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Simulator  Of   Processes  in  Relativistic  AstroNomical  
Objects (SOPRANO)

• A new python & C based fully time-dependent numerical self-consistent code 

• Python interface (easy to use)

•  Most of heavy iterations are executed through C

• Modular structure, i.e. new processes can be easily added (or removed)

• Preserves conservational properties (energy-always, particle number-when 
required)
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Q: sink term 
S: source term 
C: cooling term
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Kinetic Equations

Extreme parameters are required: ,  etc. 𝐄𝐩 >  𝟏𝟎𝟏𝟗𝐞𝐕 𝐁 >  𝟑𝟎 𝐆  



Numerical Discretization 

• Assumes homogeneous space 

• Utilizes isotropic particle distributions

Core Principles

 Temporal discretization  Energy discretization 
• Implements Discontinuous Galerkin  

     method (1st order) 

• Guarantees particle number conservation

• Manages processes across diverse timescales 

• Employs implicit time discretization for 

     stability
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Energy Grid Construction: 

• Logarithmically spaced for precision across ranges. 
• Specific cell allocations for photons, leptons, hadrons, and neutrinos. 
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Distribution Functions: 

• Each energy cell employs polynomial approximations. 
• First-order Legendre polynomials are the basis function of choice. 



Energy Discretization 

Energy Grid Construction: 

• Logarithmically spaced for precision across ranges. 
• Specific cell allocations for photons, leptons, hadrons, and neutrinos. 

Conservation and Integration: 

• Finite volume method ensures accurate particle number conservation 
• Integrates particle fluxes across energy cell boundaries 
•      Enforces energy conservation through strategic flux choices for diffusion-like terms and redistribution
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• Adaptive Gauss-Kronrod Method 
• More then 1M integrals 
• Overall computation takes few months 
• Computed once and got tabulated

σIKJ ≡ ∫I ∫J ∫K
σ(νI, γK → νJ)dνIdνJdγK{
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Time Discretization 
Temporal Challenges: 

• Diverse timescales in blazar processes require sophisticated temporal management 

Implicit Time Discretization: 

• Ensures numerical stability across varying process timescales 

• All leptonic processes are solved with implicit methods for enhanced stability 

•     Non-linearity from Compton scattering and pair production addressed with Newton-Raphson method



Time Discretization 

Semi-Implicit Scheme for Hadrons: 

• The backward Euler method is adapted for photo-pion production 

• Treats hadronic processes implicitly, photon spectrum explicitly 

•     Requires careful time step selection to accurately represent photo-pair and photo-pion interaction rates 

Modeling Advantages: 

• Linearizes hadron equations, isolating them from the rapid changes in the photon field 

• Crucial for accurate simulations when photon-related timescales are significantly shorter

Temporal Challenges: 

• Diverse timescales in blazar processes require sophisticated temporal management 

Implicit Time Discretization: 

• Ensures numerical stability across varying process timescales 

• All leptonic processes are solved with implicit methods for enhanced stability 

•     Non-linearity from Compton scattering and pair production addressed with Newton-Raphson method
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Energy and Number Conservation 

✓ The decay time is properly respected

✓  Particle and energy conserved up to machine precision

Temporal evolution of the particle number conservation  
and energy conservation.  

Evolution of the pion, neutrino and muon numbers as a 
function of time for the pion decay process



APPLICATIONS



SOPRANO's Insights on  
Neutrino-Candidate Blazars

• SOPRANO Modeling: Utilized for multi-messenger data analysis of neutrino-candidate blazars 

• Key Targets: Focused on TXS 0506+056, 3HSP J095507.9+355101, 3C 279, and PKS 0735+178 

• Research Impact: Resulted in several publications, contributing to the astrophysical community's understanding 

• Highlight on TXS 0506+056: A recap of SOPRANO's findings on this particularly intriguing blazar



The Model



The Model

Modeling Scenarios: 
• Hadronic scenario: Dominated by proton synchrotron radiation 
• Lepto-hadronic scenario: Includes emissions from secondary pairs



The Model

Modeling Scenarios: 
• Hadronic scenario: Dominated by proton synchrotron radiation 
• Lepto-hadronic scenario: Includes emissions from secondary pairs

Simulation Environment: 
• Single spherical emission zone with constant Lorentz factor 
• Uniform magnetic field mirroring astrophysical jet conditions



The Model

Modeling Scenarios: 
• Hadronic scenario: Dominated by proton synchrotron radiation 
• Lepto-hadronic scenario: Includes emissions from secondary pairs

Simulation Environment: 
• Single spherical emission zone with constant Lorentz factor 
• Uniform magnetic field mirroring astrophysical jet conditions

Particle Injection: 

• Protons: Power-law distribution with exponential cutoff 
• Electrons: Single power-law spectrum



The Model

Tracking Particle Evolution: 

• Assumes escape time equals dynamical time scale for all particles 
• Evolves kinetic equations across several time scales to reach a steady state

Modeling Scenarios: 
• Hadronic scenario: Dominated by proton synchrotron radiation 
• Lepto-hadronic scenario: Includes emissions from secondary pairs

Simulation Environment: 
• Single spherical emission zone with constant Lorentz factor 
• Uniform magnetic field mirroring astrophysical jet conditions

Particle Injection: 

• Protons: Power-law distribution with exponential cutoff 
• Electrons: Single power-law spectrum



TXS 0506+056: 2017 event

Lepto- 
hadronic

Hadronic

Expected neutrino number : 0,23-0,43



TXS 0506+056: 2014-15 flare
Hadronic

Lepto-
hadronic

Expected neutrino number : 3-3,3
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High Redshift Blazars and SOPRANO 

• Modeling Scenarios: 

        Leptonic Model for average state analysis 

        Lepto-Hadronic Model for flaring state insights  

• Source Selection: Analysis of 79 Fermi-detected blazars  

        (64 FSRQs, 9 BL Lacs, 6 BCUs) with redshis 2.0 to 2.5 

• Data Selection:  Over 14.5 years of Fermi-LAT, Swi XRT, 

      Swi UVOT,  and NuSTAR data
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Leptonic Model

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273 

Gamma-ray Band: 
• Flux spans from                               to  
• Photon index between 1.66 and 3.15 
• Illustrate diverse characteristics 

Luminosity: 
• Ranges from                            to 
• Among the most brightest blazars detected in the 𝛾-ray band  

Flux Variability: 
• Observed in 31 sources, most pronounced in 4C+01.02,  

       4C +71.07 

Modeling with SSC/EIC scenario: 
• Used to interpret multiwavelength SEDs 
• Provides a view of emissions in average state 

Jet and Disk Luminosity: 
• Jet luminosity between                            and  
• Disk luminosity from                             to                           

5.32 × 10−10 3.40 × 10−7

3.67 × 1046 6.62 × 1048

3.20 × 1044 6.51 × 1045erg s−1

4.15 × 1044 3.97 × 1047

photon cm−2s−1

erg s−1

erg s−1



4C+01.02



Lepto-Hadronic: 4C+01.02

preliminar

Nu 0.07/year 
Nu_100TeV 0.07/year

preliminary MJD 59836 - 59854



4C+71.07



Lepto-Hadronic: 4C+71.07

preliminary

preliminaryMJD 55919 - 55920

Nu 16/year 
Nu_100TeV 0.9/year



Lepto-Hadronic: PKS 1430-178

MJD 56827 - 56878

preliminary

preliminary



Lepto-Hadronic: PKS 0227-369

MJD 54728 - 54748

preliminary

preliminary



Future Directions with SOPRANO

• Special Highlight: For an in-depth exploration of these advancements, Damien will detail this innovative approach in his talk.

• SOPRANO's New Frontier: Introduction of a Convolutional Neural Network (CNN) trained  

       on SOPRANO outputs for real-time SED fitting, significantly enhancing speed

• Accessibility: Available for public use via the Markarian Multiwavelength Datacenter  

      (MMDC). For access, visit www.mmdc.am

• Future Directions: Plans to extend capabilities by incorporating hadronic processes for broader analysis

• Leptonic Model Validation: Validated approach includes particle cooling  

      considerations within the leptonic model framework

Bégué D., et al, 2023, arxiv:2311.02979

http://www.mmdc.am/



