{\rm IR} \sim 0.3 - 0.5$$

Production of High-Energy Astrophysical Neutrinos

Photo-pion/meson ($p\gamma$) process

$$p + \gamma \rightarrow \Delta^+ \rightarrow \pi^{\pm}/\pi^0 + X$$

Ingredients: dense (low-energy) target photons

[thermal IR/OUV/X-ray photons in TDE winds] + CRs

Delta resonance proton energy: $E_p \gtrsim \frac{m_\pi (2m_p + m_\pi)c^2}{4\varepsilon_\nu}$

Hadronuclear (pp) process

$$p + p \to \pi^+/\pi^0 + X$$

Ingredients: dense thermal/rest target protons [outflows/winds in TDEs] + CRs

In TDE wind, depends on the wind params. subdominant even in optimistic cases

$$t_{pp}^{-1} \simeq cn_w \sigma_{pp} \sim rac{1}{4\pi} \sigma_{pp} eta_w^{-1} \eta_w rac{\dot{M}}{R^2 m_p}$$
 70 Fit-formula --- Kelner(2006) --- Kamae(2006) --- Kamae(2006) --- Kafexhiu+ 2014 --- t_{pp}^{\pm} 30 --- t_{pp}^{\pm}

proton kinetic energy in the rest frame of the target proton

Proton injection

Four parameters: $E_{p, \min} \sim 1 \text{ GeV}$, spectra index $p=2, E_{p, \max}$ (free-param), normalization factor

We use four parameters to determine the proton injection (do not specify the accelerator)

. Normalization
$$\int\! dE_p E_p \dot{Q}(E_p) = L_p/(4\pi R^3/3)$$

•
$$L_p(t) = \varepsilon_{\rm diss} \dot{M}_{\star}(t)c^2$$

Assumptions

- $\dot{M}_{\star}(t)/L_{\rm OUV}(t) = {\rm const}$
- $\dot{M}_{\star,\mathrm{peak}}/\dot{M}_{\mathrm{Edd}}\sim \mathrm{a~few}$ (Dai+, 2018)
- Efficient energy dissipation to CRs: $\varepsilon_{\rm diss} \simeq 0.2$
- Proton diffusion in Bohm regime $D=R_Lc$

Numerical Method: AM³ (Astrophysical Multi-Messenger Modeling)

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

$$\partial_t n_i = Q_{i,ext} + \sum_k Q_{int,k \to i} - \partial_E (\dot{E} \cdot n_i) - (\alpha_{i,esc} + \alpha_{i,adv}) n_i$$
 Injection k Cooling Escape/Advection

TDE model

Radius, magnetic field
Particle injection
External photon field

AM₃

Interactions, target particle density, interaction rates, particle maximum energy

Time step: $\Delta t = 0.001 t_{\rm fs} - 0.01 t_{\rm fs}$

Running time (1CPU) for calculation up to t_{ν} :

- ~2 min for extended radiation zone $R \gtrsim 10^{17} \ \mathrm{cm}$
- 30-40 min for compact region $R \lesssim 10^{16} \ \mathrm{cm}$

 $p\gamma$ time scale $(t_{p\gamma})$ determines the time to develop EM cascade $(\gamma\gamma)$ and secondary interactions very efficient)

EM cascade spectra of AT2019dsg: IR target photons

 $p\gamma$ optically thin $t_{p\gamma}^{-1}/t_{\rm fs}^{-1}<1$: $(\pi^{\pm}\to e^{\pm}\to {\rm SY/IC})+(\gamma\gamma\to e^{\pm}\to {\rm SY/IC})$

Parameters: $\varepsilon_{\rm diss} = 0.2$

$$B = 0.1 \text{ G}, R = R_{IR}, E_{p,\text{max}} = 5 \times 10^9 \text{ GeV}$$

 $p\gamma$ efficient (calorimetric) but not very fast (optically thin)

AT2019dsg Temporal signatures

Dust echo IR scenario: $\varepsilon_{\rm diss}=0.2, B=0.1~{\rm G}, R=5\times10^{16}~{\rm cm}, E_{p,{\rm max}}=5\times10^9~{\rm GeV}$

Rapid (exponential) decay of early X-ray light curve:

- Cannot be explained by our model
- Accretion disk cooling?

Fermi-LAT up limits

Interval	MJD Start	MJD Stop	UL
			$[{\rm erg}\ {\rm cm}^{-2}\ {\rm s}^{-1}]$
G1	58577	58707	2.6×10^{-12}
G2	58707	58807	1.2×10^{-11}
G3	58577	58879	2.0×10^{-12}

Extended Data Fig. 7 | Gamma-ray energy flux upper-limits for AT2019dsg. The values are derived assuming a point-source with power-law index Γ =2.0 at the position of AT2019dsg, integrated over the analysis energy range 0.1-800 GeV. Stein et al. 2021

~50 days time delay is compatible with $p\gamma$ interaction time $t_{p\gamma}\sim 10-100~{\rm d}$

Yuan & Winter 2023 ApJ 956:30

Compact region close to disk corona (OUV photon dominant, M-OUV)

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{\rm fs}^{-1}>1$: EM cascade light curves follows OUV light curve, no significant time delay

 $B = 0.1 \text{ G}, R \sim 10^{15} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}$

AT2019dsg: M-OUV (t_{ν}) $\rho\gamma$ optically thick 10^{-2} Escape (Fast & efficient) 10^{-3} OUV 10^{-4} X-ray 10^{-7} 10^{-8} Yuan & Winter 2023 ApJ 956:30 10^{-9} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} E_p [GeV]

Cascade emission peaks in LAT energy range -> overshoots the γ -ray limits

Constraints on $E_{p,\mathrm{max}}$, R and neutrino rates

Expected Gamma-ray Follow Up (GFU) neutrino number

$$\mathcal{N}_{\nu}(\text{GFU}) = \int dE_{\nu} \int_{0}^{t_{\nu}} dt F_{\nu}(E_{\nu}, t) A_{\text{eff}}(E_{\nu})$$

To avoid violating Fermi UL (red curve)

- An extended radiation zone is preferred (exclude M-OUV scenario)
- Neutrino number is constrained to be 0.01-0.1 for AT2019dsg
- Expected neutrino number from AT2019dsg, 0.008-0.76 (Stein+ 2021), is consistent with Fermi UL

Above blue dashed line -> pg optically thick -> no significant time delay; otherwise a time delay of $t_{p\gamma}\sim 10-100~{\rm d}$ is expected

Constraints on $E_{p,\mathrm{max}}$, R and neutrino rates: impact of B

- CRs are more strongly confined with a stronger magnetic field, which enables a less compact region to be a promising neutrino emitter. (Easier to overshoot γ -ray up limits)
- Conclusions do not change significantly

Test lepton (e^{\pm}) injections

Electron injection spectra

- $dN_e/d\gamma_e \propto \gamma_e^{-2}$
- $\gamma_{e,\text{min}} = 300$, $\gamma_{e,\text{max}} = 10^5$ (AGNs)
- Magnetic field 0.1 G
- Lepton loading factor L_e/L_p varies from 10^{-4} to 1 (magenta to blue dashed lines).

Cascade emission dominates if

$$L_e/L_p < 10^{-2}$$

(Supported by the absence of radio signals accompanying OUV/IR)

Caveat: leptonic contribution depends on electron minimum energy and magnetic field strengths

Summary

- EM cascade processes in TDE winds can produce detectable (hard) X-ray/ γ -ray emissions. The model can be tested/constrained by future observations or current upper limits.
- Significant (~10-100 days) time delay is expected in the $p\gamma$ optically thin regime. Time-dependent analyses are needed (steady state may not be achieved with some source parameters).
- To be an efficient neutrino emitter, the accompanying cascade emission would overshoot the X-ray/ γ -ray constraints. Fermi upper limits implies \lesssim 0.1 neutrinos per TDE! (Hidden jets? γ -ray obscured/hidden models? Off-axis jet?)
- The conclusions are not sensitive to the classification of these objects. It's constructed on the IR/ OUV/X-ray spectral and temporal signatures.

Summary

- EM cascade processes in TDE winds can produce detectable (hard) X-ray/ γ -ray emissions. The model can be tested/constrained by future observations or current upper limits.
- Significant (~10-100 days) time delay is expected in the $p\gamma$ optically thin regime. Time-dependent analyses are needed (steady state may not be achieved with some source parameters).
- To be an efficient neutrino emitter, the accompanying cascade emission would overshoot the X-ray/ γ -ray constraints. Fermi upper limits implies \lesssim 0.1 neutrinos per TDE! (Hidden jets? γ -ray obscured/hidden models? Off-axis jet?)
- The conclusions are not sensitive to the classification of these objects. It's constructed on the IR/ OUV/X-ray spectral and temporal signatures.

Future Imaging Air Cherenkov Telescopes (IACTs) touch down to 10^{-13} erg/s/cm² in 50 GeV - 50 TeV range. TDE cascade emissions would be interesting targets.

- AT2021lwx (ZTF20abrbeie; aka "Barbie" Subrayan+ 2023)
- Very far away: z = 0.995 (0.05 for AT2019dsg, 0.26 for AT2019fdr, 0.04 for aalc)
- Super bright —- peak (IR-corrected) OUV bolometric luminosity: > $10^{46} \ erg \ s^{-1}$
- SMBH mass ~ $10^8 M_{\odot}$, $M_{\star} \sim 14 M_{\odot}$ (Subrayan+ 2023)
- Potential correlation with neutrino IC220405B: angular deviation ~ 2.6 deg; neutrino time delay in SMBH frame: 185 d
- Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame

Caveat:

AT2021lwx is not uniquely identified as TDEs of very large star mass; could be produced by the accretion of a giant molecular cloud onto a SMBH of $10^8 - 10^9 M_{\odot}$ (Wiseman+ 2023)

- Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame
- Neutrino fluences (time-integrated) and luminosities also share some similarities

IR time delay [d]	ΔT	180 (330)
Radius [cm]	$R_{ m IR}$	$5.4 \times 10^{17} \ (10^{18})$
Max proton energy [GeV]	$E_{p,\mathrm{max}}$	1.5×10^9
Magnetic field [G]	B	0.1

- Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame
- Neutrino fluences and luminosities also share some similarities

IR time delay [d]	ΔT	180 (330)
Radius [cm]	$R_{ m IR}$	$5.4 \times 10^{17} \ (10^{18})$
Max proton energy [GeV]	$E_{p,\mathrm{max}}$	1.5×10^9
Magnetic field [G]	B	0.1

- Extended IR observation will test our dust model
- Our model provides one generic and comprehensive template for interpreting more to-be-unveiled IRneutrino correlations

Acceleration rate : $t_{\rm acc}^{-1} = \eta_{\rm acc} c / R_L = \eta_{\rm acc} e B c / E_p$

Larger η_{acc} -> more efficient acceleration

E_max is achievable for a reasonable $\eta_{\rm acc} \sim 0.3-1$ by balancing acc. rate (blue lines) to energy loss rate (red curves), similar to AT2019dsg/fdr/aalc

Open questions and on-going works

- ☐ Distinguishing TDEs from impostors
- ☐ Months to years time delay of neutrino coincidence (AT2019dsg/fdr/aalc) common for TDEs?
- ☐ Multi-messenger modeling of TDE jets/winds with time-dependent energy inputs (Yuan et al. in prep.)
- \Box Can TDEs be promising (VHE) γ -ray emitters? origin of UHECRs (*Plotko, Yuan, Winter & Lunardini, in prep.*)? Contribute to diffuse neutrino flux?
- \Box Cosmological TDE rate? ν -coincident rate?

On going work on TDEs

UHECRs from TDEs

TDE CR modeling: NeuCosmA

• CR propagation: PRINCE

Implications on: local rate, TDE CR composition

Jetted TDE modeling

- TDE accretion physics
- Dynamics of outflows with time-dependent power/ mass injection
- Multi-zone, time-dependent data fitting (spectra + light curves)
- Lepto-hadronic modeling: AM3

Yuan+, in prep.

Backup Slides

CR acceleration with B = 0.1 G

$$t_{\rm acc}^{-1} = \eta_{\rm acc} c / R_L = \eta_{\rm acc} e B c / E_p$$

Larger $\eta_{\rm acc}$ implies efficient CR acceleration; $E_{\rm max}$ depends on B $B=0.1-1~{\rm G}$ is conservative for M-OUV cases ($R\sim 10^{15}~{\rm cm}$, acceleration sites are close to hot corona, B can be much larger, e.g., $\sim {\rm kG}$)

Table 1. Observational and TDE modeling parameters for AT2019dsg and AT2019fdr. In all scenarios, the universal values of energy dissipation efficiency $\varepsilon_{\text{diss}} = 0.2$ and magnetic field strength B = 0.1 G are used.

	$\mathbf{AT2019dsg}^a$		$\mathbf{AT2019}\mathbf{fdr}^{b}$	
	$z = 0.051, \; M =$	$= 5 \times 10^6 M_{\odot}, t_{\rm dyn} = 670 \ {\rm d}$	z = 0.267, M = 0.267	$= 1.3 \times 10^7 M_{\odot}, \ t_{\rm dyn} = 1730 \ {\rm d}$
$k_BT_{ m X,~OUV,~IR}$	$72~{ m eV}$	V, 3.4 eV, 0.16 eV	56 6	${ m eV},\ 1.2\ { m eV},\ 0.14\ { m eV}$
$E_{ u}$	217 T	TeV (IC191001A)	82	TeV (IC200530A)
$t_{ u}-t_{ m pk}$		154 d		324 d
$N_{ u}({ m GFU})^{ m c}$	0.008 - 0.76		0.007 - 0.13	
Scenario	M-IR	M-OUV	M-IR	M-OUV
R [cm]	5.0×10^{16}	5.0×10^{14}	2.5×10^{17}	$5.0{ imes}10^{15}$
$E_{p,\mathrm{max}}$ [GeV]	5.0×10^9	1.0×10^{8}	5.0×10^{9}	1.0×10^{8}

^aAT2019dsg data references: redshift z, expected neutrino number via IceCube GFU searches N_{ν} (GFU), $T_{\rm OUV}$ and $T_{\rm X}$ (Stein et al. 2021); SMBH mass M (van Velzen et al. 2021b); peak time of OUV light curve $t_{\rm pk}$ (Stein et al. 2021); Neutrino energy E_{ν} (IceCube Collaboration 2019a); $T_{\rm IR}$ (Winter & Lunardini 2023).

^bAT2019fdr data references: z, $t_{\rm pk}$, $N_{\nu}({\rm GFU})$, $T_{\rm OUV}$, $T_{\rm X}$ and $T_{\rm IR}$ (Reusch et al. 2022); M (van Velzen et al. 2021b); E_{ν} (IceCube Collaboration 2019b).

^cExpected neutrino number from IceCube gamma-ray follow up (GFU) searches.

Table 1. Observational and Model Parameters for AT2021lwx

Description	Parameter	Value
SMBH mass $[M_{\odot}]$	$M_{ m BH}$	10^{8}
Star mass $[M_{\odot}]$	M_*	14
Redshift	z	0.995
OUV peak time (MJD)	$t_{ m pk}$	59291
Peak accretion rate	$\dot{M}_{ m BH}(t_{ m pk})$	$39 L_{ m Edd}/c^2$
Accreted Mass	$\int \dot{M}_{ m BH} dt$	$M_*/2$
Neutrino observation	IC220405B	
Detection time [d]	$t_{ u}-t_{ m pk}$	~ 370
Energy [TeV]	$E_{ u}$	106
Angular deviation [°]	$\Delta heta$	$2.7^{+1.7}_{-1.3}$
IR model		
Proton efficiency	ϵ_p	0.2
Accretion component	$f_{ m IR,OUV}$	0.2
Dust echo component	$f_{ m IR,DE}$	0.3(0.4)
IR time delay [d]	ΔT	180 (330)
Radius [cm]	$R_{ m IR}$	$5.4 \times 10^{17} \ (10^{18})$
Max proton energy [GeV]	$E_{p,\mathrm{max}}$	1.5×10^9
Magnetic field [G]	B	0.1
OUV energy	$\int L_{ m OUV} dt$	$0.26~M_{\odot}c^2$
IR energy	$\int L_{ m IR} dt$	0.1 - $0.13M_{\odot}c^2$

AT2021Iwx

Parameters and EM cascade SEDs

Radiation processes

Primary e^{\pm} injections are not considered in this calculation (will be discussed in later slides)

Neutrino production: $p\gamma/pp \rightarrow \pi^{\pm} \rightarrow \nu_e \bar{\nu}_e \nu_{\mu} \bar{\nu}_{\mu}$

Proton synchrotron: $p \xrightarrow{B} \gamma + p'$

Cascade processes: $\pi^0 \rightarrow 2\gamma$

Particle cooling:

$$p \to p'$$

$$(e^{\pm}) \to (e^{\pm})' \to (e^{\pm})''$$

$$(\mu^{\pm}) \to (\mu^{\pm})'$$

$$p\gamma_{\rm bb}/pp \to \pi^{\pm} \to (\mu^{\pm})(e^{\pm}) \xrightarrow{B} (\mu^{\pm})'(e^{\pm})' + \gamma, \ (e^{\pm})' + \gamma \to (e^{\pm})'' + \gamma'$$
magnetic field

$$\gamma\gamma \rightarrow (e^{\pm}) \xrightarrow{B} (e^{\pm})' + \gamma, (e^{\pm})' + \gamma \rightarrow (e^{\pm})'' + \gamma'$$

magnetic field

Bethe-Heitler (BH) pair production $p\gamma_{\rm bb} \to p'(e^\pm) \xrightarrow{B} (e^\pm)' + \gamma, \ (e^\pm)' + \gamma \to (e^\pm)'' + \gamma'$

EM cascade spectra of AT2019dsg: M-OUV

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{\rm fs}^{-1}>1$: $(\pi^{\pm}\to e^{\pm}\to {\rm SY/IC})$ + $(\gamma\gamma\to e^{\pm}\to {\rm SY/IC})$

Parameters: $\varepsilon_{\rm diss} = 0.2$

 $B = 0.1 \text{ G}, R = 5 \times 10^{14} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}$

 $R_{IR} \gg R \rightarrow IR$ subdominant $(n \propto L_{IR}R^{-2}c^{-1})$

EM cascade spectra of AT2019dsg: M-OUV

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{\rm fs}^{-1}>1$: $(\pi^{\pm}\to e^{\pm}\to {\rm SY/IC})$ + $(\gamma\gamma\to e^{\pm}\to {\rm SY/IC})$

Parameters: $\varepsilon_{\rm diss} = 0.2$

$$B = 0.1 \text{ G}, R = 5 \times 10^{14} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}$$

 $R_{IR} \gg R \rightarrow IR$ subdominant $(n \propto L_{IR}R^{-2}c^{-1})$

- Small R leads to fast proton escape
- $E_{p\gamma, \rm min} \sim 10^{6-7} {\rm GeV}$
- Synchrotron peak energy > GeV
- Attenuated before reaching the peak -> spikes
- Promising neutrino emitter in the neutrino energy range

AT2019dsg Temporal signatures: M-OUV

Compact region: $\varepsilon_{\rm diss}=0.2, B=0.1~{\rm G}, R=5\times10^{14}~{\rm cm}, E_{p,{\rm max}}=1\times10^8~{\rm GeV}$

In this compact and dense region, interactions occur very fast

- $p\gamma$ optically thick: $t_{p\gamma}^{-1}/t_{\rm fs}^{-1} > 1$
- Cascade emissions follows OUV light curve (no significant time delay)
- Cascade emission peaks in LAT energy range -> overshooting the γ-ray limits

EM cascade spectra of AT2019dsg: M-IR (dust echo)

 $p\gamma$ optically thin $t_{p\gamma}^{-1}/t_{\rm fs}^{-1}<1$: $(\pi^{\pm}\to e^{\pm}\to {\rm SY/IC})$ + $(\gamma\gamma\to e^{\pm}\to {\rm SY/IC})$

$$E_{pp/p\gamma,SY} \sim \frac{3}{4\pi} h \gamma_{e,min}^2 \frac{eB}{m_e c}$$

$$\sim 420 B_{-1} \left(\frac{E_{p\gamma,min}}{10^5 \text{ GeV}}\right)^2 \text{ keV}$$

γγ absorption

$$E_{\gamma} \sim m_e^2 / E_{\rm bb} \simeq 2 \text{ GeV} (E_{\rm bb} / 100 \text{eV})^{-1}$$

A Fourth Candidate for a Neutrino-Coincident TDE??

- AT2021lwx (ZTF20abrbeie; aka "Barbie" Subrayan+ 2023)
- Very far away: z = 0.995 (0.05 for AT2019dsg, 0.26 for AT2019fdr, 0.04 for aalc)
- Super bright peak (IR-corrected) OUV bolometric luminosity: $> 10^{46} {\rm erg \ s^{-1}}$ (nearly super-Eddington)
- SMBH mass ~ $10^8 M_{\odot}$, M_{\star} ~ $14 M_{\odot}$ (Subrayan+ 2023)
- Potential correlation with neutrino IC220405B: angular deviation ~ 2.6 deg; neutrino time delay in SMBH frame: 185 d
- Similarities with other 3 TDEs: bright thermal OUV emission; strong dust echo (Wiseman+ 2023); similar neutrino time delay in source rest frame

Caveat:

AT2021lwx is not uniquely identified as TDEs of very large star mass; could be produced by the accretion of a giant molecular cloud onto a SMBH of $10^8 - 10^9 M_{\odot}$ (Wiseman+ 2023)