SOPRANO's Symphony: Decoding Blazar Emissions in the Multimessenger Era

S. Gasparyan, D. Bégué, N. Sahakyan

- Intro to SOPRANO
- Lepto-Hadronic Processes: Kinetics
- Discretization in SOPRANO
- High Redshift Blazars and SOPRANO
- Future Directions with SOPRANO

Content

ython

• A new python & C based fully time-dependent numerical self-consistent code

- Python interface (easy to use)

• A new python & C based fully time-dependent numerical self-consistent code

- Python interface (easy to use)
- Most of heavy iterations are executed through C

• A new python & C based fully time-dependent numerical self-consistent code

- A new python & C based fully time-dependent numerical self-consistent code
- Python interface (easy to use)
- Most of heavy iterations are executed through C
- Modular structure, i.e. new processes can be easily added (or removed)

- A new python & C based fully time-dependent numerical self-consistent code
- Python interface (easy to use)
- Most of heavy iterations are executed through C
- Modular structure, i.e. new processes can be easily added (or removed)
- Preserves conservational properties (energy-always, particle number-when required)

Lepto-Hadronic Processes

proton synchrotron

Electron synchrotron

Inverse Compton scattering

Photon-photon pair production

Electron-positron annihilation

A and **B** are any other particles produced within the interaction

Kinetic Equations

$$\frac{\partial N_{p}}{\partial t} = C_{p\gamma \to p\pi} + C_{p\gamma \to e^{+}e^{-}} + C_{\text{synch}} - S_{\gamma p \to n\pi} + Q_{\gamma n \to p\pi}$$

$$\frac{\partial N_{n}}{\partial t} = -S_{n\gamma \to p\pi} + Q_{p\gamma \to n\pi} + C_{n\gamma \to n\pi}$$

$$\frac{\partial N_{\pi_{\pm}}}{\partial t} = Q_{p\gamma \to \pi} + Q_{n\gamma \to \pi} - S_{\pi} + C_{\text{synch}}$$

$$\frac{\partial N_{\mu}}{\partial t} = Q_{\pi_{\pm}} - S_{\mu} + C_{\text{synch}}$$

$$\frac{\partial N_{\nu,\zeta}}{\partial t} = Q_{\pi_{\pm}} + Q_{\mu}$$

$$\frac{\partial N_{e^{\pm}}}{\partial t} = Q_{\mu} + Q_{p\gamma \to e^{+}e^{-}} + Q_{\gamma\gamma \to e^{+}e^{-}}C_{\text{IC}} + C_{\text{synch}}$$

$$\frac{\partial n_{\text{ph}}}{\partial t} = -S_{\gamma\gamma \to e^{+}e^{-}} + Q_{\pi_{0}} + R_{\text{IC}} + \sum_{i} Q_{\text{synch}}^{i}$$

k term rce term oling term

Numerical Discretization

Core Principles

- •
- ٠

Energy discretization

- Implements Discontinuous Galerkin ٠ method (1st order)
- Guarantees particle number conservation

Assumes homogeneous space

Utilizes isotropic particle distributions

Temporal discretization

- Manages processes across diverse timescales
- Employs implicit time discretization for stability

Energy Grid Construction:

- Logarithmically spaced for precision across ranges. \bullet
- Specific cell allocations for photons, leptons, hadrons, and neutrinos. •

Energy Grid Construction:

- Logarithmically spaced for precision across ranges.
- Specific cell allocations for photons, leptons, hadrons, and neutrin

	Particle	Number of cells	Minimum energy	Maximum energy
	Photons :	150	$\nu = 10^{-2} \mathrm{Hz}$	$\nu = 10^{30}~{\rm Hz}$
	Leptons :	130	$\gamma_{\rm e^\pm}=1.2$	$\gamma_{\rm e^\pm}5\times10^{13}$
nos.	Hadrons :	100	$\gamma_h = 1.2$	$\gamma_h = 10^{11}$
	Neutrinos :	100	$E_{\nu} = 10^{-3} \text{ GeV}$	$E_{\nu} = 10^{11} \text{ Gev}$

Energy Grid Construction:

- Logarithmically spaced for precision across ranges. \bullet
- Specific cell allocations for photons, leptons, hadrons, and neutrinos. \bullet

Distribution Functions:

- Each energy cell employs polynomial approximations. •
- First-order Legendre polynomials are the basis function of choice. •

Particle	Number of cells	Minimum energy	Maximum energy
Photons :	150	$\nu = 10^{-2} \mathrm{Hz}$	$\nu = 10^{30}~{\rm Hz}$
Leptons :	130	$\gamma_{\rm e^\pm}=1.2$	$\gamma_{\rm e^\pm}5\times10^{13}$
Hadrons :	100	$\gamma_h = 1.2$	$\gamma_h = 10^{11}$
Neutrinos :	100	$E_{\nu} = 10^{-3} \text{ GeV}$	$E_{\nu} = 10^{11} \text{ Gev}$

Energy Grid Construction:

- Logarithmically spaced for precision across ranges. \bullet
- Specific cell allocations for photons, leptons, hadrons, and neutrinos. \bullet

Distribution Functions:

- Each energy cell employs polynomial approximations.
- First-order Legendre polynomials are the basis function of choice.

Conservation and Integration:

- Finite volume method ensures accurate particle number conservation \bullet
- Integrates particle fluxes across energy cell boundaries
- Enforces energy conservation through strategic flux choices for diffusion-like terms and redistribution

Particle	Number of cells	Minimum energy	Maximum energy
Photons :	150	$\nu = 10^{-2} \mathrm{Hz}$	$\nu = 10^{30} \text{ Hz}$
Leptons :	130	$\gamma_{\rm e^\pm}=1.2$	$\gamma_{\rm e^\pm}5\times10^{13}$
Hadrons :	100	$\gamma_h = 1.2$	$\gamma_h = 10^{11}$
Neutrinos :	100	$E_{\nu} = 10^{-3} \text{ GeV}$	$E_{\nu} = 10^{11} \text{ Gev}$

$$\frac{\partial n_{\rm ph}}{\partial t}(x_2) = \iint_{\gamma} \int_{x_1} d\gamma dx$$
$$-n_{\rm ph}(x_2) \int_{\gamma} \int_{\gamma} \int_{\gamma} d\gamma dx$$

 $lx_1 R(\gamma, x_1 \to x_2) N_{e^{\pm}}(\gamma) n_{\text{ph}}(x_1)$

 $\int_{\gamma} \int_{x_1} d\gamma dx_1 R(\gamma, x_2 \to x_1) N_{e^{\pm}}(\gamma)$

$$\frac{\partial n_{\rm ph}}{\partial t}(x_2) = \iint_{\gamma} \int_{x_1} d\gamma dx$$
$$-n_{\rm ph}(x_2) \int_{\gamma} \int_{\gamma} \int_{\gamma} dx$$

 $\int d\gamma dx_1 R(\gamma, x_2 \to x_1) N_{e^{\pm}}(\gamma)$ $\frac{\partial n_{\rm ph}^J}{\partial t} = \frac{1}{\sqrt{||J||}} \sum_{k} \sum_{I < I} \frac{N_{\rm e}^k}{\sqrt{||K||}} \frac{n_{\rm ph}^I}{\sqrt{||I||}} \sigma_{IKJ} - \frac{n_{\rm ph}^J}{||J||} \sum_{k} \frac{N_{\rm e}^k}{\sqrt{||K||}} \sum_{I > I} \sigma_{JKI}$

 $lx_1 R(\gamma, x_1 \rightarrow x_2) N_{e^{\pm}}(\gamma) n_{ph}(x_1)$

$$\frac{\partial n_{\rm ph}}{\partial t}(x_2) = \iint_{\gamma} \int_{x_1} d\gamma dx$$
$$-n_{\rm ph}(x_2) \int_{\gamma} \int_{\gamma} d\gamma dx$$

$$\frac{\partial n_{\rm ph}^J}{\partial t} = \frac{1}{\sqrt{||J||}} \sum_{k} \sum_{I < J} \frac{N_{\rm e}^k}{\sqrt{||K|}}$$
$$\sigma_{IKJ} \equiv \int_{I} \int_{J} \int_{K} \sigma(\nu_I, \gamma_K \to \nu_J) d\nu_I$$

 $lx_1 R(\gamma, x_1 \rightarrow x_2) N_{e^{\pm}}(\gamma) n_{\text{ph}}(x_1)$

 $\int_{Y} d\gamma dx_1 R(\gamma, x_2 \to x_1) N_{e^{\pm}}(\gamma)$ $\frac{n_{\text{ph}}^{I}}{\sqrt{||I||}}\sigma_{IKJ} - \frac{n_{\text{ph}}^{J}}{||J||}\sum_{k}\frac{N_{e}^{k}}{\sqrt{||K||}}\sum_{I>I}\sigma_{JKI}$

 $_{I}d\nu_{J}d\gamma_{K}$

$$\frac{\partial n_{\rm ph}}{\partial t}(x_2) = \iint_{\gamma} \int_{x_1} d\gamma dx$$
$$-n_{\rm ph}(x_2) \int_{\gamma} \int_{\gamma} d\gamma dx$$

$$\frac{\partial n_{\rm ph}^J}{\partial t} = \frac{1}{\sqrt{||J||}} \sum_{k} \sum_{I < J} \frac{N_{\rm e}^k}{\sqrt{||K||}} \frac{n_{\rm ph}^I}{\sqrt{||K||}}$$
$$\sigma_{IKJ} \equiv \int_{I} \int_{J} \int_{K} \sigma(\nu_I, \gamma_K \to \nu_J) d\nu_I d\nu_J d\gamma_K$$

 $lx_1 R(\gamma, x_1 \rightarrow x_2) N_{e^{\pm}}(\gamma) n_{ph}(x_1)$

 $\int_{x_1} d\gamma dx_1 R(\gamma, x_2 \to x_1) N_{e^{\pm}}(\gamma)$ $\frac{n_{\text{ph}}^{I}}{\sqrt{||I||}}\sigma_{IKJ} - \frac{n_{\text{ph}}^{J}}{||J||}\sum_{k}\frac{N_{e}^{k}}{\sqrt{||K||}}\sum_{I>I}\sigma_{JKI}$

- Adaptive Gauss-Kronrod Method
- More then 1M integrals
- Overall computation takes few months
- Computed once and got tabulated

Time Discretization

Time Discretization

Temporal Challenges:

•

Implicit Time Discretization:

- Ensures numerical stability across varying process timescales •
- All leptonic processes are solved with implicit methods for enhanced stability •
- Non-linearity from Compton scattering and pair production addressed with Newton-Raphson method •

Diverse timescales in blazar processes require sophisticated temporal management

Time Discretization

Temporal Challenges:

Diverse timescales in blazar processes require sophisticated temporal management ۲

Implicit Time Discretization:

- Ensures numerical stability across varying process timescales •
- All leptonic processes are solved with implicit methods for enhanced stability
- Non-linearity from Compton scattering and pair production addressed with Newton-Raphson method •

Semi-Implicit Scheme for Hadrons:

- The backward Euler method is adapted for photo-pion production
- Treats hadronic processes implicitly, photon spectrum explicitly
- Requires careful time step selection to accurately represent photo-pair and photo-pion interaction rates

Modeling Advantages:

- Linearizes hadron equations, isolating them from the rapid changes in the photon field Crucial for accurate simulations when photon-related timescales are significantly shorter

SOPRANO's Insights on Neutrino-Candidate Blazars

• SOPRANO Modeling: Utilized for multi-messenger data analysis of neutrino-candidate blazars

• Key Targets: Focused on TXS 0506+056, 3HSP J095507.9+355101, 3C 279, and PKS 0735+178

• **Research Impact:** Resulted in several publications, contributing to the astrophysical community's understanding

• **Highlight on TXS 0506+056:** A recap of SOPRANO's findings on this particularly intriguing blazar

- Hadronic scenario: Dominated by proton synchrotron radiation •
- Lepto-hadronic scenario: Includes emissions from secondary pairs •

- Hadronic scenario: Dominated by proton synchrotron radiation •
- Lepto-hadronic scenario: Includes emissions from secondary pairs ۲

Simulation Environment:

- Single spherical emission zone with constant Lorentz factor \bullet
- Uniform magnetic field mirroring astrophysical jet conditions •

- Hadronic scenario: Dominated by proton synchrotron radiation •
- Lepto-hadronic scenario: Includes emissions from secondary pairs \bullet

Simulation Environment:

- Single spherical emission zone with constant Lorentz factor \bullet
- Uniform magnetic field mirroring astrophysical jet conditions \bullet

Particle Injection:

- Protons: Power-law distribution with exponential cutoff lacksquare
- Electrons: Single power-law spectrum ۲

- Hadronic scenario: Dominated by proton synchrotron radiation
- Lepto-hadronic scenario: Includes emissions from secondary pairs •

Simulation Environment:

- Single spherical emission zone with constant Lorentz factor •
- Uniform magnetic field mirroring astrophysical jet conditions \bullet

Particle Injection:

- Protons: Power-law distribution with exponential cutoff lacksquare
- Electrons: Single power-law spectrum \bullet

Tracking Particle Evolution:

- Assumes escape time equals dynamical time scale for all particles •
- Evolves kinetic equations across several time scales to reach a steady state ٠

TXS 0506+056: 2017 event

	Hadronic	Lepto-hadronic
δ	20	20
$R/10^{15}$ cm	2.5	10
B[G]	80	0.57
$\gamma_{ m e,min}$	100	1000
$\gamma_{e,cut}$	2.4×10^{3}	4.5×10^{4}
$\gamma_{e,max}$	3×10^{4}	6×10^{4}
$\alpha_{ m e}$	2.1	2.0
$\alpha_{\rm p} = \alpha_{\rm e}$	2.1	2.0
$\gamma_{\rm p,min}$	1	1
$\gamma_{\rm p,max}$	10 ⁹	10 ⁶
$L_{\rm e} ({\rm erg}{\rm s}^{-1})$	$2.2 imes 10^{44}$	9.3×10^{44}
$L_{\rm B}~({\rm erg~s^{-1}})$	$6.0 imes 10^{46}$	4.9×10^{43}
$L_{\rm p}~({\rm erg~s^{-1}})$	$2.1 imes 10^{47}$	$2.6 imes 10^{50}$

, ,

TXS 0506+056: 2014-15 flare

	Hadronic	Lepto-hadronic
δ	15	10
$R/10^{15}$ cm	1	100
B[G]	35	0.65
$\gamma_{e,min}$	2×10^2	9×10^{3}
$\gamma_{e,cut}$	10^{4}	$=\gamma_{e,max}$
Ye.max	8×10^4	8×10^4
$\alpha_{\rm e}$	2.0	2.0
$\alpha_{\rm p} = \alpha_{\rm e}$	2.0	2.0
$\gamma_{p,min}$	1	1
$\gamma_{\rm p,max}$	2×10^8	1.2×10^{5}
$L_{\rm e} ({\rm erg} {\rm s}^{-1})$	$2.8 imes 10^{44}$	5.7×10^{43}
$L_{\rm B}~({\rm erg~s^{-1}})$	10^{45}	1.6×10^{45}
$L_{\rm p}~({\rm erg~s^{-1}})$	3.4×10^{47}	4.9×10^{52}

High Redshift Blazars and SOPRANO

• Source Selection: Analysis of 79 Fermi-detected blazars (64 FSRQs, 9 BL Lacs, 6 BCUs) with redshifts 2.0 to 2.5

High Redshift Blazars and SOPRANO

• Source Selection: Analysis of 79 Fermi-detected blazars (64 FSRQs, 9 BL Lacs, 6 BCUs) with redshifts 2.0 to 2.5

• Data Selection: Over 14.5 years of Fermi-LAT, Swift XRT, Swift UVOT, and NuSTAR data

High Redshift Blazars and SOPRANO

• Source Selection: Analysis of 79 Fermi-detected blazars (64 FSRQs, 9 BL Lacs, 6 BCUs) with redshifts 2.0 to 2.5

• Data Selection: Over 14.5 years of Fermi-LAT, Swift XRT, Swift UVOT, and NuSTAR data

• Modeling Scenarios:

Lepto-Hadronic Model for flaring state insights

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

Gamma-ray Band:

- Flux spans from 5.32×10^{-10} to 3.40×10^{-7} photon $cm^{-2}s^{-1}$
- Photon index between 1.66 and 3.15
- Illustrate diverse characteristics

Luminosity:

- Ranges from 3.67×10^{46} to $6.62 \times 10^{48} \ erg \ s^{-1}$
- Among the most brightest blazars detected in the γ -ray band

Flux Variability:

• Observed in 31 sources, most pronounced in 4C+01.02, 4C+71.07

Modeling with SSC/EIC scenario:

- Used to interpret multiwavelength SEDs
- Provides a view of emissions in average state

Jet and Disk Luminosity:

- Jet luminosity between 3.20×10^{44} and $6.51 \times 10^{45} erg s^{-1}$
- Disk luminosity from 4.15×10^{44} to 3.97×10^{47} erg s⁻¹

Source	δ	р	γ_{\min}	$\gamma_{\rm cut}$	В	L_D	L_e	1
\$5 1053+70	18.42 ± 1.42	2.08 ± 0.21	69.49 ± 7.30	12.50 ± 1.22	3.96 ± 0.42	1.44	4.40	0
PMN J1344-1723	47.18 ± 1.66	2.10 ± 0.06	18.56 ± 1.83	35.32 ± 3.13	4.21 ± 0.27	0.84	2.93	0
PKS 1915-458	24.53 ± 1.14	2.29 ± 0.22	65.94 ± 6.50	4.09 ± 0.69	7.62 ± 0.80	4.14	4.55	0
PKS 0226-559	33.13 ± 2.03	1.56 ± 0.06	17.32 ± 2.23	27.07 ± 2.54	4.25 ± 0.33	7.68	4.37	0
PKS 0601-70	24.91 ± 1.20	1.92 ± 0.17	71.10 ± 6.49	6.39 ± 0.59	5.81 ± 0.62	3.23	3.28	2
B2 1436+37B	21.06 ± 0.96	2.00 ± 0.21	95.07 ± 10.48	4.69 ± 0.42	5.07 ± 0.57	0.75	2.64	1
2MASS J16561677-3302127	17.15 ± 0.22	1.93 ± 0.02	97.22 ± 1.59	14.50 ± 0.29	9.91 ± 0.24	33.50	6.39	2
TXS 1645+635	24.58 ± 0.94	1.92 ± 0.18	67.97 ± 8.10	3.87 ± 0.37	7.46 ± 0.70	1.28	1.70	2
PKS B1149-084	25.62 ± 0.93	1.92 ± 0.19	64.32 ± 6.41	4.86 ± 0.59	5.98 ± 0.39	1.98	1.64	4
\$5 0212+73	23.24 ± 0.65	2.66 ± 0.14	207.00 ± 9.11	7.63 ± 0.73	8.48 ± 0.38	9.96	7.23	0
B2 0552+39A	13.93 ± 0.82	2.12 ± 0.07	105.80 ± 7.80	27.18 ± 2.45	6.91 ± 0.77	39.70	5.60	0
PKS 2149-306	25.83 ± 0.83	1.82 ± 0.04	83.20 ± 1.31	3.02 ± 0.12	5.14 ± 0.06	12.50	29.40	0
PKS 1430-178	26.31 ± 1.22	2.25 ± 0.17	43.81 ± 5.82	4.17 ± 0.62	9.80 ± 0.83	6.21	5.32	0
S3 0458-02	33.82 ± 1.37	2.21 ± 0.11	55.51 ± 7.02	7.16 ± 0.75	7.21 ± 0.59	6.08	6.60	1
PMN J0157-4614	22.59 ± 1.43	1.94 ± 0.21	133.10 ± 21.74	4.26 ± 0.68	6.59 ± 0.63	0.69	0.72	2
PKS 0420+022	26.55 ± 1.18	2.78 ± 0.14	48.92 ± 4.10	8.32 ± 0.95	8.01 ± 0.55	3.55	2.31	1
PKS 2245-328	24.98 ± 1.46	1.94 ± 0.23	47.52 ± 6.02	4.15 ± 0.51	8.18 ± 0.74	3.06	2.47	1
PKS B2224+006	21.38 ± 1.01	1.79 ± 0.20	29.27 ± 4.49	3.13 ± 0.38	8.02 ± 0.87	0.25	2.78	1
PKS 2244-37	26.04 ± 1.94	1.99 ± 0.25	63.82 ± 7.72	5.28 ± 0.96	10.89 ± 1.30	4.46	1.59	0
B2 0242+23	26.05 ± 1.26	2.10 ± 0.18	34.78 ± 4.12	4.95 ± 0.69	6.21 ± 0.48	1.93	3.08	0
4C +71.07	32.34 ± 1.30	2.24 ± 0.16	43.72 ± 3.72	4.38 ± 0.40	9.94 ± 0.52	23.20	22.70	0
PKS 2022+031	24.37 ± 1.31	2.18 ± 0.17	32.99 ± 3.38	11.10 ± 1.17	7.10 ± 0.84	0.12	2.32	0
MG2 J153938+2744	19.46 ± 0.80	2.12 ± 0.13	51.00 ± 3.55	8.96 ± 0.96	8.28 ± 0.52	0.30	1.50	8
S4 0917+44	27.14 ± 0.81	2.42 ± 0.11	69.94 ± 6.35	8.84 ± 0.67	5.32 ± 0.26	3.83	7.48	1
PMN J2135-5006	5.45 ± 0.21	2.85 ± 0.06	158.70 ± 14.13	355.10 ± 48.94	1.30 ± 0.10	0.66	3.23	2
OX 131	21.83 ± 0.77	1.60 ± 0.12	109.00 ± 10.71	13.76 ± 0.93	1.76 ± 0.10	0.41	4.30	0
PMN J1959-4246	20.98 ± 0.84	2.02 ± 0.17	57.41 ± 4.50	5.07 ± 0.63	7.88 ± 0.71	0.17	2.54	1
PKS 0446+11	23.19 ± 1.12	1.98 ± 0.17	16.67 ± 2.26	5.53 ± 0.73	5.34 ± 0.46	0.16	4.36	8
PKS 1329-049	22.29 ± 0.87	2.30 ± 0.16	69.16 ± 8.12	12.00 ± 1.99	3.62 ± 0.34	6.52	8.00	0
PMN J0134-3843	24.71 ± 0.98	2.54 ± 0.19	86.57 ± 8.43	4.61 ± 0.61	15.17 ± 0.90	9.01	1.59	1
87GB 080551.6+535010	26.16 ± 1.11	1.90 ± 0.20	59.01 ± 5.16	3.34 ± 0.34	4.58 ± 0.40	3.78	3.21	0
PKS B1043-291	26.98 ± 1.61	2.50 ± 0.20	56.45 ± 4.78	10.30 ± 1.28	9.58 ± 1.15	1.89	1.80	0
OM 127	22.03 ± 1.16	2.59 ± 0.14	49.91 ± 5.54	18.73 ± 3.19	7.31 ± 0.66	2.48	2.56	1
PKS 0227-369	20.02 ± 0.68	2.83 ± 0.09	81.14 ± 8.13	25.89 ± 2.97	5.32 ± 0.50	2.52	3.59	1
OF 200	15.55 ± 0.59	2.13 ± 0.11	38.66 ± 1.92	11.03 ± 0.68	5.45 ± 0.24	1.22	2.14	0
B3 0803+452	19.64 ± 0.94	2.28 ± 0.25	44.72 ± 5.38	3.17 ± 0.43	8.56 ± 0.77	1.35	2.11	3
4C +01.02	26.29 ± 0.98	1.88 ± 0.13	28.05 ± 2.99	5.55 ± 0.52	3.04 ± 0.19	2.08	9.23	5
PKS 1348+007	24.93 ± 1.94	1.70 ± 0.21	59.32 ± 8.57	7.87 ± 0.81	2.50 ± 0.29	0.04	2.95	2
SDSS J100326.63+020455.6	26.93 ± 0.76	2.03 ± 0.08	40.09 ± 1.28	7.69 ± 0.39	12.03 ± 0.28	1.12	1.75	0
PKS 0528+134	15.71 ± 0.87	2.15 ± 0.10	46.04 ± 5.30	20.93 ± 2.60	3.67 ± 0.25	0.80	7.91	0
TXS 0322+222	31.80 ± 0.99	2.12 ± 0.25	122.40 ± 11.04	2.38 ± 0.22	7.92 ± 0.58	4.45	3.51	0
4C +13.14	20.30 ± 1.03	1.72 ± 0.14	44.37 ± 5.16	4.10 ± 0.43	8.13 ± 0.62	11.00	3.38	1
PMN J0625-5438	12.52 ± 0.70	2.61 ± 0.23	200.50 ± 27.17	13.10 ± 2.07	5.12 ± 0.55	3.38	2.38	0
OX 110	24.62 ± 0.87	2.08 ± 0.08	29.37 ± 2.40	18.94 ± 1.26	4.89 ± 0.23	0.86	1.06	0
PKS 0549-575	27.49 ± 2.14	1.86 ± 0.21	37.63 ± 4.32	4.47 ± 0.43	6.42 ± 0.69	0.06	3.22	1
PKS B1412-096	5.24 ± 0.17	2.32 ± 0.14	199.30 ± 17.68	13.22 ± 1.08	3.17 ± 0.26	2.17	2.20	4(

Sahakyan N., Harutyunyan G., Gasparyan S., and Israyelyan D., MNRAS, 2024, stae273

r -					
۰.	ć	1	C	>	
-	1	L	3	5	

.76 .24 .12 .43 .71 .56 .40 .50 .13 .43 0.04 .20 .09 .63 .54 .86 .33 .03 .69 .14 .96 6.67 .27 .85 0.04 .13 .05 .43 .40 .46 .88 .90 .22 .88 .03 .25 .19 .13 .90).51 .21 .95 .29 0.60

L_p

0.39 0.700.620.450.34 0.250.420.21 0.19 0.39 0.34 3.16 1.000.93 0.05 0.45 0.400.59 0.19 0.62 4.23 0.450.20 0.91 0.180.210.34 1.420.87 0.19 0.46 0.25 0.420.41 0.35 0.421.88 0.27 0.27 1.01 0.32 0.49 0.12 0.19 0.52 0.10

4C + 01.02

Lepto-Hadronic: 4C+01.02

169	160		
55	200		
1000	1e4		
2.6e43 erg/s	7.4e46 erg/s		
1.2e48 erg/s	2.2e49 erg/s		
2.3e49 erg/s	9.4e43 erg/s		

4C+71.07

Lepto-Hadronic: 4C+71.07

 $\gamma_{e,\max}$ 6.8

 L_e

 L_p

 L_B

$5\mathrm{e}16~\mathrm{cm}$	$4\mathrm{e}15~\mathrm{cm}$		
$40 \mathrm{G}$	$4 \mathrm{G}$		
32.34	32.34		
2	2		
1	1		
3.5e8	1e6		
55	10		
1000	800		
6.8e43 erg/s	8.5e46 erg/s		
1.6e49 erg/s	1.0e45 erg/s		
1.6e49 erg/s	1.4e49 erg/s		

Lepto-Hadronic: PKS 1430-178

7.1e48 erg/s2.3e49 erg/s

Lepto-Hadronic: PKS 0227-369

Future Directions with SOPRANO

- **SOPRANO's New Frontier:** Introduction of a Convolutional Neural Network (CNN) trained on SOPRANO outputs for real-time SED fitting, significantly enhancing speed
- Leptonic Model Validation: Validated approach includes particle cooling considerations within the leptonic model framework
- Accessibility: Available for public use via the Markarian Multiwavelength Datacenter (MMDC). For access, visit www.mmdc.am
- Future Directions: Plans to extend capabilities by incorporating hadronic processes for broader analysis
- Special Highlight: For an in-depth exploration of these advancements, Damien will detail this innovative approach in his talk.

THANK YOU FOR YOUR ATTENTION

