

From propagation to termination: exploring jet dynamics through numerical simulations

Gaëtan Fichet de Clairfontaine - Workshop on Numerical Multi-messenger Modeling - 22th February 2024

Gaëtan Fichet de Clairfontaine - Workshop on Numerical Multi-messenger Modeling - 22th February 2024

The selection of papers inevitably reflects subjective views and personal *research interests. This review is not exhaustive!*

- Originates from a sub-parsec core region.

-
- Originates from a sub-parsec core region.
- Parsec scale jet with moving / standing features.

- Originates from a sub-parsec core region.
- Parsec scale jet with moving / standing features.

Event Horizon Telescope (Radio)

- Non continuous plasma flow emitting non-thermal emission.

- Collimated outflow up to the kpc even Mpc. - Non continuous plasma flow emitting non-thermal emission.

- Originates from a sub-parsec core region.
- Parsec scale jet with moving / standing features.

- Collimated outflow up to the kpc even Mpc. - Non continuous plasma flow emitting non-thermal emission. - Impact of the jet (feedback) on the local ISM/ICM.

- Originates from a sub-parsec core region.
- Parsec scale jet with moving / standing features.

- Originates from a sub-parsec core region.
- Parsec scale jet with moving / standing features.

- Collimated outflow up to the kpc even Mpc. - Non continuous plasma flow emitting non-thermal emission. - Impact of the jet (feedback) on the local ISM/ICM.

Event Horizon Telescope (Radio)

We will mostly refer to radio observations, as they are a good tracer of the jet morphology.

-
-
-
-
-
-
-
- -

sub-parsec

- Scale : from parsec to kilo-parsec.

sub-parsec

- Scale : from parsec to kilo-parsec.

sub-parsec

sub-parsec parsec

- Scale : from parsec to kilo-parsec.

- Scale : from parsec to kilo-parsec.

- Scale : from parsec to kilo-parsec.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

4

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

- Scale : from parsec to kilo-parsec.
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

- Scale : from parsec to kilo-parsec. *SRMHD*
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.

- Scale : from parsec to kilo-parsec. *SRMHD*
- Nature of the jet : magnetized relativistic plasma.
- Structure of the jet : compression / rarefaction region, lobes, etc.
	- Emission : acceleration of particles, emission processes, etc.

Basis of numerical simulations of jet

√ Set of SR-MHD equations : conservation of

Marti & Muller, 2015

Basis of numerical simulations of jet

√ Set of SR-MHD equations : conservation of mass

 $\partial_t \rho \gamma + \nabla \cdot (\rho \gamma \mathbf{v}) = 0$,

Marti & Muller, 2015

Basis of numerical simulations of jet

√ Set of SR-MHD equations : conservation of mass, energy,

 $\partial_t \rho \gamma + \nabla \cdot (\rho \gamma \mathbf{v}) = 0$,

 $\partial_t \left(w\gamma^2 v^2/2 - p + p_m \right) + \nabla \cdot \left(w\gamma^2 \mathbf{v} + \mathbf{S} \right) = 0$,

Marti & Muller, 2015

✓Set of SR-MHD equations : conservation of mass, energy, and momentum,

$$
\partial_t \rho \gamma + \nabla \cdot (\rho \gamma \mathbf{v}) = 0,
$$

\n
$$
\partial_t (w \gamma^2 v^2 / 2 - p + p_m) + \nabla \cdot (w \gamma^2 \mathbf{v} + \mathbf{S}) = 0,
$$

\n
$$
\partial_t (w \gamma^2 \mathbf{v} + \mathbf{S}) + \nabla \cdot (w \gamma^2 \mathbf{v} \mathbf{v} - (\mathbf{EE} + \mathbf{BB}) c^2 / 4)
$$

where $p_{\rm m} = \left(B^2 + E^2\right)/8\pi$ the electromagnetic pressure, w the relativistic enthalpy, ${\bf S} = ({\bf E}\times{\bf B})\,c/4\pi$ the Poynting flux and g the metric tensor.

vv – (**EE** + **BB**) $c^2/4\pi + (p + p_m)c^2$ **g**) = 0,

Marti & Muller, 2015

✓Set of SR-MHD equations : conservation of mass, energy, and momentum,

$$
\partial_t \rho \gamma + \nabla \cdot (\rho \gamma \mathbf{v}) = 0,
$$

\n
$$
\partial_t (w \gamma^2 v^2 / 2 - p + p_m) + \nabla \cdot (w \gamma^2 \mathbf{v} + \mathbf{S}) = 0,
$$

\n
$$
\partial_t (w \gamma^2 \mathbf{v} + \mathbf{S}) + \nabla \cdot (w \gamma^2 \mathbf{v} \mathbf{v} - (\mathbf{EE} + \mathbf{BB}) c^2 / 4\pi + (p + p_m) c^2 \mathbf{g}) = 0,
$$

Poynting flux and g the metric tensor. And also Maxwell equations,

$$
\partial_t B + \nabla \cdot (\nabla
$$

where $p_{\rm m} = \left(B^2 + E^2\right)/8\pi$ the electromagnetic pressure, w the relativistic enthalpy, ${\bf S} = ({\bf E}\times{\bf B})\,c/4\pi$ the

B + ∇ ⋅ (**vB** − **Bv**) = 0 .

Marti & Muller, 2015

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

◆ 1D, 2D or 3D grid where to solve the coupled equations :

‣ System of coordinates : cylindrical often used.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

✓1D, 2D or 3D grid where to solve the coupled equations :

‣ System of coordinates : cylindrical often used.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

◆ 1D, 2D or 3D grid where to solve the coupled equations :

‣ System of coordinates : cylindrical often used.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : p, v, ρ, B , etc.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : p, v, ρ, B , etc.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

Basis of numerical simulations of jet

◆ Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ⁸ ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.

- ⁸ ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.
- HLL (Harten et al. 1983),
- HLLC (Toro et al. 1984),
- \bullet …

‣ Choice of solver will depend on the nature of the simulations :

- ⁸ ‣ System of coordinates : cylindrical often used.
- \blacktriangleright Initial conditions : $p, \mathbf{v}, \rho, \mathbf{B}$, etc.
- ‣ Specific solver : Godunov scheme in finite volume method.
- HLL (Harten et al. 1983),
- HLLC (Toro et al. 1984),
- \bullet …

‣ Choice of solver will depend on the nature of the simulations :

Basis of numerical simulations of jet

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

✓1D, 2D or 3D grid where to solve the coupled equations with a specific solver.

✓Adaptive mesh refinement.

Refinement if :

$$
E_{\text{rel}}^{n} = \frac{\left| A^{n-1} - A^{n} \right|}{\left| A^{n-1} \right|} > 1
$$

Basis of numerical simulations of jet

✓Set of SR-MHD equations : conservation of mass, energy, momentum and Maxwell equations.

✓1D, 2D or 3D grid where to solve the coupled equations with a specific solver.

✓Adaptive mesh refinement.

Refinement if :

$$
E_{\text{rel}}^{n} = \frac{\left| A^{n-1} - A^{n} \right|}{\left| A^{n-1} \right|} > 1
$$

Special-relativistic MHD **simulations : parsec scales**

Special-relativistic MHD **simulations : parsec scales**

- ‣ pressure mismatch in the jet,
- ‣ Jet opening angle,

Special-relativistic MHD simulations : $\frac{4}{9}$

- ‣ Reproduction of stationary components:
	- ‣ pressure mismatch in the jet,
	- ‣ Jet opening angle,
	- ‣ Properties of shock according to the jet local properties $(B, \vec{v}$, etc.). $\overline{}$

Special-relativistic MHD simulations : $\frac{200}{10^{9}}$

- ‣ Reproduction of stationary components:
	- ‣ pressure mismatch in the jet,
	- ‣ Jet opening angle,
	- ‣ Properties of shock according to the jet local properties $(B, \vec{v}$, etc.). $\overline{}$
- ‣ Variability:
	- ‣ Injection of perturbation at the base of the jet.
	- ‣ KHI / CDI instabilities.

Fichet de Clairfontaine et al. 2022

Special-relativistic MHD simulations :

- ‣ Reproduction of stationary components:
	- ‣ pressure mismatch in the jet,
	- ‣ Jet opening angle,
	- ‣ Properties of shock according to the jet local properties $(B, \vec{v}$, etc.). $\overline{}$
- ‣ Variability:
	- ‣ Injection of perturbation at the base of the jet.
	- ‣ KHI / CDI instabilities.

Matsumoto et al. 2021

 -5.3 3.0 2.5 -2.0 -1.5

Special-relativistic MHD simulations :

- ‣ Reproduction of stationary components:
	- ‣ pressure mismatch in the jet,
	- ‣ Jet opening angle,
	- ‣ Properties of shock according to the jet local properties $(B, \vec{v}$, etc.). $\overline{}$
- ‣ Variability:
	- ‣ Injection of perturbation at the base of the jet.
	- ‣ KHI / CDI instabilities.

Matsumoto et al. 2021

 3.0 2.5 -2.0 - 1.5

 Usually 2D, focus on jet structure in sub/parsec scales and linked with radio features.

Special-relativistic MHD **simulations : kilo-parsec scales**

-
-
- -
	-
	- - - - -
					-
				-
				-
- - -
		-
	-
	-
	-
-
-
-
-
-
- - -
		-
		-
	-
- -
	-
	-
-
-
- -
-
-
- - -
	-
	- -
-
-
- -
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Special-relativistic MHD **simulations : kilo-parsec scales**

- ‣ Morphology and Dynamics of kpcjets:
	- ‣ Reproduction of beam, cocon, terminal shock \rightarrow radio jet / lobes / hot spots,
	- ‣ Effects of magnetic field, jet power, etc.
Special-relativistic MHD **simulations : kilo-parsec scales**

Perucho et al. 2014

- ‣ Morphology and Dynamics of kpcjets:
	- ‣ Reproduction of beam, cocon, terminal shock \rightarrow radio jet / lobes / hot spots,
	- ‣ Effects of magnetic field, jet power, etc.
- ‣ Large-scale simulations:
	- \triangleright FR I/II dichotomy \rightarrow deceleration mechanism, development of instabilities, etc.
	- \triangleright AGN feedback \rightarrow star formation, cooling process, etc.

Special-relativistic MHD **simulations : kilo-parsec scales**

Wagner et al. 2016

- ‣ Morphology and Dynamics of kpcjets:
	- ‣ Reproduction of beam, cocon, terminal shock \rightarrow radio jet / lobes / hot spots,
	- ‣ Effects of magnetic field, jet power, etc.
- ‣ Large-scale simulations:
	- \triangleright FR I/II dichotomy \rightarrow deceleration mechanism, development of instabilities, etc.
	- \triangleright AGN feedback \rightarrow star formation, cooling process, etc.

Special-relativistic MHD **simulations : kilo-parsec scales**

Wagner et al. 2016

- ‣ Morphology and Dynamics of kpcjets:
	- ‣ Reproduction of beam, cocon, terminal shock \rightarrow radio jet / lobes / hot spots,
	- ‣ Effects of magnetic field, jet power, etc.
- ‣ Large-scale simulations:
	- \triangleright FR I/II dichotomy \rightarrow deceleration mechanism, development of instabilities, etc.
	- \triangleright AGN feedback \rightarrow star formation, cooling process, etc.

Usually in 3D, demanding large-scale simulations, and microphysics. Application on jet morphology, galaxy / cluster evolution.

Computational needs

‣ Typical computation time several days (parallelized / optimized code).

Computational needs

 10^4 10⁵ 10⁶ 10⁷ CPU time (Arbitrary Units)

- ‣ Typical computation time several days (parallelized / optimized code).
- ‣ Recent results show the needs of 3D ${\sf simulations: CPU}$ increases as $n^4.$

Computational needs

10³

10⁵

10⁷

 10^{9}

GFLOPS

- ‣ Typical computation time several days (parallelized / optimized code).
- ‣ Recent results show the needs of 3D ${\sf simulations: CPU}$ increases as $n^4.$
- ‣ Computing center capacities are limited by transistors size.

Max Roser, Hannah Ritchie and Edouard Mathieu (2023) - "What is Moore's Law?" Published online at OurWorldInData.org. Retrieved from: 'https:// ourworldindata.org/moores-law'

- ‣ Typical computation time several days (parallelized / optimized code).
- ‣ Recent results show the needs of 3D simulations : CPU increases as *n* . 4
- ‣ Computing center capacities are limited by transistors size.
- Doing more with less : collaboration $\frac{a}{c^2}$ between performance engineers and astrophysics is now crucial!
- Accelerators as GPU,
- Vectorization (ARM Scalable
	-
	- Vector),
	- Adaptative mesh refinement,
- Adding physics in sub-grid.
	-

- ‣ Doing more with less : collaboration between performance engineers and astrophysics is now crucial!
- Accelerators as GPU,
- Vectorization (ARM Scalable
	-
	- Vector),
	- Adaptative mesh refinement,
- Adding physics in sub-grid.
	-

- ‣ Doing more with less : collaboration between performance engineers and astrophysics is now crucial!
- Accelerators as GPU,
- Vectorization (ARM Scalable
	-
	- Vector),
	- Adaptative mesh refinement,
- Adding physics in sub-grid.
	-

Computational needs

- **Doing more with less** : collaboration
between performance engineers and
astrophysics is now crucial!
- Accelerators as GPU,
- Vectorization (ARM Scalable
Vector),
- Adaptative mesh refinement,
- Adding physics in sub-g between performance engineers and astrophysics is now crucial!
- Accelerators as GPU,
- Vectorization (ARM Scalable
	-
	- Vector),
	-
	- Adaptative mesh refinement, Adding physics in sub-grid.
- ‣ Good practice are crucial in the context of global warming :
-
-

0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000

Zwart 2020

Computational needs

- ‣ Doing more with less : collaboration between performance engineers and astrophysics is now crucial!
- Accelerators as GPU,
- Vectorization (ARM Scalable
	-
	- Vector),
	-
	- Adaptative mesh refinement,
- Adding physics in sub-grid.
- ‣ Good practice are crucial in the context of global warming :
-
-
- Over-clocking emission relations.
- Sweet-spot in the number of CPU.
- The right code for the right situation (python is not efficient!).

 $10³$ $10²$ $10⁰$

 10^1

kg.

production

 \mathbf{v}

- between per 0 5
	-
	- Vector),
	- Adaptative g
- Adding ph
	-
- Good practic
-
-
- (python is not efficient!).

Open-science status : *parsec simulations*

-
-
-
-
-
-
- -

Open-science status : *parsec simulations*

▶ [PLUTO](http://plutocode.ph.unito.it) code (C / C++ / Fortran 90 & MPI) - Mignone et al. 2007.

Open-science status : *parsec simulations*

▶ [PLUTO](http://plutocode.ph.unito.it) code (C / C++ / Fortran 90 & MPI) - Mignone et al. 2007.

‣ [MPI-AMRVAC](https://amrvac.org/index.html) code (Fortran 90 & MPI) - Keppens et al. 2002 .

Open-science status : *kilo-parsec simulations*

-
-
-
-
-
-
- -

Open-science status : *kilo-parsec simulations*

‣ [FLASH](https://www.stonybrook.edu/commcms/iacs/research/products/software/the-flash-code) code (Fortran 90 & MPI) - Fryxell et al. 2000.

Open-science status : *kilo-parsec simulations*

- **High flexibility:** Wide range of physics, enabling diverse applications in astrophysics. **•** High-order accuracy: Several high-order numerical schemes for accurate solution of **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **Extensive test suite: Comprehensive set of test** problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics.
- **•** High-order accuracy: Several high-order numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **Extensive test suite:** Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

Steep learning curve: Requires substantial time to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics.
- **•** High-order accuracy: Several high-order numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.
-
- **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- **•** Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics.
- **•** High-order accuracy: Several high-order numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.
-
- **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- **•** Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics.
- **•** High-order accuracy: Several high-order numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.
-
- **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- **•** Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics.
- **•** High-order accuracy: Several high-order numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.
-
- **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- **•** Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics.
- **•** High-order accuracy: Several high-order numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **Extensive test suite:** Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

- **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- **•** Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics.
- **•** High-order accuracy: Several high-order numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **Extensive test suite:** Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

- **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- **•** Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics. **•** High-order accuracy: Several high-order **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics. **•** High-order accuracy: Several high-order **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics. **•** High-order accuracy: Several high-order **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics. **•** High-order accuracy: Several high-order **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics. **•** High-order accuracy: Several high-order **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

- **•** High flexibility: Wide range of physics, enabling diverse applications in astrophysics. **•** High-order accuracy: Several high-order **Steep learning curve: Requires substantial time** to master, especially for users new to computational fluid dynamics or magnetohydrodynamics.
- numerical schemes for accurate solution of SRMHD equations.
- **•** Parallel computing: High-performance computing environments, scaling well on multiple processors (MPI).
- **•** Extensive test suite: Comprehensive set of test problems for SRMHD, ensuring reliability and verification of simulation results. **•** Limited pre- and post-processing tools: need to rely on external tools for data visualization and analysis, adding complexity to the workflow.
- **•** User-friendly: Flexible parameter file for easy setup of simulations, even with complex configurations.

• Resource intensive: High-resolution, threedimensional simulations can be computationally demanding, requiring significant computational resources.

Conclusions : *now and then*

-
-
-
- -
-
-

17

Conclusions : *now and then*

- **✓** Versatility and flexibility of relativistic plasma simulations for AGN jets.
	- **‣**Parsec scale: jet acceleration, collimation, structures, etc.
	- **‣**Large-scale kpc: understanding the ISM/ ICM interplay, jet morphology, galaxy / cluster evolution.
- **✓** Plenty of code, only a few in open-access.
- **✓** GPU era can help to reduce the time to solution.
- **✓** Collaboration between performance engineers and astrophysics is needed.

17

Conclusions : *now and then*

- **✓** Versatility and flexibility of relativistic plasma simulations for AGN jets.
	- **‣**Parsec scale: jet acceleration, collimation, structures, etc.
	- **‣**Large-scale kpc: understanding the ISM/ ICM interplay, jet morphology, galaxy / cluster evolution.
- **✓** Plenty of code, only a few in open-access.
- **✓** GPU era can help to reduce the time to solution.
- **✓** Collaboration between performance engineers and astrophysics is needed.

17

- **‣** Good practice for both developers and users.
- **‣** Managing computing centers : for us and for the Earth.
- **‣** Direct applications on source with right (open-access) post-treatment.
	- ✴ MWL emission and variability,
	- ✴ Polarization,

 $\cancel{\ast}$

✴ Hadronic contribution,

…
-
-
-
- -
-
-
- **‣** Open-science is the key.
- **‣** Good practice for both developers and users.
- **‣** Managing computing centers : for us and for the Earth.
- **‣** Direct applications on source with right (open-access) post-treatment.
	- ✴ MWL emission and variability,
	- ✴ Polarization,

 $\cancel{\ast}$

✴ Hadronic contribution,

…

18

- **‣** Open-science is the key.
- **‣** Good practice for both developers and users.
- **‣** Managing computing centers : for us and for the Earth.
- **‣** Direct applications on source with right (open-access) post-treatment.
	- ✴ MWL emission and variability,
	- ✴ Polarization,

✴ Hadronic contribution,

✴

- **‣** Open-science is the key.
- **‣** Good practice for both developers and users.
- **‣** Managing computing centers : for us and for the Earth.
- **‣** Direct applications on source with right (open-access) post-treatment.
	- ✴ MWL emission and variability,
	- ✴ Polarization,

✴ Hadronic contribution,

✴

Fichet de Clairfontaine et al. 2021, 2022

Conclusions : *now and then*

- **‣** Open-science is the key.
- **‣** Good practice for both developers and users.
- **‣** Managing computing centers : for us and for the Earth.
- **‣** Direct applications on source with right (open-access) post-treatment.
	- ✴ MWL emission and variability,
	- ✴ Polarization,

✴ Hadronic contribution,

Observational time (year)

✴

Vaidya et al. 2018

- **✓** Versatility and flexibility of relativistic plasma simulations for AGN jets.
	- **‣**Parsec scale: jet acceleration, collimation, structures, etc.
	- **‣**Large-scale kpc: understanding the ISM/ ICM interplay, jet morphology, galaxy / cluster evolution.
- **✓** Plenty of code, only a few in open-access.
- **✓** GPU era can help to reduce the time to solution.
- **✓** Collaboration between performance engineers and astrophysics is needed.

19

- **‣** Good practice for both developers and users.
- **‣** Managing computing centers : for us and for the Earth.
- **‣** Direct applications on source with right (open-access) post-treatment.
	- ✴ MWL emission and variability,
	- ✴ Polarization,

 $\cancel{\ast}$

✴ Hadronic contribution,

