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What do we observe ? 

- Collimated outflow up to the kpc even Mpc.

- Non continuous plasma flow emitting non-thermal emission.

- Parsec scale jet with moving / standing features.

- Originates from a sub-parsec core region.

- Impact of the jet (feedback) on the local ISM/ICM.

We will mostly refer to radio observations, as they are a good tracer of  
the jet morphology.
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Why numerical simulations ? 

- Scale : from parsec to kilo-parsec. SRMHD

parsec kilo-parsecsub-parsec

- Nature of the jet : magnetized relativistic plasma. 

- Structure of the jet : compression / rarefaction region, lobes, etc.

- Emission : acceleration of particles, emission processes, etc.

feedback
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✓Set of SR-MHD equations : conservation of mass, energy, and momentum,

∂tργ + ∇ ⋅ (ργv) = 0 ,

∂t (wγ2v2/2 − p + pm) + ∇ ⋅ (wγ2v + S) = 0 ,

∂t (wγ2v + S) + ∇ ⋅ (wγ2vv − (EE + BB) c2/4π + (p + pm) c2g) = 0 ,

where  the electromagnetic pressure,  the relativistic enthalpy,  the 
Poynting flux and  the metric tensor. And also Maxwell equations,

pm = (B2 + E2)/8π w S = (E × B) c/4π
g

∂tB + ∇ ⋅ (vB − Bv) = 0 .
Marti & Muller, 2015
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✓1D, 2D or 3D grid where to solve the coupled equations : 

‣ System of coordinates : cylindrical often used.

‣ Specific solver : Godunov scheme in finite volume  
method.

‣ Initial conditions : p, v, ρ, B, etc .

Ui−1 Ui Ui+1

Δxi

Fi−1/2 Fi+1/2

Δt ≤
Δx

max (csound, calfven, ⋯)Un+1 = Un + Δtn Fi+1/2 − Fi−1/2

Δxi

∂tUn + ∂xiFi (Un) = 0
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method.

‣ Initial conditions : p, v, ρ, B, etc .

2D MHD Alfvèn shock moving against Alfvèn face. MPI-AMRVAC (https://amrvac.org/md_doc_demo_movies.html).

https://amrvac.org/md_doc_demo_movies.html
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Special-relativistic MHD simulations : parsec scales

‣ Reproduction of stationary 
components: 
‣ pressure mismatch in the jet,  
‣ Jet opening angle,
‣ Properties of shock 

according to the jet local 
properties ( , etc.).⃗B , ⃗v

‣ Variability: 
‣ Injection of perturbation at the 

base of the jet. 
‣ KHI / CDI instabilities. 

Matsumoto et al. 2021

 Usually 2D, focus on jet structure in 
sub/parsec scales and linked with 

radio features. 
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Special-relativistic MHD simulations : kilo-parsec scales

Wagner et al. 2016

‣ Morphology and Dynamics of kpc-
jets: 
‣ Reproduction of beam, cocon, 

terminal shock  radio jet / 
lobes / hot spots, 

‣ Effects of magnetic field, jet 
power, etc.

→

‣ Large-scale simulations: 

‣ FR I/II dichotomy  deceleration 
mechanism, development of 
instabilities, etc.  

‣ AGN feedback  star formation, 
cooling process, etc. 

→

→

Usually in 3D, demanding large-scale 
simulations, and microphysics. 
Application on jet morphology, 

galaxy / cluster evolution. 
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‣ Good practice are crucial in the 
context of global warming :  

- Over-clocking emission relations. 
- Sweet-spot in the number of CPU.
- The right code for the right situation 

(python is not efficient!). 

‣ Doing more with less : collaboration 
between performance engineers and 
astrophysics is now crucial!  

- Accelerators as GPU, 
- Vectorization (ARM Scalable 

Vector), 
- Adaptative mesh refinement, 
- Adding physics in sub-grid.

Stevens et al. 2020
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‣ PLUTO code (C / C++ / Fortran 90 & MPI) - Mignone et al. 2007.
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Open-science status : parsec simulations 

‣ PLUTO code (C / C++ / Fortran 90 & MPI) - Mignone et al. 2007.

‣ MPI-AMRVAC code (Fortran 90 & MPI) - Keppens et al. 2002.
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Open-science status : kilo-parsec simulations

‣ FLASH code (Fortran 90 & MPI) - Fryxell et al. 2000.
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Open-science status : kilo-parsec simulations

‣ RAMSES code (Fortran 90 & MPI) - Teyssier et al. 2002.

‣ FLASH code (Fortran 90 & MPI) - Fryxell et al. 2000.
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Open-science status : pros vs cons

• High flexibility: Wide range of physics, enabling 
diverse applications in astrophysics. 

• High-order accuracy: Several high-order 
numerical schemes for accurate solution of 
SRMHD equations. 

• Parallel computing: High-performance 
computing environments, scaling well on 
multiple processors (MPI). 

• Extensive test suite: Comprehensive set of test 
problems for SRMHD, ensuring reliability and 
verification of simulation results. 

• User-friendly: Flexible parameter file for easy 
setup of simulations, even with complex 
configurations.

16

• Steep learning curve: Requires substantial time 
to master, especially for users new to 
computational fluid dynamics or 
magnetohydrodynamics. 

• Resource intensive: High-resolution, three-
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‣Direct applications on source with right 
(open-access) post-treatment.  

✴ MWL emission and variability,  

✴ Polarization, 

✴ Hadronic contribution,  
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