

NEURAL NETWORKS APPLIED TO SPECTRAL MODELING OF AGN JET EMISSION

A. Tzavellas, NKUA Collaborators: G. Vasilopoulos, M. Petropoulou, A. Mastichiadis, S.I. Stathopoulos

Workshop on Numerical Multi-messenger Modeling APC Laboratory, Paris

INTRODUCTION

What is a Blazar?

A supermassive black hole at the center of a galaxy, with powerful jets of material and one of those jets happens to be pointed right at us :o

Why is Blazar study important?

- Study accretion onto supermassive black holes across redshifts
- Offers insight to physics in extreme conditions

HOW ARE BLAZARS STUDIED?

- Combine spectra from different instruments and use Spectral Energy Distributions
- SEDs reveal radiative processes involved
- Requirement for fast numerical models

EXISTING NUMERICAL MODELS

- What are they? e.g. solvers of stiff coupled PDEs
- Computational complexity increases as more radiative processes are introduced
- Leptonic model computation time: a few seconds to a couple of minutes
- Leptohadronic model computation time: ATHEvA¹(~30min) LeHaMoC²(~10min)

SHORTCOMING: Cannot use with Markov Chain Monte Carlo

- 1 <u>ATHEVA</u>
- 2 <u>LeHaMoC</u>

NEURAL NETWORKS AND APPLICATIONS

- 1. Facial recognition
- 2. Speech recognition
- 3. Recommendation engines (Netflix)
- 4. Healthcare Medical image analysis
- 5. Biology Emulate mechanism-based biological models
- 6. Finance Market prediction
- 7. Self-driving cars
- 8. Image and music generation
- 9. Large Language Models (Chat GPT)

RESEARCH AIM

Replace a numerical model with a Neural Network

- Proof-of-concept: replace an average complexity model with a trained neural network
- 2. Evaluate trained model

WHAT IS A NEURAL NETWORK?

Numerical constructs whose "name and structure are inspired by the human brain, mimicking the way that biological neurons signal to one another"¹

Stack of Neurons: Hidden Layer

Stack of Hidden Layers: Neural Network

Artificial Neuron (ANN cell): For input $X = (x_1, ..., x_n)$, apply dot product with $W = (w_1, ..., w_n)$ and pass result to activation function ϕ . The output is fed to the next layer.

1 <u>IBM</u>

2 Image Credit Top picture: <u>Dive into Deep</u>

RECURRENT NEURAL NETWORKS

- Possess loops that allow information persistence ("memory" of past inputs)
- Suited for tasks like time-series prediction
- 3 types of RNN cells: simple Recurrent Neuron (Vanilla), Gated Recurrent Unit (GRU), Long-Short Term Memory (LSTM)
- Vanilla: Useful for understanding the concept, impractical due to unstable gradient during training

NEURAL NETWORK CONCEPTS

- Activation Function φ: A mathematical function applied to the output of a neuron in a neural network. e.g. ReLU(x) = max(0, x).
- Loss Function: Measures the difference between the predicted output of a neural network and the actual desired output. e.g. MSE, MAE, RMSLE
- **Training:** Forward-pass, Loss Calculation, Back-propagation, Rinse and Repeat!
- **Optimization Algorithm (GD)**: calculates gradients numerically, possible numerical instabilities (vanishing/exploding gradients)

WHAT DID WE DO?

- 1. Choose Machine-Learning Framework: Tensorflow
- 2. Create a sufficiently large dataset
- 3. Train several NNs of different architectures (number of hidden layers, number of neurons per layer, neuron types, etc.)
- 4. Compare the best candidates and reveal the optimal
- 5. Evaluate the optimal model

DATASET CREATION

- Use a theoretical model to generate AGN spectra: ATHEVA
- For a leptonic model, six input parameters are required
- Sample the six input parameter space
- Decide on the number of samples (~10k)
- For each sample, use theoretical model to generate its spectrum
- Interpolate the spectrum: 500 points
- Store sample & spectrum as a dataset entry

NEURAL NETWORK ARCHITECTURE

- Explore 3 types of neurons: ANN, GRU, LSTM
- Define Hyper-parameters: neurons per layer, number of layers, learning rate, batch size
- For each neuron type, tune Hyper-parameters to find a sub-optimal network of that type.

Parameter	Range		
Hidden Layers	[4, 7]		
Neurons per Layer	[64, 256]		
Learning Rate	$(10^{-5}, 10^{-2})$		
Batch Size	$\{32, 64, 128, 256$		

TUNING OF HYPER-PARAMETERS

- Tuning involves running a search algorithm.
- Possible

 algorithms: Grid
 Search, Random
 Search, Bayesian
 Optimization
- All exist in Tensorflow

COMPARISON OF THE BEST CANDIDATES

For a test sample of 100 cases

- Apply a measure of dissimilarity between the predicted SED and the theoretical. The smaller the metric the better the match.
- Rank the candidates based on the metric.
- Metrics used: DTW, MSE, KST, EMD

14

ATHEVA MODEL VS NN - VISUAL COMPARISON

ATHEVA MODEL VS NN - VISUAL COMPARISON 2

TEST: RECOVERING PARAMETERS FROM SIMULATED SPECTRA

- Generate a simulated SED (25 points) using ATHEvA.
- Add Gaussian noise of std 0.1 to the logarithmic flux values (variability)
- Choose points to represent Radio, UV, X-ray and $\gamma\text{-ray}$ bands.
- Use the NN model to recover the parameters of the simulated SED

RECOVERED SPECTRA - PLOTS

RECOVERED SPECTRA - VALUES

	Case 1		Case 2	
Parameter [unit]	True	Fit	True	Fit
$\log R$ [cm]	16.60	$16.04^{+0.61}_{-0.97}$	15.42	$14.78^{+0.66}_{-0.53}$
$\log B$ [G]	-0.34	$-0.49\substack{+0.36\\-0.37}$	-0.12	$0.24_{-0.38}^{+0.38}$
$\log \gamma_{min}$	3.37	$3.13\substack{+0.35\\-0.24}$	2.31	$2.20^{+0.31}_{-0.26}$
$\log \gamma_{max}$	5.55	$5.51_{-0.19}^{+0.25}$	4.76	$5.57^{+1.07}_{-0.98}$
$\log \ell_e$	-4.57	$-5.08\substack{+0.40\\-0.49}$	-1.82	$-1.83\substack{+0.46\\-0.29}$
p	2.20	$2.76_{-0.34}^{+0.17}$	2.62	$2.64_{-0.22}^{+0.20}$
δ	1	$1.3\substack{+0.2\\-0.2}$	1	$1.00\substack{+0.16\\-0.14}$

TEST: RECOVERING PARAMETERS FROM OBSERVED SPECTRA

Use blazar HSP J095507.9+355101 as test case. Why?

- \circ Combines measurements with small errors at lower energies with several upper limits in the $\gamma\text{-}rays$
- \circ $\,$ Same source modeled with LeHaMoC $\,$

	ATHE VA	LeHaMoC	GRU NN
Single SSC model	1-4 min	2-3 s	3 ms
emcee*	-	20 d	20 min
UltraNest	-	_	21 hr

* For 48 walkers and 10,000 steps for each chain.

COMPARISON WITH LEHAMOC+EMCEE

CONCLUSIONS - FUTURE WORK

- GRU NN performed better than ANN and LSTM.
- Leptonic (SSC) NN achieves ~ms computational times!
- Train a leptonic NN including more physical processes:
 o external Compton scattering,
 - SSA
 - \circ $\gamma\gamma$ pair production
- Train a lepto-hadronic NN with LeHaMoC or ATHEvA

Links: Github, arXiv: 2311.06181, accepted in A&A

QUESTIONS?

DIFFERENCES WITH BÉGUÉ ET ALL (2023)

- Use Convolutional Network neurons
- Different mix in the output (not just SED values, but also finite differences)

DTW

