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- Non continuous plasma flow emitting non-thermal emission.
- Collimated outflow up to the kpc even Mpc.
Event Horizon Telescope (Radio) - Impact of the jet (feedback) on the local ISM/ICM.
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- Scale : from parsec to kilo-parsec. SRMHD

- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

- Emission : acceleration of particles, emission processes, etc.
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0y +V - (prv) =0,
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where p.. = (B2 + Ez)/87r the electromagnetic pressure, w the relativistic enthalpy, S = (K X B) ¢/4x the
Poynting flux and g the metric tensor. And also Maxwell equations,
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Marti & Muller, 2015
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» System of coordinates : cylindrical often used.
» Initial conditions : p, v, p, B, etc.

> Specific solver : Godunov scheme in finite volume

method.
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» System of coordinates : cylindrical often used.

» Initial conditions : p, v, p, B, etc.

> Specific solver : Godunov scheme in finite volume

method.
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» System of coordinates : cylindrical often used. » Choice of solver will depend on the

» Initial conditions : p, v, p, B, etc. nature of the simulations :
e HLL (Harten et al. 1983),

e HLLC (Toro et al. 1984),
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Special-relativistic MHD simulations : parsec scales

» Reproduction of stationary
components:
» pressure mismatch in the jet,
> Jet opening angle,
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Special-relativistic MHD simulations

» Reproduction of stationary
components:

> pressure mismatch in the jet,

> Jet opening angle,
> Properties of shock
according to the jet local

—

oroperties (B, V, etc.).
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Special-relativistic MHD simulations : 1.

» Reproduction of stationary
components:

> pressure mismatch in the jet, 107
> Jet opening angle,
> Properties of shock
according to the jet local i’;
oroperties (B, ¥, etc.). i:lo_z
> Variability:
> Injection of perturbation at the -2
base of the jet.
» KHI / CDlI instabilities.
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Special-relativistic MHD simulations :

» Reproduction of stationary
components:
» pressure mismatch in the jet,
> Jet opening angle,
> Properties of shock
according to the jet local

—>

oroperties (B, V, etc.).

» Variability:
> Injection of perturbation at the
base of the jet.

» KHI / CDI instabilities.
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Special-relativistic MHD simulations :

» Reproduction of stationary
components:
» pressure mismatch in the jet,
> Jet opening angle,
> Properties of shock
according to the jet local

—>

oroperties (B, V, etc.).

» Variability:
> Injection of perturbation at the
base of the jet.

» KHI / CDI instabilities.

Usually 2D, tocus on jet structure in

sub/parsec scales and linked with
radio features.
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» Morphology and Dynamics of kpc-

jets:

» Reproduction of beam, cocon,
terminal shock — radio jet /
lobes / hot spots,

» Effects of magnetic field, jet
power, etc.

varsec scales
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Tchekhovskoy & Bromberg, 2016
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Special-relativistic MHD simulations : kilo-parsec scales

» Morphology and Dynamics of kpc-

jets:

» Reproduction of beam, cocon,
terminal shock — radio jet /
lobes / hot spots,

» Effects of magnetic field, jet
power, etc.

» Large-scale simulations:

» FR I/Il dichotomy — deceleration
mechanism, development of
instabilities, etc.

» AGN feedback — star formation,
cooling process, etc.
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» Morphology and Dynamics of kpc-

jets:

» Reproduction of beam, cocon,
terminal shock — radio jet /

lobes / hot spots,
» Effects of magnetic field, jet

power, etc.
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» Large-scale simulations:

» FR I/ll dichotomy — deceleration
mechanism, development of
instabilities, etc.

» AGN feedback — star formation,
cooling process, etc.
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» Morphology and Dynamics of kpc-

jets:

» Reproduction of beam, cocon,
terminal shock — radio jet /

lobes / hot spots,
» Effects of magnetic field, jet

power, etc.

=

» Large-scale simulations:

» FR I/ll dichotomy — deceleration
mechanism, development of
instabilities, etc.

» AGN feedback — star formation,
cooling process, etc.

simulations, and microphysics.
Application on jet morphology,
galaxy / cluster evolution.

Usually in 3D, demanding large-scale

Wagner et al. 2016
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Computational needs

> Typical computation time several
days (parallelized / optimized code).

» Recent results show the needs of 3D 109 -
simulations : CPU increases as n°.
o o, o N 107'
» Computing center capacities are e
imited by transistors size. —
O 10°-
103_

Max Roser, Hannah Ritchie and Edouard Mathieu (2023) - “What is Moore's Law?”
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> Typical computation time several

days (parallelized / optimized code). 10™

» Recent results show the needs of 3D

simulations : CPU increases as n*.

» Computing center capacities are
imited by transistors size.

Gain in CPU time
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Doing more with less : collaboration Zwart 2020

between performance engineers and

astrophysics is now cruciall

- Accelerators as GPU,

- Vectorization (ARM Scalable
Vector),

- Adaptative mesh refinement,

- Adding physics in sub-grid.

Good practice are crucial in the
context of global warming :

Over-clocking emission relations.
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FORTRANg @swift
oC++

context of global warming :

» Doing more with less : collaboration Zwart 2020
between performance engineers and "
astrophysics is now crucial! 103
- Accelerators as GPU, o ,.
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Open-science status : parsec simulations

» PLUTO code (C/ C++ / Fortran 20 & MPI) - Mignone et al. 2007.
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Open-science status : kilo-parsec simulations

» FLASH code (Fortran 90 & MPI) - Fryxell et al. 2000.
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https://www.stonybrook.edu/commcms/iacs/research/products/software/the-flash-code

Open-science status : kilo-parsec simulations

» FLASH code (Fortran 90 & MPI) - Fryxell et al. 2000.
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