SOPRANO's Symphony: **Decoding Blazar Emissions** in the Multimessenger Era

S. Gasparyan, D. Bégué, N. Sahakyan

Content

- Intro to SOPRANO
- Lepto-Hadronic Processes: Kinetics
- Discretization in SOPRANO
- High Redshift Blazars and SOPRANO
- Future Directions with SOPRANO

Guthon

• A new python $\&$ C based fully time-dependent numerical self-consistent code

-
- Python interface (easy to use)

• A new python $\&C$ based fully time-dependent numerical self-consistent code

-
- Python interface (easy to use)
- Most of heavy iterations are executed through C

• A new python $\&$ C based fully time-dependent numerical self-consistent code

-
- Python interface (easy to use)
- Most of heavy iterations are executed through C
- Modular structure, i.e. new processes can be easily added (or removed)

• A new python $\&$ C based fully time-dependent numerical self-consistent code

- A new python & C based fully time-dependent numerical self-consistent code
- Python interface (easy to use)
- Most of heavy iterations are executed through C
- Modular structure, i.e. new processes can be easily added (or removed)
- Preserves conservational properties (energy-always, particle number-when required)

Lepto-Hadronic Processes

proton synchrotron

Leptonic

Electron synchrotron

Inverse Compton scattering

Photon-photon pair production

Electron-positron annihilation

A and **B** are **any other particles produced within the interaction**

i

$$
\frac{\partial N_p}{\partial t} = C_{py \to p\pi} + C_{py \to e^+e^-} + C_{\text{synch}} - S_{\gamma p \to n\pi} + Q_{\gamma n \to p\pi}
$$
\n
$$
\frac{\partial N_n}{\partial t} = -S_{n\gamma \to p\pi} + Q_{p\gamma \to n\pi} + C_{n\gamma \to n\pi}
$$
\n
$$
\frac{\partial N_{\pi_{\pm}}}{\partial t} = Q_{p\gamma \to \pi} + Q_{n\gamma \to \pi} - S_{\pi} + C_{\text{synch}}
$$
\n
$$
\frac{\partial N_\mu}{\partial t} = Q_{\pi_{\pm}} - S_{\mu} + C_{\text{synch}}
$$
\n
$$
\frac{\partial N_{\nu,\zeta}}{\partial t} = Q_{\pi_{\pm}} + Q_{\mu}
$$
\n
$$
\frac{\partial N_{e^{\pm}}}{\partial t} = Q_{\mu} + Q_{p\gamma \to e^+e^-} + Q_{\gamma\gamma \to e^+e^-}C_{\text{IC}} + C_{\text{synch}}
$$
\n
$$
\frac{\partial n_{\text{ph}}}{\partial t} = -S_{\gamma\gamma \to e^+e^-} + Q_{\pi_0} + R_{\text{IC}} + \sum_{i} Q_{\text{synch}}^{i}
$$

Kinetic Equations

k term rce term **Cing term**

Numerical Discretization

- Assumes homogeneous space
-

• Utilizes isotropic particle distributions

Core Principles

Energy discretization Temporal discretization

- Implements Discontinuous Galerkin method (1st order)
- Guarantees particle number conservation

- Manages processes across diverse timescales
- Employs implicit time discretization for stability

-
-
-
- - -
		-
		- -

Energy Grid Construction:

- Logarithmically spaced for precision across ranges.
- Specific cell allocations for photons, leptons, hadrons, and neutrinos.

- Logarithmically spaced for precision across ranges.
- Specific cell allocations for photons, leptons, hadrons, and neutrinos.

Energy Grid Construction:

Energy Grid Construction:

- Logarithmically spaced for precision across ranges.
- Specific cell allocations for photons, leptons, hadrons, and neutrinos.

Distribution Functions:

- Each energy cell employs polynomial approximations.
- First-order Legendre polynomials are the basis function of choice.

Energy Grid Construction:

- Logarithmically spaced for precision across ranges.
- Specific cell allocations for photons, leptons, hadrons, and neutrinos.

Conservation and Integration:

- Finite volume method ensures accurate particle number conservation
- Integrates particle fluxes across energy cell boundaries
- Enforces energy conservation through strategic flux choices for diffusion-like terms and redistribution

Distribution Functions:

- Each energy cell employs polynomial approximations.
- First-order Legendre polynomials are the basis function of choice.

-
-
-
-
-
-
-
- -
	-
-
-
-
-
-
-
-
-
- -
- - -
-
-
-
-
-
-
-
-
- - - -
-
-
- -
	-
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

$$
\frac{\partial n_{\text{ph}}}{\partial t}(x_2) = \int_{\gamma} \int_{x_1} d\gamma dx_1 d\gamma dx_2
$$

$$
-n_{\text{ph}}(x_2) \int_{\gamma} \int_{x_1}
$$

 $dx_1R(\gamma, x_1 \rightarrow x_2)N_{e^{\pm}}(\gamma)n_{ph}(x_1)$

 $d\gamma dx_1 R(\gamma, x_2 \rightarrow x_1)N_{e^{\pm}}(\gamma)$

$$
\frac{\partial n_{\text{ph}}}{\partial t}(x_2) = \int_{\gamma} \int_{x_1} d\gamma d\vec{z}
$$

$$
-n_{\text{ph}}(x_2) \int_{\gamma}.
$$

 ∂n_ph^J ∂*t* = 1 $\overline{||J||}$ \angle *k* ∑ *I*<*J* $N_{\rm e}^k$ ||*K*|| $n_{\rm ph}^{I}$ ||*I*|| $\sigma_{IKJ} - \frac{n_{\rm p}^J}{1+I}$ ph $\overline{||J||} \L_{\nu}$ *k* $N_{\rm e}^k$ $\overline{||K||} \sum_{l>J}$ *I*>*J σJKI* \int_{γ} \int_{x_1} $d\gamma dx_1 R(\gamma, x_2 \rightarrow x_1)N_{e^{\pm}}(\gamma)$

 $dx_1R(\gamma, x_1 \rightarrow x_2)N_{e^{\pm}}(\gamma)n_{ph}(x_1)$

$$
\frac{\partial n_{\text{ph}}^J}{\partial t} = \frac{1}{\sqrt{||J||}} \sum_k \sum_{I < J} \frac{N_{\text{e}}^k}{\sqrt{||K||}} \frac{n_{\text{p}}^I}{\sqrt{||K||}}
$$
\n
$$
\sigma_{IKJ} \equiv \int_I \int_J \int_K \sigma(\nu_I, \gamma_K \to \nu_J) d\nu_I d\nu_J d\gamma_K
$$

 $dx_1R(\gamma, x_1 \rightarrow x_2)N_{e^{\pm}}(\gamma)n_{ph}(x_1)$

 $n_{\rm ph}^{I}$ ||*I*|| $\sigma_{IKJ} - \frac{n_{\rm p}^J}{1+I}$ ph $\overline{||J||} \L_{\nu}$ *k* $N_{\rm e}^k$ $\overline{||K||} \sum_{l>J}$ *I*>*J σJKI* \int_{γ} \int_{x_1} $d\gamma dx_1 R(\gamma, x_2 \rightarrow x_1)N_{e^{\pm}}(\gamma)$

$$
\frac{\partial n_{\text{ph}}}{\partial t}(x_2) = \int_{\gamma} \int_{x_1} d\gamma d\mathbf{r}
$$

$$
-n_{\text{ph}}(x_2) \int_{\gamma}.
$$

$$
\frac{\partial n_{\text{ph}}}{\partial t}(x_2) = \int_{\gamma} \int_{x_1} d\gamma d\mathbf{r}
$$

$$
-n_{\text{ph}}(x_2) \int_{\gamma}.
$$

$$
\frac{\partial n_{\text{ph}}^J}{\partial t} = \frac{1}{\sqrt{||J||}} \sum_k \sum_{I < J} \frac{N_{\text{e}}^k}{\sqrt{||K||}} \frac{n_{\text{p}}^I}{\sqrt{||K||}}
$$
\n
$$
\sigma_{IKJ} \equiv \int_I \int_J \int_K \sigma(\nu_I, \gamma_K \to \nu_J) d\nu_I d\nu_J d\gamma_K
$$

 $dx_1R(\gamma, x_1 \rightarrow x_2)N_{e^{\pm}}(\gamma)n_{ph}(x_1)$

 $n_{\rm ph}^{I}$ ||*I*|| $\sigma_{IKJ} - \frac{n_{\rm p}^J}{1+I}$ ph $\overline{||J||} \L_{\nu}$ *k* $N_{\rm e}^k$ $\overline{||K||} \sum_{l>J}$ *I*>*J σJKI* \int_{γ} \int_{x_1} $d\gamma dx_1 R(\gamma, x_2 \rightarrow x_1)N_{e^{\pm}}(\gamma)$

- Adaptive Gauss-Kronrod Method
- More then 1M integrals
- Overall computation takes few months
- Computed once and got tabulated

Time Discretization

Time Discretization

Temporal Challenges:

- Ensures numerical stability across varying process timescales
- All leptonic processes are solved with implicit methods for enhanced stability
- Non-linearity from Compton scattering and pair production addressed with Newton-Raphson method

• Diverse timescales in blazar processes require sophisticated temporal management

Implicit Time Discretization:

Time Discretization

Semi-Implicit Scheme for Hadrons:

- The backward Euler method is adapted for photo-pion production
- Treats hadronic processes implicitly, photon spectrum explicitly
- Requires careful time step selection to accurately represent photo-pair and photo-pion interaction rates

Modeling Advantages:

- Ensures numerical stability across varying process timescales
- All leptonic processes are solved with implicit methods for enhanced stability
- Non-linearity from Compton scattering and pair production addressed with Newton-Raphson method

- Linearizes hadron equations, isolating them from the rapid changes in the photon field • Crucial for accurate simulations when photon-related timescales are significantly shorter
-

Temporal Challenges:

• Diverse timescales in blazar processes require sophisticated temporal management

Implicit Time Discretization:

-
-
-
-
-
-
-
- - -

SOPRANO's Insights on Neutrino-Candidate Blazars

• **SOPRANO Modeling:** Utilized for multi-messenger data analysis of neutrino-candidate blazars

• **Key Targets:** Focused on TXS 0506+056, 3HSP J095507.9+355101, 3C 279, and PKS 0735+178

• **Research Impact:** Resulted in several publications, contributing to the astrophysical community's understanding

• **Highlight on TXS 0506+056:** A recap of SOPRANO's findings on this particularly intriguing blazar

Modeling Scenarios:

- Hadronic scenario: Dominated by proton synchrotron radiation
- Lepto-hadronic scenario: Includes emissions from secondary pairs

Modeling Scenarios:

- Hadronic scenario: Dominated by proton synchrotron radiation
- Lepto-hadronic scenario: Includes emissions from secondary pairs

Simulation Environment:

- Single spherical emission zone with constant Lorentz factor
- Uniform magnetic field mirroring astrophysical jet conditions

Modeling Scenarios:

- Hadronic scenario: Dominated by proton synchrotron radiation
- Lepto-hadronic scenario: Includes emissions from secondary pairs

Simulation Environment:

- Protons: Power-law distribution with exponential cutoff
- Electrons: Single power-law spectrum
- Single spherical emission zone with constant Lorentz factor
- Uniform magnetic field mirroring astrophysical jet conditions

Particle Injection:

Tracking Particle Evolution:

- Assumes escape time equals dynamical time scale for all particles
- Evolves kinetic equations across several time scales to reach a steady state

Modeling Scenarios:

- Hadronic scenario: Dominated by proton synchrotron radiation
- Lepto-hadronic scenario: Includes emissions from secondary pairs

- Protons: Power-law distribution with exponential cutoff
- Electrons: Single power-law spectrum

Simulation Environment:

- Single spherical emission zone with constant Lorentz factor
- Uniform magnetic field mirroring astrophysical jet conditions

Particle Injection:

TXS 0506+056: 2017 event

TXS 0506+056: 2014-15 flare

۰

High Redshift Blazars and SOPRANO

• **Source Selection:** Analysis of 79 Fermi-detected blazars $(64$ FSRQs, 9 BL Lacs, 6 BCUs) with redshifts 2.0 to 2.5

High Redshift Blazars and SOPRANO

• **Source Selection:** Analysis of 79 Fermi-detected blazars $(64$ FSRQs, 9 BL Lacs, 6 BCUs) with redshifts 2.0 to 2.5

• **Data Selection:** Over 14.5 years of Fermi-LAT, Swift XRT, Swift UVOT, and NuSTAR data

High Redshift Blazars and SOPRANO

• **Modeling Scenarios:**

• **Source Selection:** Analysis of 79 Fermi-detected blazars $(64$ FSRQs, 9 BL Lacs, 6 BCUs) with redshifts 2.0 to 2.5

• **Data Selection:** Over 14.5 years of Fermi-LAT, Swift XRT, Swift UVOT, and NuSTAR data

 Leptonic Model for average state analysis Lepto-Hadronic Model for flaring state insights

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

.76 24.۱ .12 .43 l.71 .56 $.40$ $.50$ $.13$ 1.43 .04 0.20 .09 .63 .54 .86 .33 0.03 .69 .14 .96 .67 .27 .85 .04 .13 $.05$.43 .40 .46 $.88$.90 .22 .88 03 .25 .19 13. .90 0.51 .21 1.95

.29

L_p

0.39 0.70 0.62 0.45 0.34 0.25 0.42 0.21 0.19 0.39 0.34 3.16 1.00 0.93 0.05 0.45 0.40 0.59 0.19 0.62 4.23 0.45 0.20 0.91 0.18 0.21 0.34 1.42 0.87 0.19 0.46 0.25 0.42 0.41 0.35 0.42 1.88 0.27 0.27 1.01 0.32 0.49 0.12 0.19 0.52 0.10

Gamma-ray Band:

- Flux spans from 5.32×10^{-10} to 3.40×10^{-7} photon $cm^{-2}s^{-1}$
- Photon index between 1.66 and 3.15
- Illustrate diverse characteristics

Luminosity:

- Ranges from 3.67×10^{46} to 6.62×10^{48} erg s⁻¹
- Among the most brightest blazars detected in the γ -ray band

Flux Variability:

• Observed in 31 sources, most pronounced in 4C+01.02, $4C + 71.07$

Modeling with SSC/EIC scenario:

- Used to interpret multiwavelength SEDs
- Provides a view of emissions in average state

Jet and Disk Luminosity:

- Jet luminosity between 3.20×10^{44} and 6.51×10^{45} erg s⁻¹
- Disk luminosity from 4.15×10^{44} to 3.97×10^{47} erg s⁻¹

4C+01.02

Lepto-Hadronic: 4C+01.02

4C+71.07

Lepto-Hadronic: 4C+71.07

- $\gamma_{p,\textrm{max}}$ $\gamma_{e,\text{min}}$ $\gamma_{e,\rm max}$ $L_e\,$ 6.8 L_p 1.6 L_B
	-

Lepto-Hadronic: PKS 1430-178

 $7.1e48$ erg/s $2.3e49$ erg/s

Lepto-Hadronic: PKS 0227-369

Future Directions with SOPRANO

- **SOPRANO's New Frontier:** Introduction of a Convolutional Neural Network (CNN) trained on SOPRANO outputs for real-time SED fitting, significantly enhancing speed
- **Leptonic Model Validation:** Validated approach includes particle cooling considerations within the leptonic model framework
- **Accessibility:** Available for public use via the Markarian Multiwavelength Datacenter (MMDC). For access, visit www.mmdc.am
- **Future Directions:** Plans to extend capabilities by incorporating hadronic processes for broader analysis
- **Special Highlight:** For an in-depth exploration of these advancements, Damien will detail this innovative approach in his talk.

THANK YOU FOR YOUR ATTENTION

