

News from CR-ENTREES – And Extensions

Leptohadronic Propagation Codes | 21.02.2024 L. Merten*, A. Reimer, P. Da Vela, M. Boughelilba

Contents

Short INtroduction

Basics

- Principles and Assumptions of a "Matrix-Multiplication" Code
- CR-ENTREES Cosmic-Ray ENergy TRansport in timE-Evolving astrophysical Settings

Heavy Nuclei Extension

- Basic Ideas and Structure
- Modular Code in Python

Testing and Example

- Validating indidual interactions
- First application to jet physics

Summary and Outlook

- What's missing?
- What's coming next?

Energy Transport Code

- Main goal: Efficient calculation of spectra \rightarrow Discretization
- $f_i(t) = \int_{E_i}^{E_{i+1}} F(t, E) dE$, vector of number density
- Resolution of 300 bins: $E = (10^{-3} 10^{12})GeV$

Co-funded by

universität innsbruck

SFB149

Energy Transport Code

- Main goal: Efficient calculation of spectra \rightarrow Discretization
- $f_i(t) = \int_{E_i}^{E_{i+1}} F(t, E) dE$, vector of number density
- Resolution of 300 bins: $E = (10^{-3} 10^{12})GeV$

Forward integration via matrix multiplication:

- $f_j^{\beta}(t + \Delta t) = T_{ij}^{\alpha\beta}(\Delta t)f_i^{\alpha}(t)$, where $T^{\alpha\beta}$ is the energy transition matrix
- $T_{ij}^{\alpha\beta} = Y_{ij}^{\alpha\beta} p(\alpha, i)$, where $Y^{\alpha\beta}$ is the yield and $p(\alpha, i)$ is the interaction probability

Co-funded by

 \rightarrow Interaction Probability

universität

SFB149

- Cross section, target density, etc.
- MC simulations and analytical approximations \rightarrow Yields

Time Scales

Problem: Time scales can be very different for involved processes, e.g. electron synchrotron radiation compared to photopion production.

• \rightarrow Time step must be smaller than smallest energy loss scale $\Delta t < \min_{\text{all processes}} \left(\frac{\mathrm{d}E}{\mathrm{d}t}/E\right)^{-1}$

Possible solution: Matrix doubling

• $T(2^n \Delta t) = T^{2n}(\Delta t)$, seems to work if the transition matrix does not significantly change on a time scale of $(2^n \Delta t)$.

Co-funded by

CR-ENTREES

CR-ENTREES – Cosmic-Ray ENergy TRansport in timE-Evolving astrophysical Settings

Implementation of matrix transport principle in Fortran by A. Reimer, R. Protheroe and others

- Now with restructured code, simplified installation and testing
- Will become available

CR-ENTREES – Specifications

Species

 Protons, neutrons, electrons, muons, kaons, pions, photons, electron neutrinos, muon neutrinos, and adiabatic energy losses

Interactions

• Bethe-Heitler pair production, photo-pion production, nuclear decay, synchrotron radiation, inverse Compton scattering, $\gamma\gamma$ -Absorption, escape, and adiabatic losses

Targets

• Black body, broken power laws, etc.: discretized on a 161-bin-array.

CR-ENTREES – Installation and Testing

Installation with cmake

lmerten@lmerten-ThinkCentre-M920s: ~/Software/matrixcode/build 🛛 😑 🗉 😣							
File Edit View Search Terminal Help							
CMAKE_BUILD_TYPE	Page 1 of 1						
CMAKE_INSTALL_PREFIX	/usr/local						
ENABLE_PYTHON	ON						
ENABLE_TESTING	ON						
HDFS_Fortran_LIBRARY_dl	/usr/lib/x86_64-linux-gnu/libdl.so						
HDFS_Fortran_LIBRARY_hdf5	/usr/lib/x86_64-linux-gnu/hdf5/serial/libhdf5						
HDFS_Fortran_LIBRARY_m	/usr/lib/x86_64-linux-gnu/libm.so						
HDFS_Fortran_LIBRARY_m	/usr/lib/x86_64-linux-gnu/libpthread.so						
HDFS_Fortran_LIBRARY_sz	/usr/lib/x86_64-linux-gnu/libsz.so						
HDFS_Fortran_LIBRARY_z	/usr/lib/x86_64-linux-gnu/libz.so						
CMAKE_BUILD_TYPE: Choose the type	e of build, options are: None Debug Release RelW						
Keys: [enter] Edit an entry [d] D	belete an entry CMake Version 3.17.0						
[l] Show log output [c] C	configure						
[h] Help [q] Q	puit without generating						
[t] Toggle advanced mode (c	wurrently off)						

Unit tests

FШF

Der Wissenschaftsfonds

Co-funded by the European Union

lm	erten@lmerten-	ThinkCentre-M920	s: ~/Softw	are/matrix	code/build	-		
ile Edit View S	earch Terminal	Help						
nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$ nerten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$								
est project /home/lmerten/Software/matrixcode/build								
Start 1: ba 5 Test #1: ba	seTest seTest		F	Passed	98.07 sec			
5 Test #2: nu Start 3: ph	clearDecayTes otoPionTest	t	f	Passed	10.31 sec			
5 Test #3: ph Start 4: in	otoPionTest . verseComptonT	 est	···· F	Passed	33.01 sec			
/5 Test #4: in Start 5: sv	verseComptonT	est	F	Passed	48.34 sec			
/5 Test #5: sy	nchrotronTest		F	Passed	86.28 sec			
00% tests passed, 0 tests failed out of 5								
otal Test time (real) = 276.01 sec merten@lmerten-ThinkCentre-M920s:~/Software/matrixcode/build\$								

Several predefined tests are executed included test plots.

universität innsbruck

Heavy Nuclei

How to include heavier elements?

Problems

- Spectral/transition data will increase (factor ~ 100)
- Hardcoded transitions \rightarrow unreadable and not maintainable

Solution

Modular object-oriented structure

- Reduces the amount of code significantly
- In general, easier to maintain and extend

Furthermore

• On-the-fly creation/deletion of spectra \rightarrow Reduction of data

13 CR-ENTREES | Lepto-Hadronic Propagation Codes | Lukas.Merten@rub.de

○ FШF

Co-funded by

the European Union

Der Wissenschaftsfonds.

Structure II

0 F

Co-funded by

the European Union

FUF Der Wissenschaftsfonds.

• SFB1491 RAPP Center

Structure III – Transitions

Co-funded by

the European Union

Der Wissenschaftsfonds.

Co-funded by

Der Wissenschaftsfonds.

the European Union

universität innsbruck Research Agency

Immediate Interactions

Problem

- Very fast interacting species (e.g., nuclear decay)
- \rightarrow Irrelevant species consumes memory and computing time

Solution

Sustainably remove the species from the simulation chain

- Make sure to not produce it again
- Not neglecting the channel to (possibly stable) secondaries

Co-funded by

Structure IV – Immediate Interactions

 $T_{\rm AC} = T_{\rm SC}^* T_{\rm AS}$, with $T_{\rm SC}^*$ the transition matrix recalculated with $\Delta t = \infty$

FUF Der Wissenschaftsfonds

Co-funded by

the European Union

Immediate Interaction

Benefits

- Reduces significantly the number of simultaneously tracked species
- Reduces the memory usage
- Increases the propagation cycles per time
- Slightly reduces hard disk space of simulation results.

Current implementation

• Int. probability $p_{int}(E) = 1 - \exp\left(-\frac{\Delta t}{\tau_{int}(E)}\right) > 0.95 \forall E < E_{max} \rightarrow unstable$

Co-funded by

universität

- Recalculate transitions of unstable species
- If parents available: Recalculate parents' transitions
- Remove species from simulation before next step

Sparse Matrices – Yields PPP

> universität innsbruck

Research Agency RUB

EUF

Co-funded by

the European Union

Sparse Matrices

Benefits

- Reduces memory usage significanly
- Some calculations can be even faster

Current Implementation

- Matrices are transformed at python level
 - Best format not yet decided (CSR, CSC, etc.)
- Will make PDI implementation possible

Co-funded by

Examples and Testing

Nuclear Decay – Neutron

Initial condition: $\Delta t = 10^{12}$ s, N = 100Target: CMB Primary species: neutron, with $\gamma = -2$, $E_{min} = 1$ GeV, $E_{max} = 8 \times 10^{11}$ GeV

ΓШΓ

Der Wissenschaftsfonds

Co-funded by

the European Union

Photo-Meson Production

Initial condition: $\Delta t = 10^{12}$ s, N = 100Target: CMB Primary species: neutron, with $\gamma = -2$, $E_{min} = 1$ GeV, $E_{max} = 8 \times 10^{11}$ GeV

Photo-Meson Production

Initial condition: $\Delta t = 10^{12}$ s, N = 100Target: CMB Primary species: neutron, with $\gamma = -2$, $E_{min} = 1$ GeV, $E_{max} = 8 \times 10^{11}$ GeV

Decay of unstable particles is included.

FUF

Co-funded by

the European Union

universität innsbruck

SFB149

Simple Jet Model

- Comparison of co-moving emission features in two jets:
 - Straight jet
 - Conical jet
- Initial Parameter
 - Magnetic field, B = 10G
 - size of emission blob, $R_{\rm em} = 3 \times 10^{16} {\rm cm}$ at $D = 10^{17} {\rm cm}$
 - Doppler Factor, $D_{\Gamma} = 22.4$
 - Electron population: Spectral Index, $\alpha = -2$, $\gamma_{\min} = 1$, $\gamma_{\max} = 100$

Co-funded by

• Proton population: Spectral Index, $\alpha = -2$, $\gamma_{\min} = 1$, $\gamma_{\max} = 10^9$

Simple Jet Model

Straight Jet

universität innsbruck

RUB

Slovenian Research Agency

Co-funded by

the European Union

ΓШΓ

Summary and Outlook

Summary I

CR-ENTREES is (almost) ready for publication

• Modular structure

Heavy Elements will be treated in an all new python version

• Computation intensive calculation (transition matrices) in Fortran \rightarrow wrapping with f2py

Output is in hdf format

• Fast, good compression, allows for useful meta data storage

Allows for an arbitrary number of species

Species, Targets and Interaction can be "freely" combined

Co-funded by the European Union

Summary II – Interactions

Co-funded by the European Union

universität innsbruck

Summary III

Species are added/deleted on the fly

- Reduction of computation time and storage
- Testing in progress \rightarrow might be inefficient for non-linear set ups

Non-linearity

• Updates of target field based on x-ray flux

Documentation

- Mainly based on docstrings in the modules, classes, function
- Example jupyter notebook

Co-funded by the European Union

Tests – Nuclear Decay

Co-funded by the European Union

Tests – Photo-Meson-Production

Comparison with semianalytic models of Kelner & Aharonian (2008) Allows only to compare the normalization as both approaches are based on SOPHIA

ΓШΕ

Der Wissenschaftsfonds

Co-funded by

the European Union

universität innsbruck

Research Agency

Tests – Inverse Compton Scattering

Co-funded by

the European Union

Der Wissenschaftsfonds.

Tests – Synchrotron Radiation

Co-funded by

the European Union

Der Wissenschaftsfonds.

